PyCAMA report generated by tropl2-proc

tropl2-proc

2025-01-04 (04:30)

1 Short Introduction

1.1 The list of parameters

You may want to keep the list given in table 1 at hand when viewing the results.

2 Definitions

The averages shown here are unweighed averages:

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i \tag{1}$$

with N the number of observations in the dataset.

The spread of the measurements is indicated with the variance V(x), or rather the standard deviation $\sigma(x) = \sqrt{V(x)}$.

$$V(x) = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2$$
(2)

We also report the more robust statistics median, minimum, maximum, various percentiles and inter quartile range.

The median m is the value of parameter x for which half of the observations of x is smaller than m:

$$P(x \le m) = P(x \ge m) = \int_{-\infty}^{m} f(x) \, \mathrm{d}x = \frac{1}{2}$$
(3)

with f(x) the probability density function.

The median is a special case of a percentile. Instead of $\frac{1}{2}$ in equation 3, other threshold values can be used. We report results for 1%, 5%, 10%, 15.9%, 25%, 75%, 84.1%, 90%, 95% and 99%. The inter quartile range is the difference between the 75% and 25% percentiles. Similarly the minimum and maximum values correspond to the 0% and 100% percentiles respectively.

For normally distributed parameters the mean and median are the same, while the $\mu \pm \sigma$ values and the 15.9% and 84.1% percentiles coincide.

To get a measure for the relation of one variable $x_{(k)}$ with another $x_{(l)}$, we calculate the covariance matrix C_{kl} .

$$C_{kl} = C(x_{(k)}, x_{(l)}) = \frac{1}{N-1} \sum_{i=1}^{N} (x_{(k),i} - \overline{x_{(k)}}) (x_{(l),i} - \overline{x_{(l)}})$$
(4)

Rather than a dimensionally dependent covariance, it is often easier to interpret a correlation matrix R_{kl} , a matrix of Pearson's *r* coefficients:

$$R_{kl} = R(x_{(k)}, x_{(l)}) = \frac{C_{kl}}{\sqrt{C_{kk}C_{ll}}} = \frac{C_{kl}}{\sqrt{V(x_k)V(x_l)}}$$
(5)

The diagonal elements of the covariance matrix are the variances of the elements, $V(x_{(k)}) = C_{kk}$ and obviously $R_{kk} = 1$.

Table 1: Parameterlist and basic stat	istics	for t	he ana	lysis
---------------------------------------	--------	-------	--------	-------

	Table 1: Parameter	list and basic	statistics for the a	nalvsis			
Variable	mean $\pm \sigma$	Count	Mode	IQR	Median	Minimum	Maximum
qa value [1]	0.908 ± 0.184	23320135	0.995	0.1000	1.000	0.350	1.000
cloud pressure crb [hPa]	773 ± 198	23320135	$1.015 imes 10^3$	294	824	130	1.075×10^3
cloud pressure crb precision [hPa]	2.67 ± 10.16	23320135	0.750	1.32	0.560	$7.935 imes10^{-4}$	$1.516 imes 10^3$
cloud fraction crb [1]	0.468 ± 0.388	23320135	0.996	0.859	0.373	0.0	1.000
cloud fraction crb precision [1]	$(1.598 \pm 6.594) \times 10^{-4}$	23320135	$2.500 imes10^{-4}$	$5.981 imes10^{-5}$	7.675×10^{-5}	$4.492 imes10^{-8}$	0.874
scene albedo [1]	0.454 ± 0.335	23320135	1.500×10^{-2}	0.612	0.416	-7.681×10^{-3}	4.75
scene albedo precision [1]	$(8.144 \pm 8.997) \times 10^{-5}$	23320135	$2.500 imes10^{-4}$	6.405×10^{-5}	$5.368 imes10^{-5}$	1.006×10^{-5}	6.361×10^{-3}
apparent scene pressure [hPa]	806 ± 174	23320135	1.008×10^3	268	855	130	1.075×10^3
apparent scene pressure precision [hPa]	0.999 ± 1.851	23320135	0.500	0.534	0.435	8.929×10^{-2}	59.3
chi square [1]	$(0.224 \pm 2.764) \times 10^5$	23320135	0.150	$2.672 imes 10^4$	$1.484 imes 10^4$	66.9	$5.589 imes10^8$
number of iterations [1]	3.40 ± 1.07	23320135	3.23	1.000	3.00	1.000	14.0
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.513 \pm 6.549) \times 10^{-9}$	23320135	$7.500 imes 10^{-10}$	$4.971 imes 10^{-9}$	$1.302 imes 10^{-9}$	-1.886×10^{-6}	1.616×10^{-6}
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.714 \pm 0.712) \times 10^{-9}$	23320135	$8.500 imes 10^{-10}$	1.093×10^{-9}	1.640×10^{-9}	$3.983 imes 10^{-10}$	5.533×10^{-9}
chi square fluorescence [1]	$(0.487 \pm 0.950) \times 10^5$	23320135	1.250×10^3	$4.393 imes 10^4$	1.421×10^4	95.2	$3.749 imes 10^6$
degrees of freedom fluorescence [1]	6.00 ± 0.00	23320135	5.95	0.0	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	23320135	49.7	0.0	50.0	46.0	50.0
wavelength calibration offset [nm]	$(4.129 \pm 8.620) \times 10^{-3}$	23320135	4.400×10^{-3}	5.558×10^{-3}	4.147×10^{-3}	-0.125	0.145

	Table 2: Percentile ranges									
Variable	1 %	5 %	10 %	15.9 %	25 %	75 %	84.1 %	90 %	95 %	99 %
qa value [1]	0.500	0.500	0.500	0.500	0.900	1.000	1.000	1.000	1.000	1.000
cloud pressure crb [hPa]	247	383	474	563	644	938	970	989	1.008×10^3	1.018×10^3
cloud pressure crb precision [hPa]	0.156	0.227	0.248	0.268	0.303	1.62	2.95	5.12	10.3	34.7
cloud fraction crb [1]	0.0	$9.559 imes 10^{-3}$	$2.182 imes10^{-2}$	$4.100 imes 10^{-2}$	$8.518 imes10^{-2}$	0.944	1.000	1.000	1.000	1.000
cloud fraction crb precision [1]	$1.975 imes 10^{-5}$	$2.327 imes10^{-5}$	$2.617 imes10^{-5}$	3.011×10^{-5}	$4.019 imes 10^{-5}$	$1.000 imes 10^{-4}$	$1.419 imes 10^{-4}$	2.603×10^{-4}	$6.060 imes 10^{-4}$	1.752×10^{-3}
scene albedo [1]	$7.979 imes 10^{-3}$	$1.953 imes10^{-2}$	3.602×10^{-2}	$6.406 imes 10^{-2}$	0.137	0.748	0.870	0.924	0.972	1.11
scene albedo precision [1]	1.302×10^{-5}	1.550×10^{-5}	1.880×10^{-5}	2.349×10^{-5}	3.123×10^{-5}	9.528×10^{-5}	1.242×10^{-4}	1.639×10^{-4}	$2.482 imes 10^{-4}$	4.747×10^{-4}
apparent scene pressure [hPa]	347	459	552	616	683	951	977	994	1.009×10^{3}	1.018×10^{3}
apparent scene pressure precision [hPa]	0.210	0.235	0.253	0.271	0.301	0.834	1.33	2.15	3.85	8.78
chi square [1]	272	629	1.312×10^{3}	2.553×10^{3}	5.045×10^{3}	3.176×10^{4}	4.134×10^{4}	4.950×10^{4}	5.955×10^{4}	7.963×10^{4}
number of iterations [1]	2.00	2.00	2.00	3.00	3.00	4.00	4.00	5.00	5.00	7.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$-1.390 imes 10^{-8}$	$-6.213 imes 10^{-9}$	-3.638×10^{-9}	$-2.207 imes 10^{-9}$	$-9.293 imes 10^{-10}$	4.041×10^{-9}	5.777×10^{-9}	$7.466 imes 10^{-9}$	$9.877 imes 10^{-9}$	$1.519 imes10^{-8}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$6.874 imes 10^{-10}$	$7.868 imes 10^{-10}$	$8.557 imes 10^{-10}$	9.396×10^{-10}	1.097×10^{-9}	2.190×10^{-9}	2.481×10^{-9}	2.654×10^{-9}	2.955×10^{-9}	3.644×10^{-9}
chi square fluorescence [1]	376	923	1.429×10^{3}	2.063×10^{3}	3.610×10^{3}	4.754×10^{4}	8.121×10^{4}	1.284×10^{5}	2.229×10^{5}	4.900×10^{5}
degrees of freedom fluorescence [1]	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$-2.378 imes 10^{-2}$	-8.579×10^{-3}	-3.447×10^{-3}	-7.761×10^{-4}	1.340×10^{-3}	$6.898 imes 10^{-3}$	8.989×10^{-3}	1.169×10^{-2}	$1.687 imes10^{-2}$	$3.205 imes 10^{-2}$

Table 3: Parameterlist and basic	statistics for the anal	ysis for observations	in the northern hemisphere

			2			1		
Variable	$ $ mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.989 ± 0.057	9223042	0.0	1.000	0.350	1.000	1.000	1.000
cloud pressure crb [hPa]	751 ± 216	9223042	354	812	130	1.075×10^3	583	937
cloud pressure crb precision [hPa]	3.80 ± 12.54	9223042	2.30	1.02	$7.935 imes 10^{-4}$	1.516×10^3	0.463	2.76
cloud fraction crb [1]	0.350 ± 0.345	9223042	0.555	0.209	0.0	1.000	$5.299 imes10^{-2}$	0.608
cloud fraction crb precision [1]	$(1.694 \pm 8.469) \times 10^{-4}$	9223042	$9.704 imes 10^{-5}$	$9.059 imes10^{-5}$	$4.492 imes 10^{-8}$	0.874	$4.665 imes 10^{-5}$	$1.437 imes 10^{-4}$
scene albedo [1]	0.383 ± 0.298	9223042	0.475	0.333	-7.681×10^{-3}	4.75	0.118	0.593
scene albedo precision [1]	$(9.295 \pm 10.515) \times 10^{-5}$	9223042	$7.115 imes 10^{-5}$	$5.746 imes 10^{-5}$	1.118×10^{-5}	$6.361 imes 10^{-3}$	$3.405 imes 10^{-5}$	$1.052 imes 10^{-4}$
apparent scene pressure [hPa]	801 ± 184	9223042	267	858	130	$1.075 imes 10^3$	684	951
apparent scene pressure precision [hPa]	1.18 ± 2.02	9223042	0.667	0.564	8.929×10^{-2}	58.5	0.376	1.04
chi square [1]	$(0.137 \pm 0.745) \times 10^5$	9223042	$1.530 imes 10^4$	$9.582 imes 10^3$	66.9	$8.936 imes 10^7$	3.516×10^3	$1.881 imes 10^4$
number of iterations [1]	3.48 ± 1.15	9223042	1.000	3.00	1.000	14.0	3.00	4.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(9.408 \pm 43.985) \times 10^{-10}$	9223042	$3.473 imes 10^{-9}$	$1.055 imes 10^{-9}$	-1.265×10^{-6}	$9.175 imes10^{-7}$	-6.132×10^{-10}	2.860×10^{-9}
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.446 \pm 0.603) \times 10^{-9}$	9223042	$8.502 imes 10^{-10}$	1.329×10^{-9}	4.017×10^{-10}	$5.524 imes 10^{-9}$	$9.455 imes 10^{-10}$	$1.796 imes10^{-9}$
chi square fluorescence [1]	$(0.386 \pm 0.864) \times 10^5$	9223042	$2.998 imes 10^4$	9.906×10^{3}	95.2	$1.984 imes10^6$	2.956×10^{3}	$3.294 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	9223042	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	9223042	0.0	50.0	48.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(4.182 \pm 9.500) \times 10^{-3}$	9223042	6.778×10^{-3}	4.105×10^{-3}	-0.125	9.036×10^{-2}	7.337×10^{-4}	7.512×10^{-3}

Table 4: Parameterlist and basic statistics for the analysis for observations in the so	uthern hemisphere
Table 4. I drameternist and basic statistics for the analysis for observations in the so	

Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.855 ± 0.216	14097093	0.500	1.000	0.350	1.000	0.500	1.000
cloud pressure crb [hPa]	788 ± 183	14097093	275	832	130	$1.028 imes 10^3$	664	939
cloud pressure crb precision [hPa]	1.93 ± 8.17	14097093	0.717	0.389	1.648×10^{-3}	1.461×10^{3}	0.273	0.990
cloud fraction crb [1]	0.545 ± 0.396	14097093	0.872	0.546	0.0	1.000	0.128	1.000
cloud fraction crb precision [1]	$(1.536 \pm 4.999) \times 10^{-4}$	14097093	$6.298 imes10^{-5}$	6.859×10^{-5}	$5.236 imes10^{-8}$	0.140	$3.701 imes 10^{-5}$	$1.000 imes10^{-4}$
scene albedo [1]	0.500 ± 0.349	14097093	0.688	0.501	$-2.340 imes 10^{-3}$	3.98	0.150	0.838
scene albedo precision [1]	$(7.391 \pm 7.755) \times 10^{-5}$	14097093	$6.029 imes10^{-5}$	$5.149 imes10^{-5}$	$1.006 imes 10^{-5}$	$5.574 imes 10^{-3}$	2.963×10^{-5}	$8.991 imes10^{-5}$
apparent scene pressure [hPa]	809 ± 167	14097093	268	853	130	1.028×10^3	682	950
apparent scene pressure precision [hPa]	0.881 ± 1.719	14097093	0.399	0.364	0.163	59.3	0.277	0.676
chi square [1]	$(0.282 \pm 3.502) \times 10^5$	14097093	$3.313 imes 10^4$	2.161×10^4	74.8	$5.589 imes 10^8$	6.980×10^{3}	$4.011 imes 10^4$
number of iterations [1]	3.35 ± 1.02	14097093	1.000	3.00	1.000	14.0	3.00	4.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.887 \pm 7.612) \times 10^{-9}$	14097093	$6.275 imes10^{-9}$	$1.605 imes 10^{-9}$	$-1.886 imes 10^{-6}$	1.616×10^{-6}	$-1.186 imes 10^{-9}$	$5.089 imes10^{-9}$
fluorescence precision [mol $s^{-1} m^{-2} nm^{-1} sr^{-1}$]	$(1.889 \pm 0.723) \times 10^{-9}$	14097093	$1.124 imes10^{-9}$	$1.880 imes 10^{-9}$	$3.983 imes 10^{-10}$	$5.533 imes 10^{-9}$	$1.287 imes10^{-9}$	$2.411 imes 10^{-9}$
chi square fluorescence [1]	$(0.553 \pm 0.997) \times 10^5$	14097093	$5.333 imes 10^4$	$1.847 imes 10^4$	105	3.749×10^{6}	4.267×10^{3}	$5.760 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	14097093	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	14097093	0.0	50.0	46.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(4.093 \pm 7.991) \times 10^{-3}$	14097093	4.878×10^{-3}	4.168×10^{-3}	-0.117	0.145	1.688×10^{-3}	6.566×10^{-3}

	Table 5: Parameterlist and	d basic statis	tics for the ana	lysis for observa	tions over water			
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.982 ± 0.048	14388835	0.0	1.000	0.350	1.000	1.000	1.000
cloud pressure crb [hPa]	809 ± 193	14388835	258	878	130	1.037×10^3	699	957
cloud pressure crb precision [hPa]	2.74 ± 10.69	14388835	1.33	0.647	1.648×10^{-3}	1.370×10^{3}	0.347	1.68
cloud fraction crb [1]	0.370 ± 0.337	14388835	0.582	0.256	0.0	1.000	$6.393 imes 10^{-2}$	0.646
cloud fraction crb precision [1]	$(8.918 \pm 26.687) \times 10^{-5}$	14388835	$5.406 imes 10^{-5}$	$4.947 imes10^{-5}$	$3.240 imes 10^{-7}$	0.102	$2.981 imes10^{-5}$	$8.387 imes10^{-5}$
scene albedo [1]	0.322 ± 0.289	14388835	0.493	0.229	-7.681×10^{-3}	3.98	$6.194 imes10^{-2}$	0.555
scene albedo precision [1]	$(6.158 \pm 7.720) \times 10^{-5}$	14388835	4.109×10^{-5}	4.131×10^{-5}	1.006×10^{-5}	$6.361 imes10^{-3}$	2.323×10^{-5}	6.432×10^{-5}
apparent scene pressure [hPa]	829 ± 180	14388835	233	892	130	1.075×10^{3}	736	969
apparent scene pressure precision [hPa]	1.36 ± 2.27	14388835	1.00	0.583	$8.929 imes10^{-2}$	59.3	0.334	1.34
chi square [1]	$(0.169 \pm 3.328) \times 10^5$	14388835	$2.228 imes 10^4$	$8.978 imes 10^3$	66.9	$5.589 imes 10^8$	2.542×10^{3}	$2.482 imes 10^4$
number of iterations [1]	2.96 ± 0.77	14388835	0.0	3.00	1.000	14.0	3.00	3.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(4.447 \pm 58.450) \times 10^{-10}$	14388835	$4.167 imes 10^{-9}$	2.954×10^{-10}	$-1.886 imes 10^{-6}$	$1.460 imes 10^{-6}$	-1.642×10^{-9}	2.525×10^{-9}
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.623 \pm 0.733) \times 10^{-9}$	14388835	$1.157 imes10^{-9}$	$1.466 imes 10^{-9}$	$3.983 imes 10^{-10}$	$5.495 imes 10^{-9}$	$9.858 imes 10^{-10}$	$2.143 imes 10^{-9}$
chi square fluorescence [1]	$(0.498 \pm 0.940) \times 10^5$	14388835	4.661×10^{4}	$1.676 imes 10^4$	95.2	$3.749 imes 10^6$	4.927×10^3	$5.154 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	14388835	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	14388835	0.0	50.0	48.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(4.098 \pm 10.191) \times 10^{-3}$	14388835	7.233×10^{-3}	4.138×10^{-3}	-0.125	0.145	4.592×10^{-4}	7.692×10^{-3}

Table 6: Parameterlist and basic statistics for the analysis for observations over land								
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.742 ± 0.252	7230116	0.500	0.500	0.350	1.000	0.500	1.000
cloud pressure crb [hPa]	718 ± 183	7230116	239	716	130	1.075×10^{3}	623	862
cloud pressure crb precision [hPa]	2.32 ± 8.84	7230116	0.997	0.337	1.343×10^{-3}	1.516×10^{3}	0.261	1.26
cloud fraction crb [1]	0.674 ± 0.408	7230116	0.800	1.000	0.0	1.000	0.200	1.000
cloud fraction crb precision [1]	$(2.827 \pm 10.503) \times 10^{-4}$	7230116	$4.006 imes 10^{-5}$	$1.000 imes 10^{-4}$	$5.236 imes10^{-8}$	0.874	$1.000 imes 10^{-4}$	$1.401 imes 10^{-4}$
scene albedo [1]	0.703 ± 0.283	7230116	0.478	0.798	$1.044 imes 10^{-2}$	4.75	0.451	0.928
scene albedo precision [1]	$(1.139 \pm 0.951) \times 10^{-4}$	7230116	$7.173 imes10^{-5}$	$9.060 imes 10^{-5}$	$1.272 imes 10^{-5}$	$1.841 imes 10^{-3}$	$5.714 imes 10^{-5}$	$1.289 imes10^{-4}$
apparent scene pressure [hPa]	762 ± 150	7230116	244	759	130	$1.070 imes 10^3$	652	896
apparent scene pressure precision [hPa]	0.390 ± 0.189	7230116	0.171	0.328	0.161	8.64	0.271	0.442
chi square [1]	$(0.341 \pm 1.466) \times 10^5$	7230116	$2.804 imes 10^4$	$2.618 imes 10^4$	311	9.720×10^{7}	$1.448 imes 10^4$	4.252×10^4
number of iterations [1]	4.15 ± 1.09	7230116	0.0	4.00	1.000	14.0	4.00	4.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(3.499 \pm 7.197) \times 10^{-9}$	7230116	4.792×10^{-9}	$3.247 imes 10^{-9}$	-1.617×10^{-6}	$1.616 imes10^{-6}$	$1.189 imes10^{-9}$	$5.981 imes10^{-9}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.908 \pm 0.641) \times 10^{-9}$	7230116	$8.838 imes 10^{-10}$	$1.880 imes10^{-9}$	$4.675 imes 10^{-10}$	$5.533 imes10^{-9}$	1.443×10^{-9}	$2.327 imes 10^{-9}$
chi square fluorescence [1]	$(0.424 \pm 0.883) \times 10^5$	7230116	$3.619 imes 10^4$	$8.849 imes 10^3$	144	$1.723 imes 10^{6}$	2.184×10^{3}	$3.838 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	7230116	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	7230116	0.0	50.0	48.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(4.123 \pm 4.496) \times 10^{-3}$	7230116	$3.467 imes 10^{-3}$	4.138×10^{-3}	-7.677×10^{-2}	7.421×10^{-2}	2.390×10^{-3}	5.857×10^{-3}

Granule outlines

Figure 1: Outline of the granules.

4 Input data monitoring

Figure 2: Input data per granule

5 Warnings and errors

Figure 3: Fraction of pixels with specific warnings and errors during processing

6 World maps

Figure 4: Map of "Cloud pressure" for 2025-01-02 to 2025-01-03

Figure 5: Map of "Cloud fraction" for 2025-01-02 to 2025-01-03

Figure 6: Map of "Scene albedo" for 2025-01-02 to 2025-01-03

Figure 7: Map of "Apparent scene pressure" for 2025-01-02 to 2025-01-03

2025-01-02

Figure 8: Map of "Fluorescence" for 2025-01-02 to 2025-01-03

Figure 9: Map of the number of observations for 2025-01-02 to 2025-01-03

7 Zonal average

Figure 10: Zonal average of "QA value" for 2025-01-02 to 2025-01-03.

Figure 11: Zonal average of "Cloud pressure" for 2025-01-02 to 2025-01-03.

Figure 12: Zonal average of "Cloud pressure precision" for 2025-01-02 to 2025-01-03.

Figure 13: Zonal average of "Cloud fraction" for 2025-01-02 to 2025-01-03.

Figure 14: Zonal average of "Cloud fraction precision" for 2025-01-02 to 2025-01-03.

Figure 15: Zonal average of "Scene albedo" for 2025-01-02 to 2025-01-03.

Figure 16: Zonal average of "Scene albedo precision" for 2025-01-02 to 2025-01-03.

Figure 17: Zonal average of "Apparent scene pressure" for 2025-01-02 to 2025-01-03.

Figure 18: Zonal average of "Apparent scene pressure precision" for 2025-01-02 to 2025-01-03.

Figure 19: Zonal average of " χ^2 " for 2025-01-02 to 2025-01-03.

Figure 20: Zonal average of "Number of iterations" for 2025-01-02 to 2025-01-03.

Figure 21: Zonal average of "Fluorescence" for 2025-01-02 to 2025-01-03.

Figure 22: Zonal average of "Fluorescence precision" for 2025-01-02 to 2025-01-03.

Figure 23: Zonal average of " χ^2 of fluorescence retrieval" for 2025-01-02 to 2025-01-03.

Figure 24: Zonal average of "Degrees of freedom for signal of fluorescence retrieval" for 2025-01-02 to 2025-01-03.

Figure 25: Zonal average of "Number of points in the spectrum" for 2025-01-02 to 2025-01-03.

Figure 26: Zonal average of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-01-02 to 2025-01-03.

8 Histograms

The definitions of the parameters given in this section can be found in section 2.

Figure 27: Histogram of "QA value" for 2025-01-02 to 2025-01-03

Figure 28: Histogram of "Cloud pressure" for 2025-01-02 to 2025-01-03

Figure 29: Histogram of "Cloud pressure precision" for 2025-01-02 to 2025-01-03

Figure 30: Histogram of "Cloud fraction" for 2025-01-02 to 2025-01-03

Figure 31: Histogram of "Cloud fraction precision" for 2025-01-02 to 2025-01-03

Figure 32: Histogram of "Scene albedo" for 2025-01-02 to 2025-01-03

Figure 33: Histogram of "Scene albedo precision" for 2025-01-02 to 2025-01-03

Figure 34: Histogram of "Apparent scene pressure" for 2025-01-02 to 2025-01-03

Figure 35: Histogram of "Apparent scene pressure precision" for 2025-01-02 to 2025-01-03

Figure 36: Histogram of " χ^2 " for 2025-01-02 to 2025-01-03

Figure 37: Histogram of "Number of iterations" for 2025-01-02 to 2025-01-03

Figure 38: Histogram of "Fluorescence" for 2025-01-02 to 2025-01-03

Figure 39: Histogram of "Fluorescence precision" for 2025-01-02 to 2025-01-03

Figure 40: Histogram of " χ^2 of fluorescence retrieval" for 2025-01-02 to 2025-01-03

Figure 41: Histogram of "Degrees of freedom for signal of fluorescence retrieval" for 2025-01-02 to 2025-01-03

Figure 42: Histogram of "Number of points in the spectrum" for 2025-01-02 to 2025-01-03

Figure 43: Histogram of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-01-02 to 2025-01-03

9 Along track statistics

The TROPOMI instrument uses different binned detector rows for different viewing directions. In this section statistics are presented for each of the binned rows in the instrument.

Figure 44: Along track statistics of "QA value" for 2025-01-02 to 2025-01-03

Figure 45: Along track statistics of "Cloud pressure" for 2025-01-02 to 2025-01-03

Figure 46: Along track statistics of "Cloud pressure precision" for 2025-01-02 to 2025-01-03

Figure 47: Along track statistics of "Cloud fraction" for 2025-01-02 to 2025-01-03

Figure 48: Along track statistics of "Cloud fraction precision" for 2025-01-02 to 2025-01-03

Figure 49: Along track statistics of "Scene albedo" for 2025-01-02 to 2025-01-03

Figure 50: Along track statistics of "Scene albedo precision" for 2025-01-02 to 2025-01-03

Figure 51: Along track statistics of "Apparent scene pressure" for 2025-01-02 to 2025-01-03

Figure 52: Along track statistics of "Apparent scene pressure precision" for 2025-01-02 to 2025-01-03

Figure 53: Along track statistics of " χ^2 " for 2025-01-02 to 2025-01-03

Figure 54: Along track statistics of "Number of iterations" for 2025-01-02 to 2025-01-03

Figure 55: Along track statistics of "Fluorescence" for 2025-01-02 to 2025-01-03

Figure 56: Along track statistics of "Fluorescence precision" for 2025-01-02 to 2025-01-03

Figure 57: Along track statistics of " χ^2 of fluorescence retrieval" for 2025-01-02 to 2025-01-03

Figure 58: Along track statistics of "Degrees of freedom for signal of fluorescence retrieval" for 2025-01-02 to 2025-01-03

Figure 59: Along track statistics of "Number of points in the spectrum" for 2025-01-02 to 2025-01-03

Figure 60: Along track statistics of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-01-02 to 2025-01-03

10 Coincidence density

To investigate the relation between parameters scatter density plots are produced. These include some 'hidden' parameters, latitude and the solar- and viewing geometries, in addition to all configured parameters. All combinations of pairs of parameters are included *once*, in one direction alone.

Contents

1	Short Introduction	1
	1.1 The list of parameters	1
2	Definitions	1
3	Granule outlines	8
4	Input data monitoring	9
5	Warnings and errors	10
6	World maps	11
7	Zonal average	17
8	Histograms	34
9	Along track statistics	51
10	Coincidence density	68
11	Copyright information of 'PyCAMA'	68

List of Figures

1	Outline of the granules.	8
2	Input data per granule	9
3	Fraction of pixels with specific warnings and errors during processing	10
4	Map of "Cloud pressure" for 2025-01-02 to 2025-01-03	11
5	Map of "Cloud fraction" for 2025-01-02 to 2025-01-03	12
6	Map of "Scene albedo" for 2025-01-02 to 2025-01-03	13
7	Map of "Apparent scene pressure" for 2025-01-02 to 2025-01-03	14
8	Map of "Fluorescence" for 2025-01-02 to 2025-01-03	15
9	Map of the number of observations for 2025-01-02 to 2025-01-03	16
10	Zonal average of "QA value" for 2025-01-02 to 2025-01-03.	17
11	Zonal average of "Cloud pressure" for 2025-01-02 to 2025-01-03.	18
12	Zonal average of "Cloud pressure precision" for 2025-01-02 to 2025-01-03	19
13	Zonal average of "Cloud fraction" for 2025-01-02 to 2025-01-03.	20
14	Zonal average of "Cloud fraction precision" for 2025-01-02 to 2025-01-03.	21
15	Zonal average of "Scene albedo" for 2025-01-02 to 2025-01-03	22
16	Zonal average of "Scene albedo precision" for 2025-01-02 to 2025-01-03.	23
17	Zonal average of "Apparent scene pressure" for 2025-01-02 to 2025-01-03.	24
18	Zonal average of "Apparent scene pressure precision" for 2025-01-02 to 2025-01-03	25
19	Zonal average of " χ^2 " for 2025-01-02 to 2025-01-03	26
20	Zonal average of "Number of iterations" for 2025-01-02 to 2025-01-03.	27
21	Zonal average of "Fluorescence" for 2025-01-02 to 2025-01-03.	28
22	Zonal average of "Fluorescence precision" for 2025-01-02 to 2025-01-03.	29
23	Zonal average of " χ^2 of fluorescence retrieval" for 2025-01-02 to 2025-01-03	30
24	Zonal average of "Degrees of freedom for signal of fluorescence retrieval" for 2025-01-02 to 2025-01-03.	31
25	Zonal average of "Number of points in the spectrum" for 2025-01-02 to 2025-01-03.	32
26	Zonal average of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-01-02 to 2025-01-03	33
27	Histogram of "QA value" for 2025-01-02 to 2025-01-03	34
28	Histogram of "Cloud pressure" for 2025-01-02 to 2025-01-03	35
29	Histogram of "Cloud pressure precision" for 2025-01-02 to 2025-01-03	36

30	Histogram of "Cloud fraction" for 2025-01-02 to 2025-01-03	37
31	Histogram of "Cloud fraction precision" for 2025-01-02 to 2025-01-03	38
32	Histogram of "Scene albedo" for 2025-01-02 to 2025-01-03	39
33	Histogram of "Scene albedo precision" for 2025-01-02 to 2025-01-03	40
34	Histogram of "Apparent scene pressure" for 2025-01-02 to 2025-01-03	41
35	Histogram of "Apparent scene pressure precision" for 2025-01-02 to 2025-01-03	42
36	Histogram of " χ^2 " for 2025-01-02 to 2025-01-03	43
37	Histogram of "Number of iterations" for 2025-01-02 to 2025-01-03	44
38	Histogram of "Fluorescence" for 2025-01-02 to 2025-01-03	45
39	Histogram of "Fluorescence precision" for 2025-01-02 to 2025-01-03	46
40	Histogram of " χ^2 of fluorescence retrieval" for 2025-01-02 to 2025-01-03	47
41	Histogram of "Degrees of freedom for signal of fluorescence retrieval" for 2025-01-02 to 2025-01-03	48
42	Histogram of "Number of points in the spectrum" for 2025-01-02 to 2025-01-03	49
43	Histogram of "Spectral offset $(\lambda_{true} - \lambda_{nominal})$ " for 2025-01-02 to 2025-01-03	50
44	Along track statistics of "QA value" for 2025-01-02 to 2025-01-03	51
45	Along track statistics of "Cloud pressure" for 2025-01-02 to 2025-01-03	52
46	Along track statistics of "Cloud pressure precision" for 2025-01-02 to 2025-01-03	53
47	Along track statistics of "Cloud fraction" for 2025-01-02 to 2025-01-03	54
48	Along track statistics of "Cloud fraction precision" for 2025-01-02 to 2025-01-03	55
49	Along track statistics of "Scene albedo" for 2025-01-02 to 2025-01-03	56
50	Along track statistics of "Scene albedo precision" for 2025-01-02 to 2025-01-03	57
51	Along track statistics of "Apparent scene pressure" for 2025-01-02 to 2025-01-03	58
52	Along track statistics of "Apparent scene pressure precision" for 2025-01-02 to 2025-01-03	59
53	Along track statistics of " χ^2 " for 2025-01-02 to 2025-01-03	60
54	Along track statistics of "Number of iterations" for 2025-01-02 to 2025-01-03	61
55	Along track statistics of "Fluorescence" for 2025-01-02 to 2025-01-03	62
56	Along track statistics of "Fluorescence precision" for 2025-01-02 to 2025-01-03	63
57	Along track statistics of " χ^2 of fluorescence retrieval" for 2025-01-02 to 2025-01-03	64
58	Along track statistics of "Degrees of freedom for signal of fluorescence retrieval" for 2025-01-02 to 2025-01-03	65
59	Along track statistics of "Number of points in the spectrum" for 2025-01-02 to 2025-01-03	66
60	Along track statistics of "Spectral offset $(\lambda_{true} - \lambda_{nominal})$ " for 2025-01-02 to 2025-01-03	67

List of Tables

1	Parameterlist and basic statistics for the analysis
2	Percentile ranges
3	Parameterlist and basic statistics for the analysis for observations in the northern hemisphere
4	Parameterlist and basic statistics for the analysis for observations in the southern hemisphere
5	Parameterlist and basic statistics for the analysis for observations over water
6	Parameterlist and basic statistics for the analysis for observations over land

11 Copyright information of 'PyCAMA'

Copyright © 2005-2023, Maarten Sneep (KNMI).

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
- 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

This software is provided by the copyright holders and contributors "as is" and any express or implied warranties, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose are disclaimed. In no event shall the copyright holder or contributors be liable for any direct, indirect, incidental, special, exemplary, or consequential damages (including, but not limited to, procurement of substitute goods or services; loss of use, data, or profits; or business interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence or otherwise) arising in any way out of the use of this software, even if advised of the possibility of such damage.

Maarten Sneep (maarten.sneep@knmi.nl).