PyCAMA report generated by tropl2-proc

tropl2-proc

2024-12-24 (02:15)

1 Short Introduction

1.1 The list of parameters

You may want to keep the list given in table 1 at hand when viewing the results.

2 Definitions

The averages shown here are unweighed averages:

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i \tag{1}$$

with N the number of observations in the dataset.

The spread of the measurements is indicated with the variance V(x), or rather the standard deviation $\sigma(x) = \sqrt{V(x)}$.

$$V(x) = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2$$
(2)

We also report the more robust statistics median, minimum, maximum, various percentiles and inter quartile range.

The median m is the value of parameter x for which half of the observations of x is smaller than m:

$$P(x \le m) = P(x \ge m) = \int_{-\infty}^{m} f(x) \, \mathrm{d}x = \frac{1}{2}$$
(3)

with f(x) the probability density function.

The median is a special case of a percentile. Instead of $\frac{1}{2}$ in equation 3, other threshold values can be used. We report results for 1%, 5%, 10%, 15.9%, 25%, 75%, 84.1%, 90%, 95% and 99%. The inter quartile range is the difference between the 75% and 25% percentiles. Similarly the minimum and maximum values correspond to the 0% and 100% percentiles respectively.

For normally distributed parameters the mean and median are the same, while the $\mu \pm \sigma$ values and the 15.9% and 84.1% percentiles coincide.

To get a measure for the relation of one variable $x_{(k)}$ with another $x_{(l)}$, we calculate the covariance matrix C_{kl} .

$$C_{kl} = C(x_{(k)}, x_{(l)}) = \frac{1}{N-1} \sum_{i=1}^{N} (x_{(k),i} - \overline{x_{(k)}}) (x_{(l),i} - \overline{x_{(l)}})$$
(4)

Rather than a dimensionally dependent covariance, it is often easier to interpret a correlation matrix R_{kl} , a matrix of Pearson's *r* coefficients:

$$R_{kl} = R(x_{(k)}, x_{(l)}) = \frac{C_{kl}}{\sqrt{C_{kk}C_{ll}}} = \frac{C_{kl}}{\sqrt{V(x_k)V(x_l)}}$$
(5)

The diagonal elements of the covariance matrix are the variances of the elements, $V(x_{(k)}) = C_{kk}$ and obviously $R_{kk} = 1$.

Table 1: Parameterlist and basic stat	istics	for t	he ana	lysis
---------------------------------------	--------	-------	--------	-------

X7 · 11	Table 1: Parameter	list and basic	statistics for the a	nalysis			NC -
Variable	mean $\pm \sigma$	Count	Mode	IQK	Median	Minimum	Maximum
qa value [1]	0.906 ± 0.185	23408316	0.995	0.1000	1.000	0.350	1.000
cloud pressure crb [hPa]	776 ± 198	23408316	$1.015 imes 10^3$	289	829	130	1.074×10^3
cloud pressure crb precision [hPa]	2.15 ± 8.29	23408316	0.750	1.04	0.493	$5.493 imes 10^{-4}$	1.196×10^{3}
cloud fraction crb [1]	0.499 ± 0.384	23408316	0.996	0.869	0.445	0.0	1.000
cloud fraction crb precision [1]	$(1.635 \pm 6.095) \times 10^{-4}$	23408316	$2.500 imes10^{-4}$	$5.523 imes 10^{-5}$	$8.078 imes10^{-5}$	$9.671 imes 10^{-9}$	0.333
scene albedo [1]	0.481 ± 0.330	23408316	$1.500 imes10^{-2}$	0.586	0.459	$-6.724 imes 10^{-3}$	4.22
scene albedo precision [1]	$(8.250 \pm 8.750) \times 10^{-5}$	23408316	$2.500 imes10^{-4}$	$6.319 imes10^{-5}$	$5.508 imes10^{-5}$	$1.063 imes 10^{-5}$	8.264×10^{-3}
apparent scene pressure [hPa]	805 ± 176	23408316	1.008×10^3	265	855	130	1.073×10^3
apparent scene pressure precision [hPa]	0.833 ± 1.405	23408316	0.500	0.418	0.409	$6.416 imes10^{-2}$	57.0
chi square [1]	$(0.239 \pm 1.395) \times 10^5$	23408316	0.150	$2.788 imes10^4$	$1.647 imes 10^4$	56.8	$1.833 imes 10^8$
number of iterations [1]	3.37 ± 1.06	23408316	3.23	1.000	3.00	1.000	14.0
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.623 \pm 6.963) \times 10^{-9}$	23408316	$7.500 imes 10^{-10}$	$5.276 imes 10^{-9}$	1.433×10^{-9}	-2.079×10^{-6}	1.781×10^{-6}
fluorescence precision [mol $s^{-1} m^{-2} nm^{-1} sr^{-1}$]	$(1.767 \pm 0.710) \times 10^{-9}$	23408316	$8.500 imes 10^{-10}$	1.060×10^{-9}	$1.702 imes 10^{-9}$	$3.737 imes 10^{-10}$	5.891×10^{-9}
chi square fluorescence [1]	$(0.526 \pm 0.979) \times 10^5$	23408316	1.250×10^3	$4.945 imes 10^4$	$1.672 imes 10^4$	101	$5.688 imes 10^6$
degrees of freedom fluorescence [1]	6.00 ± 0.00	23408316	5.95	0.0	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	23408316	49.7	0.0	50.0	44.0	50.0
wavelength calibration offset [nm]	$(4.337 \pm 8.109) \times 10^{-3}$	23408316	4.400×10^{-3}	5.307×10^{-3}	4.347×10^{-3}	-0.116	0.139

Table 2: Percentile ranges												
Variable	1 %	5%	10 %	15.9 %	25 %	75 %	84.1 %	90 %	95 %	99 %		
qa value [1]	0.500	0.500	0.500	0.500	0.900	1.000	1.000	1.000	1.000	1.000		
cloud pressure crb [hPa]	246	381	473	564	649	938	971	991	1.008×10^3	1.019×10^3		
cloud pressure crb precision [hPa]	0.170	0.227	0.247	0.265	0.298	1.33	2.31	3.99	8.28	27.1		
cloud fraction crb [1]	1.872×10^{-3}	$1.260 imes10^{-2}$	$2.916 imes10^{-2}$	$5.534 imes10^{-2}$	0.113	0.982	1.000	1.000	1.000	1.000		
cloud fraction crb precision [1]	$2.042 imes 10^{-5}$	2.416×10^{-5}	$2.766 imes 10^{-5}$	$3.286 imes 10^{-5}$	$4.477 imes 10^{-5}$	1.000×10^{-4}	1.460×10^{-4}	2.675×10^{-4}	$6.215 imes 10^{-4}$	1.722×10^{-3}		
scene albedo [1]	9.840×10^{-3}	$2.440 imes 10^{-2}$	$4.814 imes10^{-2}$	$8.834 imes10^{-2}$	0.181	0.767	0.877	0.930	0.980	1.13		
scene albedo precision [1]	1.334×10^{-5}	1.614×10^{-5}	1.996×10^{-5}	2.526×10^{-5}	3.340×10^{-5}	9.658×10^{-5}	1.263×10^{-4}	1.660×10^{-4}	2.463×10^{-4}	4.676×10^{-4}		
apparent scene pressure [hPa]	330	451	544	617	685	949	978	995	1.009×10^{3}	1.020×10^{3}		
apparent scene pressure precision [hPa]	0.210	0.234	0.251	0.268	0.296	0.715	1.07	1.66	3.01	7.08		
chi square [1]	334	837	1.866×10^{3}	3.393×10^{3}	6.111×10^{3}	3.399×10^{4}	4.425×10^{4}	5.299×10^{4}	6.352×10^{4}	8.481×10^4		
number of iterations [1]	2.00	2.00	2.00	2.00	3.00	4.00	4.00	5.00	5.00	7.00		
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$-1.413 imes 10^{-8}$	-6.443×10^{-9}	-3.809×10^{-9}	-2.329×10^{-9}	$-9.726 imes 10^{-10}$	$4.303 imes 10^{-9}$	$6.088 imes10^{-9}$	$7.812 imes 10^{-9}$	$1.028 imes10^{-8}$	$1.568 imes10^{-8}$		
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$7.111 imes 10^{-10}$	$8.136 imes 10^{-10}$	$8.913 imes 10^{-10}$	$9.913 imes 10^{-10}$	1.169×10^{-9}	2.229×10^{-9}	2.521×10^{-9}	2.677×10^{-9}	3.003×10^{-9}	3.680×10^{-9}		
chi square fluorescence [1]	524	1.103×10^{3}	1.660×10^{3}	2.435×10^{3}	4.415×10^{3}	5.387×10^{4}	9.012×10^{4}	1.395×10^{5}	2.378×10^{5}	4.983×10^{5}		
degrees of freedom fluorescence [1]	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00		
number of spectral points in retrieval [1]	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0		
wavelength calibration offset [nm]	$-2.188 imes 10^{-2}$	-7.520×10^{-3}	-2.761×10^{-3}	$-2.886 imes 10^{-4}$	1.671×10^{-3}	$6.978 imes 10^{-3}$	8.942×10^{-3}	$1.147 imes10^{-2}$	1.629×10^{-2}	3.044×10^{-2}		

Table 3. Parameterlist and basic statistics for the anal	vsis for observations in the northern hemisphere
Table 5. I arameternist and basic statistics for the anal	ysis for observations in the northern hemisphere

			2			1		
Variable	$ $ mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.989 ± 0.055	9164394	0.0	1.000	0.350	1.000	1.000	1.000
cloud pressure crb [hPa]	747 ± 219	9164394	361	813	130	1.074×10^3	574	935
cloud pressure crb precision [hPa]	3.00 ± 10.15	9164394	1.74	0.837	$5.493 imes10^{-4}$	$1.196 imes 10^3$	0.425	2.16
cloud fraction crb [1]	0.385 ± 0.346	9164394	0.599	0.267	0.0	1.000	$7.205 imes 10^{-2}$	0.671
cloud fraction crb precision [1]	$(1.668 \pm 7.185) \times 10^{-4}$	9164394	9.599×10^{-5}	9.332×10^{-5}	2.380×10^{-7}	0.333	$5.145 imes 10^{-5}$	1.474×10^{-4}
scene albedo [1]	0.408 ± 0.296	9164394	0.453	0.371	-6.724×10^{-3}	3.90	0.161	0.614
scene albedo precision [1]	$(9.328 \pm 9.988) \times 10^{-5}$	9164394	$7.324 imes 10^{-5}$	$5.887 imes10^{-5}$	$1.181 imes10^{-5}$	8.264×10^{-3}	3.636×10^{-5}	$1.096 imes10^{-4}$
apparent scene pressure [hPa]	790 ± 192	9164394	293	851	130	1.073×10^3	656	949
apparent scene pressure precision [hPa]	1.00 ± 1.61	9164394	0.522	0.518	$6.416 imes10^{-2}$	57.0	0.367	0.888
chi square [1]	$(0.145 \pm 1.382) \times 10^5$	9164394	$1.493 imes 10^4$	$1.008 imes 10^4$	56.8	$1.752 imes 10^8$	4.182×10^3	$1.911 imes 10^4$
number of iterations [1]	3.39 ± 1.10	9164394	1.000	3.00	1.000	14.0	3.00	4.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(8.573 \pm 43.880) \times 10^{-10}$	9164394	3.627×10^{-9}	$1.012 imes 10^{-9}$	-1.146×10^{-6}	$9.022 imes 10^{-7}$	$-7.789 imes 10^{-10}$	2.849×10^{-9}
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.489 \pm 0.609) \times 10^{-9}$	9164394	$8.250 imes 10^{-10}$	$1.373 imes10^{-9}$	$3.737 imes 10^{-10}$	$5.508 imes10^{-9}$	$1.003 imes 10^{-9}$	$1.828 imes10^{-9}$
chi square fluorescence [1]	$(0.455 \pm 0.919) \times 10^5$	9164394	$4.071 imes 10^4$	$1.249 imes 10^4$	101	$1.962 imes 10^6$	3.701×10^3	4.441×10^4
degrees of freedom fluorescence [1]	6.00 ± 0.00	9164394	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	9164394	0.0	50.0	48.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(4.434 \pm 8.897) \times 10^{-3}$	9164394	6.508×10^{-3}	4.367×10^{-3}	-7.922×10^{-2}	8.913×10^{-2}	1.133×10^{-3}	7.641×10^{-3}

Table 4. Parameterlist and basic statistics for the anal	vsis for observations in the southern hemisphere
Tuble 4. I drameternist and basic statistics for the anal	ysis for observations in the southern nemisphere

Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.853 ± 0.217	14243922	0.500	1.000	0.350	1.000	0.500	1.000
cloud pressure crb [hPa]	794 ± 180	14243922	266	840	130	1.029×10^3	675	940
cloud pressure crb precision [hPa]	1.60 ± 6.77	14243922	0.587	0.368	$1.343 imes 10^{-3}$	874	0.270	0.857
cloud fraction crb [1]	0.572 ± 0.388	14243922	0.838	0.606	0.0	1.000	0.162	1.000
cloud fraction crb precision [1]	$(1.613 \pm 5.275) \times 10^{-4}$	14243922	$5.861 imes 10^{-5}$	$7.177 imes 10^{-5}$	$9.671 imes 10^{-9}$	$9.185 imes10^{-2}$	$4.139 imes 10^{-5}$	$1.000 imes 10^{-4}$
scene albedo [1]	0.527 ± 0.342	14243922	0.649	0.548	$-2.768 imes 10^{-3}$	4.22	0.200	0.849
scene albedo precision [1]	$(7.557 \pm 7.773) \times 10^{-5}$	14243922	$5.899 imes10^{-5}$	$5.281 imes 10^{-5}$	$1.063 imes 10^{-5}$	$7.424 imes 10^{-3}$	$3.139 imes 10^{-5}$	$9.039 imes10^{-5}$
apparent scene pressure [hPa]	814 ± 164	14243922	254	859	130	1.029×10^{3}	696	950
apparent scene pressure precision [hPa]	0.723 ± 1.244	14243922	0.315	0.351	0.130	50.9	0.274	0.589
chi square [1]	$(0.299 \pm 1.400) \times 10^5$	14243922	$3.475 imes 10^4$	2.426×10^{4}	95.1	$1.833 imes 10^8$	8.934×10^{3}	4.368×10^{4}
number of iterations [1]	3.36 ± 1.03	14243922	1.000	3.00	1.000	14.0	3.00	4.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(2.116 \pm 8.165) \times 10^{-9}$	14243922	$6.597 imes10^{-9}$	$1.950 imes 10^{-9}$	$-2.079 imes 10^{-6}$	$1.781 imes10^{-6}$	-1.134×10^{-9}	$5.463 imes 10^{-9}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.945\pm0.713)\times10^{-9}$	14243922	$1.079 imes10^{-9}$	$1.965 imes 10^{-9}$	$4.288 imes10^{-10}$	$5.891 imes10^{-9}$	$1.371 imes 10^{-9}$	$2.450 imes10^{-9}$
chi square fluorescence [1]	$(0.573 \pm 1.012) \times 10^5$	14243922	$5.491 imes 10^4$	$2.005 imes 10^4$	123	$5.688 imes 10^6$	5.196×10^{3}	$6.011 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	14243922	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	14243922	0.0	50.0	44.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$ (4.275 \pm 7.559) \times 10^{-3}$	14243922	4.661×10^{-3}	4.338×10^{-3}	-0.116	0.139	1.966×10^{-3}	6.627×10^{-3}

Table 5: Parameterlist and basic statistics for the analysis for observations over water										
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile		
qa value [1]	0.981 ± 0.052	14532537	0.0	1.000	0.350	1.000	1.000	1.000		
cloud pressure crb [hPa]	808 ± 192	14532537	253	877	130	1.073×10^{3}	702	954		
cloud pressure crb precision [hPa]	2.01 ± 8.09	14532537	0.967	0.537	1.343×10^{-3}	945	0.326	1.29		
cloud fraction crb [1]	0.417 ± 0.341	14532537	0.620	0.344	0.0	1.000	$9.412 imes 10^{-2}$	0.714		
cloud fraction crb precision [1]	$(9.984 \pm 32.649) \times 10^{-5}$	14532537	$6.131 imes 10^{-5}$	$5.449 imes 10^{-5}$	$7.104 imes10^{-7}$	$9.185 imes10^{-2}$	$3.254 imes 10^{-5}$	$9.385 imes10^{-5}$		
scene albedo [1]	0.364 ± 0.295	14532537	0.522	0.307	$-6.724 imes 10^{-3}$	4.22	$8.624 imes10^{-2}$	0.608		
scene albedo precision [1]	$(6.356 \pm 7.649) \times 10^{-5}$	14532537	$4.125 imes 10^{-5}$	$4.408 imes10^{-5}$	$1.063 imes 10^{-5}$	$8.264 imes 10^{-3}$	2.516×10^{-5}	6.640×10^{-5}		
apparent scene pressure [hPa]	826 ± 182	14532537	226	888	130	$1.073 imes 10^3$	739	965		
apparent scene pressure precision [hPa]	1.09 ± 1.72	14532537	0.733	0.496	$6.416 imes10^{-2}$	57.0	0.315	1.05		
chi square [1]	$(0.190 \pm 1.221) \times 10^5$	14532537	$2.480 imes 10^4$	$1.137 imes 10^4$	56.8	$1.833 imes 10^8$	3.595×10^{3}	$2.839 imes 10^4$		
number of iterations [1]	2.96 ± 0.82	14532537	0.0	3.00	1.000	14.0	3.00	3.00		
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(6.249 \pm 61.971) \times 10^{-10}$	14532537	4.669×10^{-9}	$4.270 imes 10^{-10}$	$-1.843 imes 10^{-6}$	$1.781 imes10^{-6}$	-1.707×10^{-9}	2.962×10^{-9}		
fluorescence precision [mol $s^{-1} m^{-2} nm^{-1} sr^{-1}$]	$(1.704 \pm 0.738) \times 10^{-9}$	14532537	$1.155 imes 10^{-9}$	$1.571 imes10^{-9}$	$3.737 imes 10^{-10}$	$5.514 imes10^{-9}$	1.059×10^{-9}	2.213×10^{-9}		
chi square fluorescence [1]	$(0.549 \pm 0.983) \times 10^5$	14532537	$5.201 imes 10^4$	$2.009 imes 10^4$	101	$5.688 imes10^6$	$6.285 imes 10^3$	$5.830 imes 10^4$		
degrees of freedom fluorescence [1]	6.00 ± 0.00	14532537	0.0	6.00	6.00	6.00	6.00	6.00		
number of spectral points in retrieval [1]	50.0 ± 0.1	14532537	0.0	50.0	44.0	50.0	50.0	50.0		
wavelength calibration offset [nm]	$(4.290 \pm 9.572) \times 10^{-3}$	14532537	$6.745 imes10^{-3}$	$4.296 imes10^{-3}$	-0.116	0.139	$8.993 imes10^{-4}$	$7.645 imes10^{-3}$		

Table 6: Parameterlist and basic statistics for the analysis for observations over land										
mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile			
0.737 ± 0.252	7185781	0.500	0.500	0.350	1.000	0.500	1.000			
728 ± 185	7185781	247	728	130	1.064×10^{3}	631	878			
2.18 ± 8.15	7185781	0.962	0.339	$5.493 imes10^{-4}$	1.196×10^{3}	0.261	1.22			
0.678 ± 0.408	7185781	0.800	1.000	0.0	1.000	0.200	1.000			
$(2.754 \pm 8.884) \times 10^{-4}$	7185781	3.739×10^{-5}	$1.000 imes 10^{-4}$	$9.671 imes10^{-9}$	0.333	$1.000 imes 10^{-4}$	$1.374 imes10^{-4}$			
0.706 ± 0.284	7185781	0.485	0.803	$9.394 imes 10^{-3}$	3.90	0.448	0.933			
$(1.134 \pm 0.909) \times 10^{-4}$	7185781	7.197×10^{-5}	9.106×10^{-5}	$1.266 imes 10^{-5}$	1.462×10^{-3}	5.756×10^{-5}	$1.295 imes 10^{-4}$			
767 ± 153	7185781	246	762	130	1.062×10^{3}	656	902			
0.389 ± 0.198	7185781	0.167	0.331	$8.594 imes10^{-2}$	11.0	0.271	0.438			
$(0.340 \pm 1.464) \times 10^5$	7185781	$3.055 imes 10^4$	$2.696 imes 10^4$	152	$1.752 imes 10^8$	1.452×10^4	$4.507 imes10^4$			
4.08 ± 1.03	7185781	0.0	4.00	1.000	14.0	4.00	4.00			
$(3.548 \pm 7.854) \times 10^{-9}$	7185781	$4.983 imes10^{-9}$	3.315×10^{-9}	-1.540×10^{-6}	$1.418 imes10^{-6}$	$1.148 imes 10^{-9}$	6.132×10^{-9}			
$(1.914 \pm 0.638) \times 10^{-9}$	7185781	$8.730 imes 10^{-10}$	$1.880 imes 10^{-9}$	4.227×10^{-10}	$5.891 imes10^{-9}$	$1.457 imes 10^{-9}$	2.330×10^{-9}			
$(0.441 \pm 0.890) \times 10^5$	7185781	$3.903 imes 10^4$	$9.703 imes 10^3$	164	$1.685 imes10^6$	$2.318 imes 10^3$	$4.135 imes 10^4$			
6.00 ± 0.00	7185781	0.0	6.00	6.00	6.00	6.00	6.00			
50.0 ± 0.1	7185781	0.0	50.0	48.0	50.0	50.0	50.0			
$(4.371 \pm 4.227) \times 10^{-3}$	7185781	3.439×10^{-3}	4.379×10^{-3}	-0.105	0.132	2.648×10^{-3}	$6.087 imes10^{-3}$			
	Table 6: Parameterlist at mean $\pm \sigma$ 0.737 \pm 0.252 728 \pm 185 2.18 \pm 8.15 0.678 \pm 0.408 (2.754 \pm 8.884) × 10 ⁻⁴ 0.706 \pm 0.284 (1.134 \pm 0.909) × 10 ⁻⁴ 767 \pm 153 0.389 \pm 0.198 (0.340 \pm 1.464) × 10 ⁵ 4.08 \pm 1.03 (3.548 \pm 7.854) × 10 ⁻⁹ (1.914 \pm 0.638) × 10 ⁻⁹ (0.441 \pm 0.890) × 10 ⁵ 6.00 \pm 0.10 50.0 \pm 0.1 (4.371 \pm 4.227) × 10 ⁻³	Table 6: Parameterlist and basic stame mean $\pm \sigma$ Count 0.737 ± 0.252 7185781 7185781728 ± 185 71857812.18 ± 8.15 71857810.678 ± 0.408 7185781(2.754 ± 8.884) $\times 10^{-4}$ 7185781(2.754 ± 8.884) $\times 10^{-4}$ 7185781(1.134 ± 0.909) $\times 10^{-4}$ 71857810.706 ± 0.284 7185781(0.369 ± 0.198 7185781(0.340 ± 1.464) $\times 10^{5}$ 7185781(0.340 ± 1.464) $\times 10^{-9}$ 7185781(1.914 ± 0.638) $\times 10^{-9}$ 7185781(0.441 ± 0.890) $\times 10^{5}$ 71857816.00 ± 0.00 718578150.0 ± 0.1 7185781(4.371 ± 4.227) $\times 10^{-3}$ 7185781	Table 6: Parameterlist and basic statistics for the an mean $\pm \sigma$ CountIQR 0.737 ± 0.252 0.737 ± 0.252 71857810.500 728 ± 185 7185781247 2.18 ± 8.15 71857810.962 0.678 ± 0.408 71857810.800 $(2.754 \pm 8.884) \times 10^{-4}$ 71857813.739 $\times 10^{-5}$ 0.706 ± 0.284 71857810.485 $(1.134 \pm 0.909) \times 10^{-4}$ 71857817.197 $\times 10^{-5}$ 767 ± 153 71857810.167 $(0.340 \pm 1.464) \times 10^5$ 71857813.055 $\times 10^4$ 4.08 ± 1.03 71857810.00 $(3.548 \pm 7.854) \times 10^{-9}$ 71857814.983 $\times 10^{-9}$ $(1.914 \pm 0.638) \times 10^{-9}$ 71857813.903 $\times 10^4$ 6.00 ± 0.00 71857810.0 50.0 ± 0.1 71857810.0 $(4.371 \pm 4.227) \times 10^{-3}$ 71857813.439 $\times 10^{-3}$	Table 6: Parameterlist and basic statistics for the analysis for observement $\pm \sigma$ CountIQRMedian 0.737 ± 0.252 71857810.5000.500 728 ± 185 7185781247728 2.18 ± 8.15 71857810.9620.339 0.678 ± 0.408 71857810.8001.000 $(2.754 \pm 8.884) \times 10^{-4}$ 71857813.739 $\times 10^{-5}$ 1.000 $\times 10^{-4}$ 0.706 ± 0.284 71857810.4850.803 $(1.134 \pm 0.909) \times 10^{-4}$ 71857817.197 $\times 10^{-5}$ 9.106 $\times 10^{-5}$ 767 ± 153 7185781246762 0.389 ± 0.198 71857813.055 $\times 10^4$ 2.696 $\times 10^4$ 4.08 ± 1.03 71857813.055 $\times 10^4$ 2.696 $\times 10^{-9}$ $(1.914 \pm 0.638) \times 10^{-9}$ 71857813.903 $\times 10^{-9}$ 3.315 $\times 10^{-9}$ $(0.441 \pm 0.890) \times 10^5$ 71857813.903 $\times 10^4$ 9.703 $\times 10^3$ 6.00 ± 0.00 71857810.06.00 50.0 ± 0.1 71857810.050.0 $(4.371 \pm 4.227) \times 10^{-3}$ 71857813.439 $\times 10^{-3}$	Table 6: Parameterlist and basic statistics for the analysis for observations over land mean $\pm \sigma$ CountIQRMedianMinimum0.737 ± 0.252 71857810.5000.5000.350728 ± 185 71857812477281302.18 ± 8.15 71857810.9620.3395.493 $\times 10^{-4}$ 0.678 ± 0.408 71857810.8001.0000.0(2.754 $\pm 8.884) \times 10^{-4}$ 71857813.739 $\times 10^{-5}$ 1.000 $\times 10^{-4}$ 9.671 $\times 10^{-9}$ 0.706 ± 0.284 71857810.4850.8039.394 $\times 10^{-3}$ (1.134 $\pm 0.909) \times 10^{-4}$ 71857817.197 $\times 10^{-5}$ 9.106 $\times 10^{-5}$ 1.266 $\times 10^{-5}$ 767 ± 153 71857810.1670.3318.594 $\times 10^{-2}$ (0.340 $\pm 1.464) \times 10^{5}$ 71857813.055 $\times 10^{4}$ 2.696 $\times 10^{4}$ 1524.08 ± 1.03 71857814.983 $\times 10^{-9}$ 3.315 $\times 10^{-9}$ -1.540×10^{-6} (1.914 $\pm 0.638) \times 10^{-9}$ 71857813.903 $\times 10^{4}$ 9.703 $\times 10^{3}$ 1646.00 ± 0.00 71857810.06.006.0050.0 ± 0.1 71857810.050.048.0(4.371 $\pm 4.227) \times 10^{-3}$ 71857813.439 $\times 10^{-3}$ 4.379 $\times 10^{-3}$ -0.105	Table 6: Parameterlist and basic statistics for the analysis for observations over landMaximum 0.737 ± 0.252 71857810.5000.5000.3501.000728 ± 18571857812477281301.064 × 10 ³ 2.18 ± 8.1571857810.9620.3395.493 × 10 ⁻⁴ 1.196 × 10 ³ 0.678 ± 0.40871857810.8001.0000.01.000(2.754 ± 8.884) × 10 ⁻⁴ 71857813.739 × 10 ⁻⁵ 1.000 × 10 ⁻⁴ 9.671 × 10 ⁻⁹ 0.3330.706 ± 0.28471857810.4850.8039.394 × 10 ⁻³ 3.90(1.134 ± 0.909) × 10 ⁻⁴ 71857817.197 × 10 ⁻⁵ 9.106 × 10 ⁻⁵ 1.266 × 10 ⁻⁵ 1.462 × 10 ⁻³ 767 ± 15371857810.1670.3318.594 × 10 ⁻² 11.0(0.340 ± 1.464) × 10 ⁵ 71857813.055 × 10 ⁴ 2.696 × 10 ⁴ 1521.752 × 10 ⁸ 4.08 ± 1.0371857810.04.001.00014.0(3.548 ± 7.854) × 10 ⁻⁹ 71857818.730 × 10 ⁻⁹ 1.880 × 10 ⁻⁹ 4.227 × 10 ⁻¹⁰ 5.891 × 10 ⁻⁹ (0.441 ± 0.638) × 10 ⁻⁹ 71857813.903 × 10 ⁴ 9.703 × 10 ³ 1641.685 × 10 ⁶ 6.00 ± 0.0071857810.06.006.006.0050.0(4.371 ± 4.227) × 10 ⁻³ 71857813.439 × 10 ⁻³ 4.379 × 10 ⁻³ -0.1050.132	Table 6: Parameterlist and basic statistics for the analysis for observations over landMaximum25 % percentile 0.737 ± 0.252 71857810.5000.5000.3501.0000.500 728 ± 185 71857812477281301.064 × 10 ³ 631 2.18 ± 8.15 71857810.9620.3395.493 × 10 ⁻⁴ 1.196 × 10 ³ 0.261 0.678 ± 0.408 71857810.8001.000 × 10 ⁻⁴ 9.671 × 10 ⁻⁹ 0.3331.000 × 10 ⁻⁴ 0.706 ± 0.284 71857813.739 × 10 ⁻⁵ 1.000 × 10 ⁻⁴ 9.671 × 10 ⁻⁹ 0.3331.000 × 10 ⁻⁴ 0.706 ± 0.284 71857810.4850.8039.394 × 10 ⁻³ 3.900.448 $(1.134 \pm 0.909) \times 10^{-4}$ 71857817.197 × 10 ⁻⁵ 9.106 × 10 ⁻⁵ 1.266 × 10 ⁻⁵ 1.462 × 10 ⁻³ 767 ± 153 71857810.1670.3318.594 × 10 ⁻² 11.00.271 $(0.340 \pm 1.464) \times 10^5$ 71857813.055 × 10 ⁴ 2.696 × 10 ⁴ 1521.752 × 10 ⁸ 1.452 × 10 ⁴ 4.08 ± 1.03 71857810.04.001.00014.04.00 $(3.548 \pm 7.854) \times 10^{-9}$ 71857818.730 × 10^{-9}1.880 × 10^{-9}1.418 × 10^{-6}1.148 × 10^{-9} $(1.914 \pm 0.638) \times 10^{-9}$ 71857813.903 × 10 ⁴ 9.703 × 10 ³ 1641.685 × 10 ⁶ 2.318 × 10 ³ 6.00 ± 0.00 71857810.06.006.006.006.00 50.0 ± 0.1 71857810.050.048.050.050.0 <tr <tr=""><tr< td=""></tr<></tr>			

Granule outlines

Figure 1: Outline of the granules.

4 Input data monitoring

Figure 2: Input data per granule

5 Warnings and errors

Figure 3: Fraction of pixels with specific warnings and errors during processing

6 World maps

2024-12-22

Figure 4: Map of "Cloud pressure" for 2024-12-22 to 2024-12-23

2024-12-22

Figure 5: Map of "Cloud fraction" for 2024-12-22 to 2024-12-23

2024-12-22

Figure 6: Map of "Scene albedo" for 2024-12-22 to 2024-12-23

2024-12-22

Figure 7: Map of "Apparent scene pressure" for 2024-12-22 to 2024-12-23

2024-12-22

Figure 8: Map of "Fluorescence" for 2024-12-22 to 2024-12-23

Figure 9: Map of the number of observations for 2024-12-22 to 2024-12-23

7 Zonal average

Figure 10: Zonal average of "QA value" for 2024-12-22 to 2024-12-23.

Figure 11: Zonal average of "Cloud pressure" for 2024-12-22 to 2024-12-23.

Figure 12: Zonal average of "Cloud pressure precision" for 2024-12-22 to 2024-12-23.

Figure 13: Zonal average of "Cloud fraction" for 2024-12-22 to 2024-12-23.

Figure 14: Zonal average of "Cloud fraction precision" for 2024-12-22 to 2024-12-23.

Figure 15: Zonal average of "Scene albedo" for 2024-12-22 to 2024-12-23.

Figure 16: Zonal average of "Scene albedo precision" for 2024-12-22 to 2024-12-23.

Figure 17: Zonal average of "Apparent scene pressure" for 2024-12-22 to 2024-12-23.

Figure 18: Zonal average of "Apparent scene pressure precision" for 2024-12-22 to 2024-12-23.

Figure 19: Zonal average of " χ^2 " for 2024-12-22 to 2024-12-23.

Figure 20: Zonal average of "Number of iterations" for 2024-12-22 to 2024-12-23.

Figure 21: Zonal average of "Fluorescence" for 2024-12-22 to 2024-12-23.

Figure 22: Zonal average of "Fluorescence precision" for 2024-12-22 to 2024-12-23.

Figure 23: Zonal average of " χ^2 of fluorescence retrieval" for 2024-12-22 to 2024-12-23.

Figure 24: Zonal average of "Degrees of freedom for signal of fluorescence retrieval" for 2024-12-22 to 2024-12-23.

Figure 25: Zonal average of "Number of points in the spectrum" for 2024-12-22 to 2024-12-23.

Figure 26: Zonal average of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2024-12-22 to 2024-12-23.

8 Histograms

The definitions of the parameters given in this section can be found in section 2.

Figure 27: Histogram of "QA value" for 2024-12-22 to 2024-12-23

Figure 28: Histogram of "Cloud pressure" for 2024-12-22 to 2024-12-23

Figure 29: Histogram of "Cloud pressure precision" for 2024-12-22 to 2024-12-23

Figure 30: Histogram of "Cloud fraction" for 2024-12-22 to 2024-12-23

Figure 31: Histogram of "Cloud fraction precision" for 2024-12-22 to 2024-12-23

Figure 32: Histogram of "Scene albedo" for 2024-12-22 to 2024-12-23

Figure 33: Histogram of "Scene albedo precision" for 2024-12-22 to 2024-12-23

Figure 34: Histogram of "Apparent scene pressure" for 2024-12-22 to 2024-12-23

Figure 35: Histogram of "Apparent scene pressure precision" for 2024-12-22 to 2024-12-23

Figure 36: Histogram of " χ^2 " for 2024-12-22 to 2024-12-23

Figure 37: Histogram of "Number of iterations" for 2024-12-22 to 2024-12-23

Figure 38: Histogram of "Fluorescence" for 2024-12-22 to 2024-12-23

Figure 39: Histogram of "Fluorescence precision" for 2024-12-22 to 2024-12-23

Figure 40: Histogram of " χ^2 of fluorescence retrieval" for 2024-12-22 to 2024-12-23

Figure 41: Histogram of "Degrees of freedom for signal of fluorescence retrieval" for 2024-12-22 to 2024-12-23

Figure 42: Histogram of "Number of points in the spectrum" for 2024-12-22 to 2024-12-23

Figure 43: Histogram of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2024-12-22 to 2024-12-23

9 Along track statistics

The TROPOMI instrument uses different binned detector rows for different viewing directions. In this section statistics are presented for each of the binned rows in the instrument.

Figure 44: Along track statistics of "QA value" for 2024-12-22 to 2024-12-23

Figure 45: Along track statistics of "Cloud pressure" for 2024-12-22 to 2024-12-23

Figure 46: Along track statistics of "Cloud pressure precision" for 2024-12-22 to 2024-12-23

Figure 47: Along track statistics of "Cloud fraction" for 2024-12-22 to 2024-12-23

Figure 48: Along track statistics of "Cloud fraction precision" for 2024-12-22 to 2024-12-23

Figure 49: Along track statistics of "Scene albedo" for 2024-12-22 to 2024-12-23

Figure 50: Along track statistics of "Scene albedo precision" for 2024-12-22 to 2024-12-23

Figure 51: Along track statistics of "Apparent scene pressure" for 2024-12-22 to 2024-12-23

Figure 52: Along track statistics of "Apparent scene pressure precision" for 2024-12-22 to 2024-12-23

Figure 53: Along track statistics of " χ^2 " for 2024-12-22 to 2024-12-23

Figure 54: Along track statistics of "Number of iterations" for 2024-12-22 to 2024-12-23

Figure 55: Along track statistics of "Fluorescence" for 2024-12-22 to 2024-12-23

Figure 56: Along track statistics of "Fluorescence precision" for 2024-12-22 to 2024-12-23

Figure 57: Along track statistics of " χ^2 of fluorescence retrieval" for 2024-12-22 to 2024-12-23

Figure 58: Along track statistics of "Degrees of freedom for signal of fluorescence retrieval" for 2024-12-22 to 2024-12-23

Figure 59: Along track statistics of "Number of points in the spectrum" for 2024-12-22 to 2024-12-23

Figure 60: Along track statistics of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2024-12-22 to 2024-12-23

10 Coincidence density

To investigate the relation between parameters scatter density plots are produced. These include some 'hidden' parameters, latitude and the solar- and viewing geometries, in addition to all configured parameters. All combinations of pairs of parameters are included *once*, in one direction alone.

Contents

1	Short Introduction	1
	1.1 The list of parameters	1
2	Definitions	1
3	Granule outlines	8
4	Input data monitoring	9
5	Warnings and errors	10
6	World maps	11
7	Zonal average	17
8	Histograms	34
9	Along track statistics	51
10	Coincidence density	68
11	Copyright information of 'PyCAMA'	68

List of Figures

1	Outline of the granules.	8
2	Input data per granule	9
3	Fraction of pixels with specific warnings and errors during processing	10
4	Map of "Cloud pressure" for 2024-12-22 to 2024-12-23	11
5	Map of "Cloud fraction" for 2024-12-22 to 2024-12-23	12
6	Map of "Scene albedo" for 2024-12-22 to 2024-12-23	13
7	Map of "Apparent scene pressure" for 2024-12-22 to 2024-12-23	14
8	Map of "Fluorescence" for 2024-12-22 to 2024-12-23	15
9	Map of the number of observations for 2024-12-22 to 2024-12-23	16
10	Zonal average of "QA value" for 2024-12-22 to 2024-12-23	17
11	Zonal average of "Cloud pressure" for 2024-12-22 to 2024-12-23.	18
12	Zonal average of "Cloud pressure precision" for 2024-12-22 to 2024-12-23.	19
13	Zonal average of "Cloud fraction" for 2024-12-22 to 2024-12-23.	20
14	Zonal average of "Cloud fraction precision" for 2024-12-22 to 2024-12-23.	21
15	Zonal average of "Scene albedo" for 2024-12-22 to 2024-12-23	22
16	Zonal average of "Scene albedo precision" for 2024-12-22 to 2024-12-23.	23
17	Zonal average of "Apparent scene pressure" for 2024-12-22 to 2024-12-23.	24
18	Zonal average of "Apparent scene pressure precision" for 2024-12-22 to 2024-12-23	25
19	Zonal average of " χ^2 " for 2024-12-22 to 2024-12-23	26
20	Zonal average of "Number of iterations" for 2024-12-22 to 2024-12-23.	27
21	Zonal average of "Fluorescence" for 2024-12-22 to 2024-12-23	28
22	Zonal average of "Fluorescence precision" for 2024-12-22 to 2024-12-23.	29
23	Zonal average of " χ^2 of fluorescence retrieval" for 2024-12-22 to 2024-12-23	30
24	Zonal average of "Degrees of freedom for signal of fluorescence retrieval" for 2024-12-22 to 2024-12-23.	31
25	Zonal average of "Number of points in the spectrum" for 2024-12-22 to 2024-12-23	32
26	Zonal average of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2024-12-22 to 2024-12-23	33
27	Histogram of "QA value" for 2024-12-22 to 2024-12-23	34
28	Histogram of "Cloud pressure" for 2024-12-22 to 2024-12-23	35
29	Histogram of "Cloud pressure precision" for 2024-12-22 to 2024-12-23	36

30	Histogram of "Cloud fraction" for 2024-12-22 to 2024-12-23	37
31	Histogram of "Cloud fraction precision" for 2024-12-22 to 2024-12-23	38
32	Histogram of "Scene albedo" for 2024-12-22 to 2024-12-23	39
33	Histogram of "Scene albedo precision" for 2024-12-22 to 2024-12-23	40
34	Histogram of "Apparent scene pressure" for 2024-12-22 to 2024-12-23	41
35	Histogram of "Apparent scene pressure precision" for 2024-12-22 to 2024-12-23	42
36	Histogram of " χ^2 " for 2024-12-22 to 2024-12-23	43
37	Histogram of "Number of iterations" for 2024-12-22 to 2024-12-23	44
38	Histogram of "Fluorescence" for 2024-12-22 to 2024-12-23	45
39	Histogram of "Fluorescence precision" for 2024-12-22 to 2024-12-23	46
40	Histogram of " χ^2 of fluorescence retrieval" for 2024-12-22 to 2024-12-23	47
41	Histogram of "Degrees of freedom for signal of fluorescence retrieval" for 2024-12-22 to 2024-12-23	48
42	Histogram of "Number of points in the spectrum" for 2024-12-22 to 2024-12-23	49
43	Histogram of "Spectral offset $(\lambda_{true} - \lambda_{nominal})$ " for 2024-12-22 to 2024-12-23	50
44	Along track statistics of "QA value" for 2024-12-22 to 2024-12-23	51
45	Along track statistics of "Cloud pressure" for 2024-12-22 to 2024-12-23	52
46	Along track statistics of "Cloud pressure precision" for 2024-12-22 to 2024-12-23	53
47	Along track statistics of "Cloud fraction" for 2024-12-22 to 2024-12-23	54
48	Along track statistics of "Cloud fraction precision" for 2024-12-22 to 2024-12-23	55
49	Along track statistics of "Scene albedo" for 2024-12-22 to 2024-12-23	56
50	Along track statistics of "Scene albedo precision" for 2024-12-22 to 2024-12-23	57
51	Along track statistics of "Apparent scene pressure" for 2024-12-22 to 2024-12-23	58
52	Along track statistics of "Apparent scene pressure precision" for 2024-12-22 to 2024-12-23	59
53	Along track statistics of " χ^2 " for 2024-12-22 to 2024-12-23	60
54	Along track statistics of "Number of iterations" for 2024-12-22 to 2024-12-23	61
55	Along track statistics of "Fluorescence" for 2024-12-22 to 2024-12-23	62
56	Along track statistics of "Fluorescence precision" for 2024-12-22 to 2024-12-23	63
57	Along track statistics of " χ^2 of fluorescence retrieval" for 2024-12-22 to 2024-12-23	64
58	Along track statistics of "Degrees of freedom for signal of fluorescence retrieval" for 2024-12-22 to 2024-12-23	65
59	Along track statistics of "Number of points in the spectrum" for 2024-12-22 to 2024-12-23	66
60	Along track statistics of "Spectral offset $(\lambda_{true} - \lambda_{nominal})$ " for 2024-12-22 to 2024-12-23	67

List of Tables

1	Parameterlist and basic statistics for the analysis
2	Percentile ranges
3	Parameterlist and basic statistics for the analysis for observations in the northern hemisphere
4	Parameterlist and basic statistics for the analysis for observations in the southern hemisphere
5	Parameterlist and basic statistics for the analysis for observations over water
6	Parameterlist and basic statistics for the analysis for observations over land

11 Copyright information of 'PyCAMA'

Copyright © 2005-2023, Maarten Sneep (KNMI).

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
- 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

This software is provided by the copyright holders and contributors "as is" and any express or implied warranties, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose are disclaimed. In no event shall the copyright holder or contributors be liable for any direct, indirect, incidental, special, exemplary, or consequential damages (including, but not limited to, procurement of substitute goods or services; loss of use, data, or profits; or business interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence or otherwise) arising in any way out of the use of this software, even if advised of the possibility of such damage.

Maarten Sneep (maarten.sneep@knmi.nl).