PyCAMA report generated by tropl2-proc

tropl2-proc

2025-01-10 (02:15)

1 Short Introduction

1.1 The list of parameters

You may want to keep the list given in table 1 at hand when viewing the results.

2 Definitions

The averages shown here are unweighed averages:

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i \tag{1}$$

with N the number of observations in the dataset.

The spread of the measurements is indicated with the variance V(x), or rather the standard deviation $\sigma(x) = \sqrt{V(x)}$.

$$V(x) = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2$$
(2)

We also report the more robust statistics median, minimum, maximum, various percentiles and inter quartile range.

The median m is the value of parameter x for which half of the observations of x is smaller than m:

$$P(x \le m) = P(x \ge m) = \int_{-\infty}^{m} f(x) \, \mathrm{d}x = \frac{1}{2}$$
(3)

with f(x) the probability density function.

The median is a special case of a percentile. Instead of $\frac{1}{2}$ in equation 3, other threshold values can be used. We report results for 1%, 5%, 10%, 15.9%, 25%, 75%, 84.1%, 90%, 95% and 99%. The inter quartile range is the difference between the 75% and 25% percentiles. Similarly the minimum and maximum values correspond to the 0% and 100% percentiles respectively.

For normally distributed parameters the mean and median are the same, while the $\mu \pm \sigma$ values and the 15.9% and 84.1% percentiles coincide.

To get a measure for the relation of one variable $x_{(k)}$ with another $x_{(l)}$, we calculate the covariance matrix C_{kl} .

$$C_{kl} = C(x_{(k)}, x_{(l)}) = \frac{1}{N-1} \sum_{i=1}^{N} (x_{(k),i} - \overline{x_{(k)}}) (x_{(l),i} - \overline{x_{(l)}})$$
(4)

Rather than a dimensionally dependent covariance, it is often easier to interpret a correlation matrix R_{kl} , a matrix of Pearson's *r* coefficients:

$$R_{kl} = R(x_{(k)}, x_{(l)}) = \frac{C_{kl}}{\sqrt{C_{kk}C_{ll}}} = \frac{C_{kl}}{\sqrt{V(x_k)V(x_l)}}$$
(5)

The diagonal elements of the covariance matrix are the variances of the elements, $V(x_{(k)}) = C_{kk}$ and obviously $R_{kk} = 1$.

Table 1: Parameterlist and basic stat	istics	for t	he ana	lysis
---------------------------------------	--------	-------	--------	-------

	Table 1: Parameter	list and basic	statistics for the a	nalysis			
Variable	mean $\pm \sigma$	Count	Mode	IQR	Median	Minimum	Maximum
qa value [1]	0.907 ± 0.184	23457526	0.995	0.1000	1.000	0.350	1.000
cloud pressure crb [hPa]	772 ± 199	23457526	$1.015 imes 10^3$	293	823	130	$1.075 imes 10^3$
cloud pressure crb precision [hPa]	2.44 ± 9.37	23457526	0.750	1.17	0.526	$6.104 imes10^{-4}$	1.511×10^3
cloud fraction crb [1]	0.485 ± 0.389	23457526	0.996	0.872	0.417	0.0	1.000
cloud fraction crb precision [1]	$(1.638 \pm 6.264) \times 10^{-4}$	23457526	$2.500 imes 10^{-4}$	$5.817 imes10^{-5}$	$7.822 imes 10^{-5}$	$1.922 imes 10^{-8}$	0.310
scene albedo [1]	0.468 ± 0.335	23457526	$1.500 imes10^{-2}$	0.610	0.446	$-4.057 imes10^{-2}$	4.16
scene albedo precision [1]	$(8.363 \pm 9.613) \times 10^{-5}$	23457526	$2.500 imes10^{-4}$	$6.480 imes10^{-5}$	$5.413 imes 10^{-5}$	1.020×10^{-5}	1.589×10^{-2}
apparent scene pressure [hPa]	802 ± 176	23457526	1.008×10^3	270	851	130	1.075×10^3
apparent scene pressure precision [hPa]	0.937 ± 1.705	23457526	0.500	0.471	0.420	7.030×10^{-2}	61.4
chi square [1]	$(0.227 \pm 2.021) \times 10^5$	23457526	0.150	2.600×10^4	$1.546 imes 10^4$	57.0	$3.556 imes 10^8$
number of iterations [1]	3.38 ± 1.03	23457526	3.23	1.000	3.00	1.000	14.0
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.506 \pm 6.612) \times 10^{-9}$	23457526	$7.500 imes 10^{-10}$	$5.032 imes 10^{-9}$	1.341×10^{-9}	$-1.671 imes 10^{-6}$	2.011×10^{-6}
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.732 \pm 0.703) \times 10^{-9}$	23457526	$8.500 imes 10^{-10}$	1.053×10^{-9}	1.657×10^{-9}	$4.279 imes 10^{-10}$	5.555×10^{-9}
chi square fluorescence [1]	$(0.480 \pm 0.920) \times 10^5$	23457526	1.250×10^{3}	4.236×10^4	$1.439 imes 10^4$	101	$7.703 imes 10^{6}$
degrees of freedom fluorescence [1]	6.00 ± 0.00	23457526	5.95	0.0	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	23457526	49.7	0.0	50.0	45.0	50.0
wavelength calibration offset [nm]	$(3.999 \pm 8.532) \times 10^{-3}$	23457526	3.600×10^{-3}	5.448×10^{-3}	3.998×10^{-3}	-9.405×10^{-2}	0.297

Table 2: Percentile ranges										
Variable	1 %	5%	10 %	15.9 %	25 %	75 %	84.1 %	90 %	95 %	99 %
qa value [1]	0.500	0.500	0.500	0.500	0.900	1.000	1.000	1.000	1.000	1.000
cloud pressure crb [hPa]	244	378	472	559	643	936	971	990	1.008×10^3	1.020×10^3
cloud pressure crb precision [hPa]	0.154	0.227	0.248	0.267	0.302	1.47	2.66	4.61	9.41	32.1
cloud fraction crb [1]	0.0	$1.059 imes10^{-2}$	$2.406 imes10^{-2}$	$4.520 imes 10^{-2}$	$9.378 imes10^{-2}$	0.965	1.000	1.000	1.000	1.000
cloud fraction crb precision [1]	1.954×10^{-5}	$2.327 imes 10^{-5}$	2.642×10^{-5}	3.073×10^{-5}	4.183×10^{-5}	1.000×10^{-4}	$1.387 imes 10^{-4}$	2.541×10^{-4}	6.380×10^{-4}	1.814×10^{-3}
scene albedo [1]	$8.239 imes 10^{-3}$	$2.097 imes10^{-2}$	$3.936 imes 10^{-2}$	$7.090 imes 10^{-2}$	0.149	0.759	0.873	0.927	0.975	1.12
scene albedo precision [1]	1.300×10^{-5}	1.556×10^{-5}	1.899×10^{-5}	2.370×10^{-5}	3.170×10^{-5}	9.650×10^{-5}	1.261×10^{-4}	1.699×10^{-4}	$2.599 imes 10^{-4}$	5.003×10^{-4}
apparent scene pressure [hPa]	337	455	543	614	679	949	978	994	1.009×10^{3}	1.019×10^{3}
apparent scene pressure precision [hPa]	0.209	0.235	0.252	0.270	0.300	0.770	1.21	1.96	3.53	8.40
chi square [1]	283	691	1.496×10^{3}	2.950×10^{3}	5.589×10^{3}	3.159×10^{4}	4.101×10^{4}	4.935×10^{4}	5.994×10^{4}	$8.084 imes 10^4$
number of iterations [1]	2.00	2.00	2.00	3.00	3.00	4.00	4.00	4.00	5.00	7.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$-1.394 imes 10^{-8}$	-6.346×10^{-9}	-3.741×10^{-9}	$-2.286 imes 10^{-9}$	-9.664×10^{-10}	4.066×10^{-9}	5.762×10^{-9}	$7.436 imes 10^{-9}$	$9.865 imes 10^{-9}$	$1.524 imes10^{-8}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	7.002×10^{-10}	$8.033 imes 10^{-10}$	$8.765 imes 10^{-10}$	9.662×10^{-10}	1.140×10^{-9}	$2.193 imes 10^{-9}$	2.487×10^{-9}	2.661×10^{-9}	$2.987 imes 10^{-9}$	3.616×10^{-9}
chi square fluorescence [1]	426	1.088×10^{3}	1.640×10^{3}	2.371×10^{3}	4.020×10^{3}	4.638×10^{4}	7.930×10^{4}	1.279×10^{5}	2.234×10^{5}	4.691×10^{5}
degrees of freedom fluorescence [1]	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$-2.366 imes 10^{-2}$	-8.528×10^{-3}	-3.429×10^{-3}	-7.863×10^{-4}	1.271×10^{-3}	$6.719 imes 10^{-3}$	8.779×10^{-3}	$1.144 imes 10^{-2}$	$1.658 imes 10^{-2}$	3.167×10^{-2}

Table 3: Parameterlist and basic	statistics for the anal	ysis for observations	in the northern hemisphere

						1		
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.987 ± 0.064	9390904	0.0	1.000	0.350	1.000	1.000	1.000
cloud pressure crb [hPa]	748 ± 219	9390904	355	810	130	1.075×10^3	579	934
cloud pressure crb precision [hPa]	3.33 ± 11.08	9390904	1.97	0.895	$6.104 imes10^{-4}$	1.511×10^3	0.423	2.39
cloud fraction crb [1]	0.381 ± 0.354	9390904	0.618	0.251	0.0	1.000	$6.110 imes10^{-2}$	0.679
cloud fraction crb precision [1]	$(1.750\pm7.406) imes10^{-4}$	9390904	9.120×10^{-5}	9.355×10^{-5}	1.282×10^{-7}	0.310	$4.844 imes10^{-5}$	1.396×10^{-4}
scene albedo [1]	0.411 ± 0.309	9390904	0.495	0.371	-2.872×10^{-3}	4.16	0.139	0.634
scene albedo precision [1]	$(9.506 \pm 10.740) \times 10^{-5}$	9390904	$7.264 imes 10^{-5}$	$5.808 imes 10^{-5}$	$1.137 imes 10^{-5}$	1.964×10^{-3}	3.479×10^{-5}	$1.074 imes10^{-4}$
apparent scene pressure [hPa]	795 ± 187	9390904	283	851	130	1.075×10^3	666	948
apparent scene pressure precision [hPa]	1.09 ± 1.83	9390904	0.550	0.516	7.030×10^{-2}	61.4	0.362	0.911
chi square [1]	$(0.154 \pm 1.579) \times 10^5$	9390904	$1.526 imes 10^4$	$1.046 imes 10^4$	57.0	$8.121 imes 10^7$	4.269×10^{3}	$1.953 imes 10^4$
number of iterations [1]	3.45 ± 1.11	9390904	1.000	3.00	1.000	14.0	3.00	4.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(9.030 \pm 44.246) \times 10^{-10}$	9390904	3.643×10^{-9}	$1.024 imes 10^{-9}$	-1.068×10^{-6}	$1.164 imes10^{-6}$	$-7.504 imes 10^{-10}$	$2.892 imes 10^{-9}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.487 \pm 0.603) \times 10^{-9}$	9390904	$8.320 imes 10^{-10}$	$1.389 imes10^{-9}$	4.328×10^{-10}	5.555×10^{-9}	9.937×10^{-10}	$1.826 imes 10^{-9}$
chi square fluorescence [1]	$(0.395 \pm 0.824) \times 10^5$	9390904	$3.305 imes 10^4$	$1.091 imes 10^4$	101	$1.635 imes 10^6$	3.375×10^3	3.643×10^4
degrees of freedom fluorescence [1]	6.00 ± 0.00	9390904	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	9390904	0.0	50.0	48.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(4.049 \pm 9.239) \times 10^{-3}$	9390904	6.572×10^{-3}	3.940×10^{-3}	-8.477×10^{-2}	0.186	7.000×10^{-4}	7.272×10^{-3}

Table 4. Parameterlist and basic statistics for the ana	lysis for observations in the southern hemisphere
Tuble 4. I drameternist and basic statistics for the and	aysis for observations in the southern hermsphere

Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.854 ± 0.216	14066622	0.500	1.000	0.350	1.000	0.500	1.000
cloud pressure crb [hPa]	788 ± 182	14066622	272	832	130	1.029×10^3	665	938
cloud pressure crb precision [hPa]	1.85 ± 7.98	14066622	0.675	0.386	$1.892 imes 10^{-3}$	1.222×10^3	0.272	0.947
cloud fraction crb [1]	0.555 ± 0.395	14066622	0.868	0.581	0.0	1.000	0.132	1.000
cloud fraction crb precision [1]	$(1.563 \pm 5.367) \times 10^{-4}$	14066622	$6.169 imes10^{-5}$	$6.938 imes10^{-5}$	$1.922 imes 10^{-8}$	0.134	$3.831 imes 10^{-5}$	$1.000 imes 10^{-4}$
scene albedo [1]	0.507 ± 0.346	14066622	0.679	0.520	$-4.057 imes 10^{-2}$	3.17	0.157	0.836
scene albedo precision [1]	$(7.599 \pm 8.696) \times 10^{-5}$	14066622	$6.050 imes10^{-5}$	$5.200 imes 10^{-5}$	$1.020 imes 10^{-5}$	$1.589 imes10^{-2}$	$2.978 imes10^{-5}$	$9.027 imes10^{-5}$
apparent scene pressure [hPa]	808 ± 167	14066622	266	850	130	1.029×10^{3}	684	949
apparent scene pressure precision [hPa]	0.839 ± 1.607	14066622	0.388	0.362	0.126	58.3	0.277	0.665
chi square [1]	$(0.275 \pm 2.268) \times 10^5$	14066622	3.252×10^4	$2.179 imes 10^4$	80.7	$3.556 imes 10^8$	7.257×10^{3}	$3.977 imes 10^4$
number of iterations [1]	3.33 ± 0.98	14066622	1.000	3.00	1.000	14.0	3.00	4.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.908 \pm 7.709) \times 10^{-9}$	14066622	6.230×10^{-9}	$1.714 imes10^{-9}$	$-1.671 imes 10^{-6}$	$2.011 imes 10^{-6}$	$-1.147 imes 10^{-9}$	$5.083 imes 10^{-9}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.895 \pm 0.718) \times 10^{-9}$	14066622	1.112×10^{-9}	1.882×10^{-9}	$4.279 imes 10^{-10}$	5.498×10^{-9}	1.301×10^{-9}	2.413×10^{-9}
chi square fluorescence [1]	$(0.536 \pm 0.975) \times 10^5$	14066622	$4.870 imes 10^4$	1.754×10^4	116	$7.703 imes 10^6$	4.612×10^{3}	$5.331 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	14066622	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	14066622	0.0	50.0	45.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(3.966 \pm 8.025) \times 10^{-3}$	14066622	4.807×10^{-3}	4.026×10^{-3}	-9.405×10^{-2}	0.297	1.607×10^{-3}	6.413×10^{-3}

	Table 5: Parameterlist and	l basic statis	tics for the ana	lysis for observa	tions over water			
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.982 ± 0.046	14362028	0.0	1.000	0.350	1.000	1.000	1.000
cloud pressure crb [hPa]	804 ± 195	14362028	265	874	130	1.043×10^{3}	689	954
cloud pressure crb precision [hPa]	2.56 ± 10.02	14362028	1.20	0.599	$1.892 imes 10^{-3}$	800	0.332	1.53
cloud fraction crb [1]	0.388 ± 0.341	14362028	0.614	0.286	0.0	1.000	$7.053 imes10^{-2}$	0.685
cloud fraction crb precision [1]	$(9.102 \pm 29.976) \times 10^{-5}$	14362028	$5.392 imes 10^{-5}$	$5.114 imes 10^{-5}$	$5.820 imes 10^{-7}$	0.134	$3.027 imes 10^{-5}$	$8.419 imes10^{-5}$
scene albedo [1]	0.336 ± 0.291	14362028	0.514	0.253	$-4.057 imes 10^{-2}$	3.68	$6.777 imes 10^{-2}$	0.581
scene albedo precision [1]	$(6.095\pm7.970) imes10^{-5}$	14362028	$4.037 imes 10^{-5}$	4.222×10^{-5}	$1.020 imes 10^{-5}$	1.589×10^{-2}	2.339×10^{-5}	$6.376 imes 10^{-5}$
apparent scene pressure [hPa]	824 ± 183	14362028	242	887	130	1.075×10^{3}	725	967
apparent scene pressure precision [hPa]	1.27 ± 2.10	14362028	0.910	0.546	0.162	61.4	0.322	1.23
chi square [1]	$(0.175 \pm 2.109) \times 10^5$	14362028	$2.291 imes 10^4$	9.698×10^{3}	57.0	3.556×10^{8}	2.910×10^{3}	$2.582 imes 10^4$
number of iterations [1]	2.95 ± 0.77	14362028	0.0	3.00	1.000	14.0	3.00	3.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(5.125 \pm 55.793) \times 10^{-10}$	14362028	4.384×10^{-9}	3.273×10^{-10}	$-1.068 imes 10^{-6}$	$1.406 imes10^{-6}$	$-1.695 imes 10^{-9}$	$2.689 imes 10^{-9}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.660 \pm 0.732) \times 10^{-9}$	14362028	$1.142 imes 10^{-9}$	$1.516 imes 10^{-9}$	$4.279 imes 10^{-10}$	5.555×10^{-9}	$1.028 imes 10^{-9}$	$2.169 imes 10^{-9}$
chi square fluorescence [1]	$(0.482 \pm 0.871) imes 10^5$	14362028	$4.573 imes 10^4$	1.732×10^4	101	$2.018 imes10^6$	5.168×10^{3}	$5.090 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	14362028	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	14362028	0.0	50.0	48.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(3.955 \pm 10.126) \times 10^{-3}$	14362028	7.028×10^{-3}	3.972×10^{-3}	-9.405×10^{-2}	0.297	4.142×10^{-4}	7.442×10^{-3}

	Table 6: Parameterlist an	nd basic sta	tistics for the an	alysis for observ	vations over land			
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.743 ± 0.252	7328978	0.500	0.500	0.350	1.000	0.500	1.000
cloud pressure crb [hPa]	725 ± 183	7328978	238	725	130	1.069×10^{3}	629	868
cloud pressure crb precision [hPa]	2.07 ± 7.71	7328978	0.921	0.357	$7.935 imes10^{-4}$	1.511×10^{3}	0.263	1.18
cloud fraction crb [1]	0.683 ± 0.406	7328978	0.790	1.000	0.0	1.000	0.210	1.000
cloud fraction crb precision [1]	$(2.872 \pm 9.348) \times 10^{-4}$	7328978	$3.654 imes 10^{-5}$	$1.000 imes 10^{-4}$	$1.922 imes 10^{-8}$	0.310	$1.000 imes 10^{-4}$	$1.365 imes10^{-4}$
scene albedo [1]	0.710 ± 0.281	7328978	0.463	0.803	$2.223 imes 10^{-3}$	3.83	0.467	0.930
scene albedo precision [1]	$(1.207 \pm 1.056) \times 10^{-4}$	7328978	$7.798 imes 10^{-5}$	9.211×10^{-5}	1.354×10^{-5}	1.964×10^{-3}	5.706×10^{-5}	$1.350 imes 10^{-4}$
apparent scene pressure [hPa]	765 ± 150	7328978	240	763	130	1.062×10^{3}	654	894
apparent scene pressure precision [hPa]	0.387 ± 0.177	7328978	0.169	0.336	$7.030 imes10^{-2}$	13.8	0.274	0.443
chi square [1]	$(0.325 \pm 1.660) \times 10^5$	7328978	2.664×10^4	$2.506 imes 10^4$	155	$8.671 imes 10^7$	$1.428 imes 10^4$	$4.092 imes 10^4$
number of iterations [1]	4.09 ± 0.98	7328978	0.0	4.00	1.000	14.0	4.00	4.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(3.319 \pm 7.300) \times 10^{-9}$	7328978	$4.614 imes 10^{-9}$	$3.149 imes 10^{-9}$	-1.421×10^{-6}	$2.011 imes10^{-6}$	1.116×10^{-9}	$5.730 imes 10^{-9}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.881 \pm 0.632) \times 10^{-9}$	7328978	8.413×10^{-10}	$1.835 imes 10^{-9}$	$4.396 imes 10^{-10}$	$5.498 imes10^{-9}$	1.422×10^{-9}	$2.263 imes10^{-9}$
chi square fluorescence [1]	$(0.429 \pm 0.922) \times 10^5$	7328978	3.248×10^4	8.368×10^3	151	$7.703 imes 10^6$	2.606×10^{3}	$3.508 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	7328978	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	7328978	0.0	50.0	48.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(4.032 \pm 4.343) \times 10^{-3}$	7328978	3.481×10^{-3}	4.005×10^{-3}	-8.748×10^{-2}	7.027×10^{-2}	2.280×10^{-3}	5.761×10^{-3}

Granule outlines

Figure 1: Outline of the granules.

4 Input data monitoring

Figure 2: Input data per granule

5 Warnings and errors

Figure 3: Fraction of pixels with specific warnings and errors during processing

6 World maps

Figure 4: Map of "Cloud pressure" for 2025-01-08 to 2025-01-09

Figure 5: Map of "Cloud fraction" for 2025-01-08 to 2025-01-09

Figure 6: Map of "Scene albedo" for 2025-01-08 to 2025-01-09

Figure 7: Map of "Apparent scene pressure" for 2025-01-08 to 2025-01-09

2025-01-08

Figure 8: Map of "Fluorescence" for 2025-01-08 to 2025-01-09

Figure 9: Map of the number of observations for 2025-01-08 to 2025-01-09

7 Zonal average

Figure 10: Zonal average of "QA value" for 2025-01-08 to 2025-01-09.

Figure 11: Zonal average of "Cloud pressure" for 2025-01-08 to 2025-01-09.

Figure 12: Zonal average of "Cloud pressure precision" for 2025-01-08 to 2025-01-09.

Figure 13: Zonal average of "Cloud fraction" for 2025-01-08 to 2025-01-09.

Figure 14: Zonal average of "Cloud fraction precision" for 2025-01-08 to 2025-01-09.

Figure 15: Zonal average of "Scene albedo" for 2025-01-08 to 2025-01-09.

Figure 16: Zonal average of "Scene albedo precision" for 2025-01-08 to 2025-01-09.

Figure 17: Zonal average of "Apparent scene pressure" for 2025-01-08 to 2025-01-09.

Figure 18: Zonal average of "Apparent scene pressure precision" for 2025-01-08 to 2025-01-09.

Figure 19: Zonal average of " χ^2 " for 2025-01-08 to 2025-01-09.

Figure 20: Zonal average of "Number of iterations" for 2025-01-08 to 2025-01-09.

Figure 21: Zonal average of "Fluorescence" for 2025-01-08 to 2025-01-09.

Figure 22: Zonal average of "Fluorescence precision" for 2025-01-08 to 2025-01-09.

Figure 23: Zonal average of " χ^2 of fluorescence retrieval" for 2025-01-08 to 2025-01-09.

Figure 24: Zonal average of "Degrees of freedom for signal of fluorescence retrieval" for 2025-01-08 to 2025-01-09.

Figure 25: Zonal average of "Number of points in the spectrum" for 2025-01-08 to 2025-01-09.

Figure 26: Zonal average of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-01-08 to 2025-01-09.

8 Histograms

The definitions of the parameters given in this section can be found in section 2.

Figure 27: Histogram of "QA value" for 2025-01-08 to 2025-01-09

Figure 28: Histogram of "Cloud pressure" for 2025-01-08 to 2025-01-09

Figure 29: Histogram of "Cloud pressure precision" for 2025-01-08 to 2025-01-09

Figure 30: Histogram of "Cloud fraction" for 2025-01-08 to 2025-01-09

Figure 31: Histogram of "Cloud fraction precision" for 2025-01-08 to 2025-01-09

Figure 32: Histogram of "Scene albedo" for 2025-01-08 to 2025-01-09

Figure 33: Histogram of "Scene albedo precision" for 2025-01-08 to 2025-01-09

Figure 34: Histogram of "Apparent scene pressure" for 2025-01-08 to 2025-01-09

Figure 35: Histogram of "Apparent scene pressure precision" for 2025-01-08 to 2025-01-09

Figure 36: Histogram of " χ^2 " for 2025-01-08 to 2025-01-09

Figure 37: Histogram of "Number of iterations" for 2025-01-08 to 2025-01-09

Figure 38: Histogram of "Fluorescence" for 2025-01-08 to 2025-01-09

Figure 39: Histogram of "Fluorescence precision" for 2025-01-08 to 2025-01-09

Figure 40: Histogram of " χ^2 of fluorescence retrieval" for 2025-01-08 to 2025-01-09

Figure 41: Histogram of "Degrees of freedom for signal of fluorescence retrieval" for 2025-01-08 to 2025-01-09

Figure 42: Histogram of "Number of points in the spectrum" for 2025-01-08 to 2025-01-09

Figure 43: Histogram of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-01-08 to 2025-01-09

9 Along track statistics

The TROPOMI instrument uses different binned detector rows for different viewing directions. In this section statistics are presented for each of the binned rows in the instrument.

Figure 44: Along track statistics of "QA value" for 2025-01-08 to 2025-01-09

Figure 45: Along track statistics of "Cloud pressure" for 2025-01-08 to 2025-01-09

Figure 46: Along track statistics of "Cloud pressure precision" for 2025-01-08 to 2025-01-09

Figure 47: Along track statistics of "Cloud fraction" for 2025-01-08 to 2025-01-09

Figure 48: Along track statistics of "Cloud fraction precision" for 2025-01-08 to 2025-01-09

Figure 49: Along track statistics of "Scene albedo" for 2025-01-08 to 2025-01-09

Figure 50: Along track statistics of "Scene albedo precision" for 2025-01-08 to 2025-01-09

Figure 51: Along track statistics of "Apparent scene pressure" for 2025-01-08 to 2025-01-09

Figure 52: Along track statistics of "Apparent scene pressure precision" for 2025-01-08 to 2025-01-09

Figure 53: Along track statistics of " χ^2 " for 2025-01-08 to 2025-01-09

Figure 54: Along track statistics of "Number of iterations" for 2025-01-08 to 2025-01-09

Figure 55: Along track statistics of "Fluorescence" for 2025-01-08 to 2025-01-09

Figure 56: Along track statistics of "Fluorescence precision" for 2025-01-08 to 2025-01-09

Figure 57: Along track statistics of " χ^2 of fluorescence retrieval" for 2025-01-08 to 2025-01-09

Figure 58: Along track statistics of "Degrees of freedom for signal of fluorescence retrieval" for 2025-01-08 to 2025-01-09

Figure 59: Along track statistics of "Number of points in the spectrum" for 2025-01-08 to 2025-01-09

Figure 60: Along track statistics of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-01-08 to 2025-01-09

10 Coincidence density

To investigate the relation between parameters scatter density plots are produced. These include some 'hidden' parameters, latitude and the solar- and viewing geometries, in addition to all configured parameters. All combinations of pairs of parameters are included *once*, in one direction alone.

Contents

1	Short Introduction	1
	1.1 The list of parameters	1
2	Definitions	1
3	Granule outlines	8
4	Input data monitoring	9
5	Warnings and errors	10
6	World maps	11
7	Zonal average	17
8	Histograms	34
9	Along track statistics	51
10	Coincidence density	68
11	Copyright information of 'PyCAMA'	68

List of Figures

1	Outline of the granules.	8
2	Input data per granule	9
3	Fraction of pixels with specific warnings and errors during processing	10
4	Map of "Cloud pressure" for 2025-01-08 to 2025-01-09	11
5	Map of "Cloud fraction" for 2025-01-08 to 2025-01-09	12
6	Map of "Scene albedo" for 2025-01-08 to 2025-01-09	13
7	Map of "Apparent scene pressure" for 2025-01-08 to 2025-01-09	14
8	Map of "Fluorescence" for 2025-01-08 to 2025-01-09	15
9	Map of the number of observations for 2025-01-08 to 2025-01-09	16
10	Zonal average of "QA value" for 2025-01-08 to 2025-01-09.	17
11	Zonal average of "Cloud pressure" for 2025-01-08 to 2025-01-09.	18
12	Zonal average of "Cloud pressure precision" for 2025-01-08 to 2025-01-09	19
13	Zonal average of "Cloud fraction" for 2025-01-08 to 2025-01-09.	20
14	Zonal average of "Cloud fraction precision" for 2025-01-08 to 2025-01-09.	21
15	Zonal average of "Scene albedo" for 2025-01-08 to 2025-01-09	22
16	Zonal average of "Scene albedo precision" for 2025-01-08 to 2025-01-09.	23
17	Zonal average of "Apparent scene pressure" for 2025-01-08 to 2025-01-09.	24
18	Zonal average of "Apparent scene pressure precision" for 2025-01-08 to 2025-01-09	25
19	Zonal average of " χ^2 " for 2025-01-08 to 2025-01-09	26
20	Zonal average of "Number of iterations" for 2025-01-08 to 2025-01-09.	27
21	Zonal average of "Fluorescence" for 2025-01-08 to 2025-01-09.	28
22	Zonal average of "Fluorescence precision" for 2025-01-08 to 2025-01-09	29
23	Zonal average of " χ^2 of fluorescence retrieval" for 2025-01-08 to 2025-01-09	30
24	Zonal average of "Degrees of freedom for signal of fluorescence retrieval" for 2025-01-08 to 2025-01-09.	31
25	Zonal average of "Number of points in the spectrum" for 2025-01-08 to 2025-01-09.	32
26	Zonal average of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-01-08 to 2025-01-09	33
27	Histogram of "QA value" for 2025-01-08 to 2025-01-09	34
28	Histogram of "Cloud pressure" for 2025-01-08 to 2025-01-09	35
29	Histogram of "Cloud pressure precision" for 2025-01-08 to 2025-01-09	36

30	Histogram of "Cloud fraction" for 2025-01-08 to 2025-01-09	37
31	Histogram of "Cloud fraction precision" for 2025-01-08 to 2025-01-09	38
32	Histogram of "Scene albedo" for 2025-01-08 to 2025-01-09	39
33	Histogram of "Scene albedo precision" for 2025-01-08 to 2025-01-09	40
34	Histogram of "Apparent scene pressure" for 2025-01-08 to 2025-01-09	41
35	Histogram of "Apparent scene pressure precision" for 2025-01-08 to 2025-01-09	42
36	Histogram of " χ^2 " for 2025-01-08 to 2025-01-09	43
37	Histogram of "Number of iterations" for 2025-01-08 to 2025-01-09	44
38	Histogram of "Fluorescence" for 2025-01-08 to 2025-01-09	45
39	Histogram of "Fluorescence precision" for 2025-01-08 to 2025-01-09	46
40	Histogram of " χ^2 of fluorescence retrieval" for 2025-01-08 to 2025-01-09	47
41	Histogram of "Degrees of freedom for signal of fluorescence retrieval" for 2025-01-08 to 2025-01-09	48
42	Histogram of "Number of points in the spectrum" for 2025-01-08 to 2025-01-09	49
43	Histogram of "Spectral offset $(\lambda_{true} - \lambda_{nominal})$ " for 2025-01-08 to 2025-01-09	50
44	Along track statistics of "QA value" for 2025-01-08 to 2025-01-09	51
45	Along track statistics of "Cloud pressure" for 2025-01-08 to 2025-01-09	52
46	Along track statistics of "Cloud pressure precision" for 2025-01-08 to 2025-01-09	53
47	Along track statistics of "Cloud fraction" for 2025-01-08 to 2025-01-09	54
48	Along track statistics of "Cloud fraction precision" for 2025-01-08 to 2025-01-09	55
49	Along track statistics of "Scene albedo" for 2025-01-08 to 2025-01-09	56
50	Along track statistics of "Scene albedo precision" for 2025-01-08 to 2025-01-09	57
51	Along track statistics of "Apparent scene pressure" for 2025-01-08 to 2025-01-09	58
52	Along track statistics of "Apparent scene pressure precision" for 2025-01-08 to 2025-01-09	59
53	Along track statistics of " χ^2 " for 2025-01-08 to 2025-01-09	60
54	Along track statistics of "Number of iterations" for 2025-01-08 to 2025-01-09	61
55	Along track statistics of "Fluorescence" for 2025-01-08 to 2025-01-09	62
56	Along track statistics of "Fluorescence precision" for 2025-01-08 to 2025-01-09	63
57	Along track statistics of " χ^2 of fluorescence retrieval" for 2025-01-08 to 2025-01-09	64
58	Along track statistics of "Degrees of freedom for signal of fluorescence retrieval" for 2025-01-08 to 2025-01-09	65
59	Along track statistics of "Number of points in the spectrum" for 2025-01-08 to 2025-01-09	66
60	Along track statistics of "Spectral offset $(\lambda_{true} - \lambda_{nominal})$ " for 2025-01-08 to 2025-01-09	67

List of Tables

1	Parameterlist and basic statistics for the analysis
2	Percentile ranges
3	Parameterlist and basic statistics for the analysis for observations in the northern hemisphere
4	Parameterlist and basic statistics for the analysis for observations in the southern hemisphere
5	Parameterlist and basic statistics for the analysis for observations over water
6	Parameterlist and basic statistics for the analysis for observations over land

11 Copyright information of 'PyCAMA'

Copyright © 2005-2023, Maarten Sneep (KNMI).

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
- 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

This software is provided by the copyright holders and contributors "as is" and any express or implied warranties, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose are disclaimed. In no event shall the copyright holder or contributors be liable for any direct, indirect, incidental, special, exemplary, or consequential damages (including, but not limited to, procurement of substitute goods or services; loss of use, data, or profits; or business interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence or otherwise) arising in any way out of the use of this software, even if advised of the possibility of such damage.

Maarten Sneep (maarten.sneep@knmi.nl).