PyCAMA report generated by tropl2-proc

tropl2-proc

2025-01-15 (04:30)

1 Short Introduction

1.1 The list of parameters

You may want to keep the list given in table 1 at hand when viewing the results.

2 Definitions

The averages shown here are unweighed averages:

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i \tag{1}$$

with N the number of observations in the dataset.

The spread of the measurements is indicated with the variance V(x), or rather the standard deviation $\sigma(x) = \sqrt{V(x)}$.

$$V(x) = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2$$
(2)

We also report the more robust statistics median, minimum, maximum, various percentiles and inter quartile range.

The median m is the value of parameter x for which half of the observations of x is smaller than m:

$$P(x \le m) = P(x \ge m) = \int_{-\infty}^{m} f(x) \, \mathrm{d}x = \frac{1}{2}$$
(3)

with f(x) the probability density function.

The median is a special case of a percentile. Instead of $\frac{1}{2}$ in equation 3, other threshold values can be used. We report results for 1%, 5%, 10%, 15.9%, 25%, 75%, 84.1%, 90%, 95% and 99%. The inter quartile range is the difference between the 75% and 25% percentiles. Similarly the minimum and maximum values correspond to the 0% and 100% percentiles respectively.

For normally distributed parameters the mean and median are the same, while the $\mu \pm \sigma$ values and the 15.9% and 84.1% percentiles coincide.

To get a measure for the relation of one variable $x_{(k)}$ with another $x_{(l)}$, we calculate the covariance matrix C_{kl} .

$$C_{kl} = C(x_{(k)}, x_{(l)}) = \frac{1}{N-1} \sum_{i=1}^{N} (x_{(k),i} - \overline{x_{(k)}}) (x_{(l),i} - \overline{x_{(l)}})$$
(4)

Rather than a dimensionally dependent covariance, it is often easier to interpret a correlation matrix R_{kl} , a matrix of Pearson's *r* coefficients:

$$R_{kl} = R(x_{(k)}, x_{(l)}) = \frac{C_{kl}}{\sqrt{C_{kk}C_{ll}}} = \frac{C_{kl}}{\sqrt{V(x_k)V(x_l)}}$$
(5)

The diagonal elements of the covariance matrix are the variances of the elements, $V(x_{(k)}) = C_{kk}$ and obviously $R_{kk} = 1$.

	Table 1: Parameter	list and basic	statistics for the a	nalysis			
Variable	mean $\pm \sigma$	Count	Mode	IQR	Median	Minimum	Maximum
qa value [1]	0.909 ± 0.184	23296030	0.995	0.1000	1.000	0.350	1.000
cloud pressure crb [hPa]	777 ± 197	23296030	$1.015 imes 10^3$	286	829	130	$1.075 imes 10^3$
cloud pressure crb precision [hPa]	2.46 ± 9.51	23296030	0.750	1.18	0.521	$3.052 imes 10^{-4}$	1.300×10^3
cloud fraction crb [1]	0.488 ± 0.389	23296030	0.996	0.874	0.425	0.0	1.000
cloud fraction crb precision [1]	$(1.626 \pm 7.108) \times 10^{-4}$	23296030	$2.500 imes10^{-4}$	$5.836 imes 10^{-5}$	$7.750 imes 10^{-5}$	$5.377 imes 10^{-9}$	0.470
scene albedo [1]	0.469 ± 0.334	23296030	$1.500 imes10^{-2}$	0.608	0.448	-3.757×10^{-3}	4.22
scene albedo precision [1]	$(8.177 \pm 9.058) \times 10^{-5}$	23296030	$2.500 imes10^{-4}$	$6.411 imes 10^{-5}$	$5.437 imes 10^{-5}$	$1.034 imes 10^{-5}$	1.132×10^{-2}
apparent scene pressure [hPa]	808 ± 174	23296030	1.008×10^3	261	855	130	$1.075 imes 10^3$
apparent scene pressure precision [hPa]	0.937 ± 1.715	23296030	0.500	0.457	0.419	$6.459 imes 10^{-2}$	56.5
chi square [1]	$(0.230 \pm 2.003) \times 10^5$	23296030	0.150	$2.707 imes 10^4$	$1.614 imes 10^4$	45.9	$3.121 imes 10^8$
number of iterations [1]	3.36 ± 1.06	23296030	3.23	1.000	3.00	1.000	14.0
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.421 \pm 6.840) \times 10^{-9}$	23296030	$7.500 imes 10^{-10}$	$5.014 imes 10^{-9}$	1.292×10^{-9}	$-1.994 imes 10^{-6}$	1.907×10^{-6}
fluorescence precision [mol $s^{-1} m^{-2} nm^{-1} sr^{-1}$]	$(1.742 \pm 0.711) \times 10^{-9}$	23296030	$8.500 imes 10^{-10}$	1.056×10^{-9}	1.661×10^{-9}	$4.260 imes 10^{-10}$	5.551×10^{-9}
chi square fluorescence [1]	$(0.490 \pm 0.962) \times 10^5$	23296030	1.250×10^3	$4.379 imes 10^4$	$1.410 imes 10^4$	108	$2.845 imes 10^6$
degrees of freedom fluorescence [1]	6.00 ± 0.00	23296030	5.95	0.0	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	23296030	49.7	0.0	50.0	47.0	50.0
wavelength calibration offset [nm]	$(3.876 \pm 8.226) \times 10^{-3}$	23296030	3.600×10^{-3}	5.262×10^{-3}	3.904×10^{-3}	-0.139	0.132

Table 2: Percentile ranges										
Variable	1 %	5%	10 %	15.9 %	25 %	75 %	84.1 %	90%	95 %	99 %
qa value [1]	0.500	0.500	0.500	0.700	0.900	1.000	1.000	1.000	1.000	1.000
cloud pressure crb [hPa]	232	380	482	573	653	939	971	991	1.009×10^{3}	1.020×10^3
cloud pressure crb precision [hPa]	0.153	0.227	0.248	0.267	0.300	1.48	2.67	4.60	9.36	32.8
cloud fraction crb [1]	$3.994 imes 10^{-4}$	$1.058 imes10^{-2}$	$2.365 imes10^{-2}$	$4.410 imes10^{-2}$	$9.322 imes 10^{-2}$	0.968	1.000	1.000	1.000	1.000
cloud fraction crb precision [1]	$1.946 imes 10^{-5}$	$2.289 imes10^{-5}$	$2.585 imes10^{-5}$	$3.002 imes 10^{-5}$	$4.164 imes 10^{-5}$	$1.000 imes 10^{-4}$	$1.363 imes10^{-4}$	$2.426 imes 10^{-4}$	$5.724 imes 10^{-4}$	$1.874 imes10^{-3}$
scene albedo [1]	$8.045 imes 10^{-3}$	$2.023 imes 10^{-2}$	$3.760 imes 10^{-2}$	$6.906 imes 10^{-2}$	0.153	0.760	0.872	0.924	0.973	1.12
scene albedo precision [1]	1.290×10^{-5}	1.532×10^{-5}	$1.877 imes 10^{-5}$	2.370×10^{-5}	3.190×10^{-5}	9.601×10^{-5}	1.249×10^{-4}	$1.639 imes 10^{-4}$	2.436×10^{-4}	4.785×10^{-4}
apparent scene pressure [hPa]	330	458	554	622	690	951	978	996	1.010×10^{3}	1.020×10^{3}
apparent scene pressure precision [hPa]	0.210	0.234	0.252	0.270	0.299	0.756	1.21	1.98	3.52	8.45
chi square [1]	290	685	1.418×10^{3}	2.809×10^{3}	5.588×10^{3}	3.265×10^{4}	4.140×10^{4}	4.873×10^{4}	5.803×10^{4}	$7.780 imes 10^4$
number of iterations [1]	2.00	2.00	2.00	2.00	3.00	4.00	4.00	5.00	5.00	7.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	-1.402×10^{-8}	-6.443×10^{-9}	-3.821×10^{-9}	-2.340×10^{-9}	-1.016×10^{-9}	3.998×10^{-9}	5.631×10^{-9}	7.232×10^{-9}	$9.580 imes 10^{-9}$	1.490×10^{-8}
fluorescence precision [mol $s^{-1} m^{-2} nm^{-1} sr^{-1}$]	$7.168 imes 10^{-10}$	$8.091 imes 10^{-10}$	$8.801 imes 10^{-10}$	9.702×10^{-10}	$1.145 imes 10^{-9}$	2.201×10^{-9}	2.499×10^{-9}	2.671×10^{-9}	3.019×10^{-9}	3.657×10^{-9}
chi square fluorescence [1]	422	1.043×10^{3}	1.622×10^{3}	2.359×10^{3}	3.950×10^{3}	4.774×10^{4}	8.179×10^{4}	1.290×10^{5}	2.251×10^{5}	4.961×10^{5}
degrees of freedom fluorescence [1]	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0
wavelength calibration offset [nm]	-2.287×10^{-2}	-8.135×10^{-3}	-3.251×10^{-3}	-7.364×10^{-4}	1.242×10^{-3}	6.504×10^{-3}	8.451×10^{-3}	$1.099 imes 10^{-2}$	$1.589 imes 10^{-2}$	3.045×10^{-2}

Table 3: Parameterlist and basic	statistics for the analysi	sis for observations in	the northern hemisphere

			2			1		
Variable	$ $ mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.986 ± 0.069	9367130	0.0	1.000	0.350	1.000	1.000	1.000
cloud pressure crb [hPa]	760 ± 220	9367130	343	830	130	$1.075 imes 10^3$	600	942
cloud pressure crb precision [hPa]	3.31 ± 10.83	9367130	1.96	0.879	$3.052 imes 10^{-4}$	1.300×10^3	0.433	2.39
cloud fraction crb [1]	0.375 ± 0.349	9367130	0.598	0.249	0.0	1.000	$6.069 imes10^{-2}$	0.659
cloud fraction crb precision [1]	$(1.777 \pm 9.394) \times 10^{-4}$	9367130	$9.448 imes 10^{-5}$	$9.007 imes 10^{-5}$	$9.317 imes10^{-8}$	0.470	$4.806 imes10^{-5}$	1.425×10^{-4}
scene albedo [1]	0.406 ± 0.301	9367130	0.474	0.367	$-2.559 imes 10^{-3}$	4.22	0.148	0.622
scene albedo precision [1]	$(9.131 \pm 10.128) \times 10^{-5}$	9367130	$7.169 imes10^{-5}$	$5.648 imes 10^{-5}$	1.135×10^{-5}	2.339×10^{-3}	$3.426 imes 10^{-5}$	$1.060 imes10^{-4}$
apparent scene pressure [hPa]	806 ± 189	9367130	258	866	130	$1.075 imes 10^3$	697	955
apparent scene pressure precision [hPa]	1.06 ± 1.87	9367130	0.499	0.508	$6.459 imes10^{-2}$	56.5	0.367	0.867
chi square [1]	$(0.164 \pm 2.519) \times 10^5$	9367130	$1.687 imes 10^4$	$1.119 imes10^4$	45.9	$1.492 imes 10^8$	4.282×10^3	$2.115 imes 10^4$
number of iterations [1]	3.43 ± 1.13	9367130	1.000	3.00	1.000	14.0	3.00	4.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(9.450 \pm 43.809) \times 10^{-10}$	9367130	$3.717 imes 10^{-9}$	$1.046 imes 10^{-9}$	$-1.273 imes10^{-6}$	$1.267 imes10^{-6}$	$-7.388 imes 10^{-10}$	$2.978 imes10^{-9}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.496 \pm 0.599) \times 10^{-9}$	9367130	$8.048 imes10^{-10}$	$1.395 imes10^{-9}$	$4.260 imes 10^{-10}$	$5.545 imes 10^{-9}$	$1.018 imes10^{-9}$	$1.823 imes 10^{-9}$
chi square fluorescence [1]	$(0.390 \pm 0.849) \times 10^5$	9367130	$3.263 imes 10^4$	$1.046 imes 10^4$	108	$1.834 imes10^6$	3.154×10^{3}	$3.578 imes10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	9367130	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	9367130	0.0	50.0	48.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(3.918 \pm 8.729) \times 10^{-3}$	9367130	6.214×10^{-3}	3.850×10^{-3}	-7.915×10^{-2}	8.851×10^{-2}	7.516×10^{-4}	6.966×10^{-3}

Table 4. Parameterlist and basic statistics for the anal	vsis for observations in the southern hemisphere
Tuble 4. I drameternist and busic statistics for the anal	ysis for observations in the southern hermsphere

Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.857 ± 0.216	13928900	0.500	1.000	0.350	1.000	0.500	1.000
cloud pressure crb [hPa]	789 ± 179	13928900	268	829	130	1.036×10^3	669	937
cloud pressure crb precision [hPa]	1.89 ± 8.46	13928900	0.669	0.373	$1.343 imes 10^{-3}$	656	0.271	0.940
cloud fraction crb [1]	0.563 ± 0.396	13928900	0.865	0.609	0.0	1.000	0.135	1.000
cloud fraction crb precision [1]	$(1.523 \pm 5.014) \times 10^{-4}$	13928900	$6.199 imes 10^{-5}$	$7.048 imes 10^{-5}$	$5.377 imes 10^{-9}$	$9.747 imes 10^{-2}$	$3.801 imes 10^{-5}$	$1.000 imes 10^{-4}$
scene albedo [1]	0.511 ± 0.348	13928900	0.686	0.533	-3.757×10^{-3}	3.47	0.157	0.843
scene albedo precision [1]	$(7.535 \pm 8.198) \times 10^{-5}$	13928900	$6.023 imes 10^{-5}$	$5.306 imes 10^{-5}$	$1.034 imes 10^{-5}$	$1.132 imes 10^{-2}$	$3.012 imes 10^{-5}$	$9.035 imes 10^{-5}$
apparent scene pressure [hPa]	809 ± 164	13928900	260	846	130	1.036×10^3	687	947
apparent scene pressure precision [hPa]	0.851 ± 1.596	13928900	0.390	0.357	0.109	55.8	0.275	0.665
chi square [1]	$(0.275 \pm 1.563) \times 10^5$	13928900	$3.281 imes 10^4$	2.244×10^4	76.6	$3.121 imes 10^8$	$7.186 imes 10^3$	3.999×10^{4}
number of iterations [1]	3.31 ± 1.00	13928900	1.000	3.00	1.000	14.0	3.00	4.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.741 \pm 8.068) \times 10^{-9}$	13928900	6.126×10^{-9}	$1.575 imes10^{-9}$	$-1.994 imes 10^{-6}$	$1.907 imes10^{-6}$	-1.247×10^{-9}	$4.879 imes10^{-9}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.907 \pm 0.732) \times 10^{-9}$	13928900	1.131×10^{-9}	1.919×10^{-9}	4.318×10^{-10}	5.551×10^{-9}	$1.297 imes 10^{-9}$	$2.428 imes 10^{-9}$
chi square fluorescence [1]	$(0.558 \pm 1.026) \times 10^5$	13928900	$5.189 imes 10^4$	$1.758 imes 10^4$	113	$2.845 imes 10^6$	4.615×10^{3}	$5.650 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	13928900	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	13928900	0.0	50.0	47.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(3.847 \pm 7.869) \times 10^{-3}$	13928900	4.701×10^{-3}	3.930×10^{-3}	-0.139	0.132	1.540×10^{-3}	6.241×10^{-3}

	Table 5: Parameterlist and	d basic statis	stics for the ana	lysis for observa	tions over water			
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.982 ± 0.046	14399522	0.0	1.000	0.350	1.000	1.000	1.000
cloud pressure crb [hPa]	813 ± 188	14399522	243	878	130	1.049×10^{3}	713	956
cloud pressure crb precision [hPa]	2.53 ± 10.08	14399522	1.19	0.579	1.953×10^{-3}	1.018×10^3	0.326	1.52
cloud fraction crb [1]	0.400 ± 0.347	14399522	0.639	0.305	0.0	1.000	$7.090 imes10^{-2}$	0.710
cloud fraction crb precision [1]	$(8.765 \pm 27.066) \times 10^{-5}$	14399522	$5.526 imes 10^{-5}$	$5.204 imes 10^{-5}$	$9.137 imes10^{-8}$	$8.143 imes 10^{-2}$	$2.970 imes10^{-5}$	$8.496 imes10^{-5}$
scene albedo [1]	0.344 ± 0.297	14399522	0.527	0.267	-3.757×10^{-3}	3.55	$6.674 imes10^{-2}$	0.594
scene albedo precision [1]	$(6.176 \pm 7.852) \times 10^{-5}$	14399522	$4.127 imes 10^{-5}$	$4.333 imes 10^{-5}$	$1.034 imes 10^{-5}$	1.132×10^{-2}	$2.349 imes10^{-5}$	$6.475 imes10^{-5}$
apparent scene pressure [hPa]	831 ± 177	14399522	220	890	130	$1.075 imes 10^3$	747	967
apparent scene pressure precision [hPa]	1.27 ± 2.11	14399522	0.913	0.538	$7.989 imes10^{-2}$	56.5	0.319	1.23
chi square [1]	$(0.174 \pm 1.162) \times 10^5$	14399522	2.432×10^4	$1.021 imes 10^4$	45.9	$3.121 imes 10^8$	2.832×10^3	$2.715 imes 10^4$
number of iterations [1]	2.93 ± 0.78	14399522	1.000	3.00	1.000	14.0	2.00	3.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(4.636 \pm 56.322) \times 10^{-10}$	14399522	4.389×10^{-9}	$2.974 imes10^{-10}$	$-1.273 imes 10^{-6}$	$1.398 imes10^{-6}$	-1.708×10^{-9}	2.681×10^{-9}
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.673 \pm 0.748) \times 10^{-9}$	14399522	1.169×10^{-9}	1.520×10^{-9}	4.283×10^{-10}	5.551×10^{-9}	$1.023 imes 10^{-9}$	2.192×10^{-9}
chi square fluorescence [1]	$(0.502 \pm 0.954) \times 10^5$	14399522	$4.671 imes 10^4$	$1.713 imes 10^4$	108	$2.845 imes 10^6$	5.087×10^3	$5.179 imes10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	14399522	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	14399522	0.0	50.0	48.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(3.842\pm9.745) imes10^{-3}$	14399522	$6.725 imes 10^{-3}$	$3.879 imes 10^{-3}$	-0.139	0.132	4.623×10^{-4}	$7.187 imes 10^{-3}$

	Table 6: Parameterlist an	d basic stat	tistics for the ana	alysis for observ	vations over land			
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.744 ± 0.252	7196303	0.500	0.500	0.350	1.000	0.500	1.000
cloud pressure crb [hPa]	719 ± 187	7196303	236	721	130	1.067×10^{3}	628	863
cloud pressure crb precision [hPa]	2.16 ± 8.07	7196303	0.926	0.358	$3.052 imes 10^{-4}$	1.054×10^3	0.266	1.19
cloud fraction crb [1]	0.673 ± 0.407	7196303	0.798	1.000	0.0	1.000	0.202	1.000
cloud fraction crb precision [1]	$(2.920 \pm 10.426) \times 10^{-4}$	7196303	$4.141 imes 10^{-5}$	$1.000 imes 10^{-4}$	$5.377 imes 10^{-9}$	0.470	$1.000 imes 10^{-4}$	$1.414 imes10^{-4}$
scene albedo [1]	0.704 ± 0.282	7196303	0.472	0.792	$1.545 imes 10^{-2}$	4.22	0.455	0.927
scene albedo precision [1]	$(1.160 \pm 0.973) \times 10^{-4}$	7196303	$7.716 imes10^{-5}$	$9.222 imes 10^{-5}$	$1.342 imes 10^{-5}$	$1.740 imes10^{-3}$	$5.547 imes 10^{-5}$	$1.326 imes 10^{-4}$
apparent scene pressure [hPa]	763 ± 152	7196303	239	761	130	1.064×10^{3}	654	893
apparent scene pressure precision [hPa]	0.382 ± 0.164	7196303	0.164	0.336	$6.899 imes10^{-2}$	8.43	0.276	0.440
chi square [1]	$(0.338 \pm 2.667) \times 10^5$	7196303	$2.658 imes 10^4$	$2.583 imes 10^4$	136	$1.905 imes 10^8$	$1.458 imes 10^4$	$4.116 imes 10^4$
number of iterations [1]	4.09 ± 1.05	7196303	0.0	4.00	1.000	14.0	4.00	4.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(3.178 \pm 8.075) \times 10^{-9}$	7196303	$4.526 imes 10^{-9}$	$3.058 imes10^{-9}$	$-1.994 imes 10^{-6}$	$1.907 imes10^{-6}$	1.029×10^{-9}	$5.555 imes 10^{-9}$
fluorescence precision [mol $s^{-1} m^{-2} nm^{-1} sr^{-1}$]	$(1.886 \pm 0.625) \times 10^{-9}$	7196303	$8.167 imes 10^{-10}$	1.839×10^{-9}	$4.260 imes 10^{-10}$	$5.499 imes 10^{-9}$	$1.428 imes 10^{-9}$	$2.245 imes 10^{-9}$
chi square fluorescence [1]	$(0.423 \pm 0.894) \times 10^5$	7196303	$3.323 imes 10^4$	8.022×10^3	128	$2.183 imes10^6$	2.635×10^{3}	$3.586 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	7196303	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	7196303	0.0	50.0	48.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(3.898 \pm 4.236) \times 10^{-3}$	7196303	3.422×10^{-3}	$3.913 imes 10^{-3}$	-6.877×10^{-2}	6.614×10^{-2}	$2.192 imes 10^{-3}$	$5.614 imes 10^{-3}$

Granule outlines

Figure 1: Outline of the granules.

4 Input data monitoring

Figure 2: Input data per granule

5 Warnings and errors

Figure 3: Fraction of pixels with specific warnings and errors during processing

6 World maps

0.2 0.4 0.6 ا 0.8 1.0 ×10³ Cloud pressure [hPa]

2025-01-13

Figure 4: Map of "Cloud pressure" for 2025-01-13 to 2025-01-14

Figure 5: Map of "Cloud fraction" for 2025-01-13 to 2025-01-14

Figure 6: Map of "Scene albedo" for 2025-01-13 to 2025-01-14

Figure 7: Map of "Apparent scene pressure" for 2025-01-13 to 2025-01-14

2025-01-13

Figure 8: Map of "Fluorescence" for 2025-01-13 to 2025-01-14

Figure 9: Map of the number of observations for 2025-01-13 to 2025-01-14

7 Zonal average

Figure 10: Zonal average of "QA value" for 2025-01-13 to 2025-01-14.

Figure 11: Zonal average of "Cloud pressure" for 2025-01-13 to 2025-01-14.

Figure 12: Zonal average of "Cloud pressure precision" for 2025-01-13 to 2025-01-14.

Figure 13: Zonal average of "Cloud fraction" for 2025-01-13 to 2025-01-14.

Figure 14: Zonal average of "Cloud fraction precision" for 2025-01-13 to 2025-01-14.

Figure 15: Zonal average of "Scene albedo" for 2025-01-13 to 2025-01-14.

Figure 16: Zonal average of "Scene albedo precision" for 2025-01-13 to 2025-01-14.

Figure 17: Zonal average of "Apparent scene pressure" for 2025-01-13 to 2025-01-14.

Figure 18: Zonal average of "Apparent scene pressure precision" for 2025-01-13 to 2025-01-14.

Figure 19: Zonal average of " χ^2 " for 2025-01-13 to 2025-01-14.

Figure 20: Zonal average of "Number of iterations" for 2025-01-13 to 2025-01-14.

Figure 21: Zonal average of "Fluorescence" for 2025-01-13 to 2025-01-14.

Figure 22: Zonal average of "Fluorescence precision" for 2025-01-13 to 2025-01-14.

Figure 23: Zonal average of " χ^2 of fluorescence retrieval" for 2025-01-13 to 2025-01-14.

Figure 24: Zonal average of "Degrees of freedom for signal of fluorescence retrieval" for 2025-01-13 to 2025-01-14.

Figure 25: Zonal average of "Number of points in the spectrum" for 2025-01-13 to 2025-01-14.

Figure 26: Zonal average of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-01-13 to 2025-01-14.

8 Histograms

The definitions of the parameters given in this section can be found in section 2.

Figure 27: Histogram of "QA value" for 2025-01-13 to 2025-01-14

Figure 28: Histogram of "Cloud pressure" for 2025-01-13 to 2025-01-14

Figure 29: Histogram of "Cloud pressure precision" for 2025-01-13 to 2025-01-14

Figure 30: Histogram of "Cloud fraction" for 2025-01-13 to 2025-01-14

Figure 31: Histogram of "Cloud fraction precision" for 2025-01-13 to 2025-01-14

Figure 32: Histogram of "Scene albedo" for 2025-01-13 to 2025-01-14

Figure 33: Histogram of "Scene albedo precision" for 2025-01-13 to 2025-01-14

Figure 34: Histogram of "Apparent scene pressure" for 2025-01-13 to 2025-01-14

Figure 35: Histogram of "Apparent scene pressure precision" for 2025-01-13 to 2025-01-14

Figure 36: Histogram of " χ^2 " for 2025-01-13 to 2025-01-14

Figure 37: Histogram of "Number of iterations" for 2025-01-13 to 2025-01-14

Figure 38: Histogram of "Fluorescence" for 2025-01-13 to 2025-01-14

Figure 39: Histogram of "Fluorescence precision" for 2025-01-13 to 2025-01-14

Figure 40: Histogram of " χ^2 of fluorescence retrieval" for 2025-01-13 to 2025-01-14

Figure 41: Histogram of "Degrees of freedom for signal of fluorescence retrieval" for 2025-01-13 to 2025-01-14

Figure 42: Histogram of "Number of points in the spectrum" for 2025-01-13 to 2025-01-14

Figure 43: Histogram of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-01-13 to 2025-01-14

9 Along track statistics

The TROPOMI instrument uses different binned detector rows for different viewing directions. In this section statistics are presented for each of the binned rows in the instrument.

Figure 44: Along track statistics of "QA value" for 2025-01-13 to 2025-01-14

Figure 45: Along track statistics of "Cloud pressure" for 2025-01-13 to 2025-01-14

Figure 46: Along track statistics of "Cloud pressure precision" for 2025-01-13 to 2025-01-14

Figure 47: Along track statistics of "Cloud fraction" for 2025-01-13 to 2025-01-14

Figure 48: Along track statistics of "Cloud fraction precision" for 2025-01-13 to 2025-01-14

Figure 49: Along track statistics of "Scene albedo" for 2025-01-13 to 2025-01-14

Figure 50: Along track statistics of "Scene albedo precision" for 2025-01-13 to 2025-01-14

Figure 51: Along track statistics of "Apparent scene pressure" for 2025-01-13 to 2025-01-14

Figure 52: Along track statistics of "Apparent scene pressure precision" for 2025-01-13 to 2025-01-14

Figure 53: Along track statistics of " χ^2 " for 2025-01-13 to 2025-01-14

Figure 54: Along track statistics of "Number of iterations" for 2025-01-13 to 2025-01-14

Figure 55: Along track statistics of "Fluorescence" for 2025-01-13 to 2025-01-14

Figure 56: Along track statistics of "Fluorescence precision" for 2025-01-13 to 2025-01-14

Figure 57: Along track statistics of " χ^2 of fluorescence retrieval" for 2025-01-13 to 2025-01-14

Figure 58: Along track statistics of "Degrees of freedom for signal of fluorescence retrieval" for 2025-01-13 to 2025-01-14

Figure 59: Along track statistics of "Number of points in the spectrum" for 2025-01-13 to 2025-01-14

Figure 60: Along track statistics of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-01-13 to 2025-01-14

10 Coincidence density

To investigate the relation between parameters scatter density plots are produced. These include some 'hidden' parameters, latitude and the solar- and viewing geometries, in addition to all configured parameters. All combinations of pairs of parameters are included *once*, in one direction alone.

Contents

1	Short Introduction	1
	1.1 The list of parameters	1
2	Definitions	1
3	Granule outlines	8
4	Input data monitoring	9
5	Warnings and errors	10
6	World maps	11
7	Zonal average	17
8	Histograms	34
9	Along track statistics	51
10	Coincidence density	68
11	Copyright information of 'PyCAMA'	68

List of Figures

1	Outline of the granules.	8
2	Input data per granule	9
3	Fraction of pixels with specific warnings and errors during processing	10
4	Map of "Cloud pressure" for 2025-01-13 to 2025-01-14	11
5	Map of "Cloud fraction" for 2025-01-13 to 2025-01-14	12
6	Map of "Scene albedo" for 2025-01-13 to 2025-01-14	13
7	Map of "Apparent scene pressure" for 2025-01-13 to 2025-01-14	14
8	Map of "Fluorescence" for 2025-01-13 to 2025-01-14	15
9	Map of the number of observations for 2025-01-13 to 2025-01-14	16
10	Zonal average of "QA value" for 2025-01-13 to 2025-01-14.	17
11	Zonal average of "Cloud pressure" for 2025-01-13 to 2025-01-14.	18
12	Zonal average of "Cloud pressure precision" for 2025-01-13 to 2025-01-14.	19
13	Zonal average of "Cloud fraction" for 2025-01-13 to 2025-01-14.	20
14	Zonal average of "Cloud fraction precision" for 2025-01-13 to 2025-01-14.	21
15	Zonal average of "Scene albedo" for 2025-01-13 to 2025-01-14.	22
16	Zonal average of "Scene albedo precision" for 2025-01-13 to 2025-01-14.	23
17	Zonal average of "Apparent scene pressure" for 2025-01-13 to 2025-01-14.	24
18	Zonal average of "Apparent scene pressure precision" for 2025-01-13 to 2025-01-14.	25
19	Zonal average of " χ^2 " for 2025-01-13 to 2025-01-14	26
20	Zonal average of "Number of iterations" for 2025-01-13 to 2025-01-14.	27
21	Zonal average of "Fluorescence" for 2025-01-13 to 2025-01-14.	28
22	Zonal average of "Fluorescence precision" for 2025-01-13 to 2025-01-14.	29
23	Zonal average of " χ^2 of fluorescence retrieval" for 2025-01-13 to 2025-01-14	30
24	Zonal average of "Degrees of freedom for signal of fluorescence retrieval" for 2025-01-13 to 2025-01-14.	31
25	Zonal average of "Number of points in the spectrum" for 2025-01-13 to 2025-01-14.	32
26	Zonal average of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-01-13 to 2025-01-14	33
27	Histogram of "QA value" for 2025-01-13 to 2025-01-14	34
28	Histogram of "Cloud pressure" for 2025-01-13 to 2025-01-14	35
29	Histogram of "Cloud pressure precision" for 2025-01-13 to 2025-01-14	36

30	Histogram of "Cloud fraction" for 2025-01-13 to 2025-01-14	37
31	Histogram of "Cloud fraction precision" for 2025-01-13 to 2025-01-14	38
32	Histogram of "Scene albedo" for 2025-01-13 to 2025-01-14	39
33	Histogram of "Scene albedo precision" for 2025-01-13 to 2025-01-14	40
34	Histogram of "Apparent scene pressure" for 2025-01-13 to 2025-01-14	41
35	Histogram of "Apparent scene pressure precision" for 2025-01-13 to 2025-01-14	42
36	Histogram of " χ^2 " for 2025-01-13 to 2025-01-14	43
37	Histogram of "Number of iterations" for 2025-01-13 to 2025-01-14	44
38	Histogram of "Fluorescence" for 2025-01-13 to 2025-01-14	45
39	Histogram of "Fluorescence precision" for 2025-01-13 to 2025-01-14	46
40	Histogram of " χ^2 of fluorescence retrieval" for 2025-01-13 to 2025-01-14	47
41	Histogram of "Degrees of freedom for signal of fluorescence retrieval" for 2025-01-13 to 2025-01-14	48
42	Histogram of "Number of points in the spectrum" for 2025-01-13 to 2025-01-14	49
43	Histogram of "Spectral offset $(\lambda_{true} - \lambda_{nominal})$ " for 2025-01-13 to 2025-01-14	50
44	Along track statistics of "QA value" for 2025-01-13 to 2025-01-14	51
45	Along track statistics of "Cloud pressure" for 2025-01-13 to 2025-01-14	52
46	Along track statistics of "Cloud pressure precision" for 2025-01-13 to 2025-01-14	53
47	Along track statistics of "Cloud fraction" for 2025-01-13 to 2025-01-14	54
48	Along track statistics of "Cloud fraction precision" for 2025-01-13 to 2025-01-14	55
49	Along track statistics of "Scene albedo" for 2025-01-13 to 2025-01-14	56
50	Along track statistics of "Scene albedo precision" for 2025-01-13 to 2025-01-14	57
51	Along track statistics of "Apparent scene pressure" for 2025-01-13 to 2025-01-14	58
52	Along track statistics of "Apparent scene pressure precision" for 2025-01-13 to 2025-01-14	59
53	Along track statistics of " χ^2 " for 2025-01-13 to 2025-01-14	60
54	Along track statistics of "Number of iterations" for 2025-01-13 to 2025-01-14	61
55	Along track statistics of "Fluorescence" for 2025-01-13 to 2025-01-14	62
56	Along track statistics of "Fluorescence precision" for 2025-01-13 to 2025-01-14	63
57	Along track statistics of " χ^2 of fluorescence retrieval" for 2025-01-13 to 2025-01-14	64
58	Along track statistics of "Degrees of freedom for signal of fluorescence retrieval" for 2025-01-13 to 2025-01-14	65
59	Along track statistics of "Number of points in the spectrum" for 2025-01-13 to 2025-01-14	66
60	Along track statistics of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-01-13 to 2025-01-14	67

List of Tables

1	Parameterlist and basic statistics for the analysis
2	Percentile ranges
3	Parameterlist and basic statistics for the analysis for observations in the northern hemisphere
4	Parameterlist and basic statistics for the analysis for observations in the southern hemisphere
5	Parameterlist and basic statistics for the analysis for observations over water
6	Parameterlist and basic statistics for the analysis for observations over land

11 Copyright information of 'PyCAMA'

Copyright © 2005-2023, Maarten Sneep (KNMI).

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
- 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

This software is provided by the copyright holders and contributors "as is" and any express or implied warranties, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose are disclaimed. In no event shall the copyright holder or contributors be liable for any direct, indirect, incidental, special, exemplary, or consequential damages (including, but not limited to, procurement of substitute goods or services; loss of use, data, or profits; or business interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence or otherwise) arising in any way out of the use of this software, even if advised of the possibility of such damage.

Maarten Sneep (maarten.sneep@knmi.nl).