PyCAMA report generated by tropl2-proc

tropl2-proc

2025-01-20 (02:15)

1 Short Introduction

1.1 The list of parameters

You may want to keep the list given in table 1 at hand when viewing the results.

2 Definitions

The averages shown here are unweighed averages:

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i \tag{1}$$

with N the number of observations in the dataset.

The spread of the measurements is indicated with the variance V(x), or rather the standard deviation $\sigma(x) = \sqrt{V(x)}$.

$$V(x) = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2$$
(2)

We also report the more robust statistics median, minimum, maximum, various percentiles and inter quartile range.

The median m is the value of parameter x for which half of the observations of x is smaller than m:

$$P(x \le m) = P(x \ge m) = \int_{-\infty}^{m} f(x) \, \mathrm{d}x = \frac{1}{2}$$
(3)

with f(x) the probability density function.

The median is a special case of a percentile. Instead of $\frac{1}{2}$ in equation 3, other threshold values can be used. We report results for 1%, 5%, 10%, 15.9%, 25%, 75%, 84.1%, 90%, 95% and 99%. The inter quartile range is the difference between the 75% and 25% percentiles. Similarly the minimum and maximum values correspond to the 0% and 100% percentiles respectively.

For normally distributed parameters the mean and median are the same, while the $\mu \pm \sigma$ values and the 15.9% and 84.1% percentiles coincide.

To get a measure for the relation of one variable $x_{(k)}$ with another $x_{(l)}$, we calculate the covariance matrix C_{kl} .

$$C_{kl} = C(x_{(k)}, x_{(l)}) = \frac{1}{N-1} \sum_{i=1}^{N} (x_{(k),i} - \overline{x_{(k)}}) (x_{(l),i} - \overline{x_{(l)}})$$
(4)

Rather than a dimensionally dependent covariance, it is often easier to interpret a correlation matrix R_{kl} , a matrix of Pearson's *r* coefficients:

$$R_{kl} = R(x_{(k)}, x_{(l)}) = \frac{C_{kl}}{\sqrt{C_{kk}C_{ll}}} = \frac{C_{kl}}{\sqrt{V(x_k)V(x_l)}}$$
(5)

The diagonal elements of the covariance matrix are the variances of the elements, $V(x_{(k)}) = C_{kk}$ and obviously $R_{kk} = 1$.

Table 1: Parameterlist and basic stat	istics	for t	he ana	lysis
---------------------------------------	--------	-------	--------	-------

	Table 1: Parameter	list and basic	statistics for the a	nalysis			
Variable	mean $\pm \sigma$	Count	Mode	IQR	Median	Minimum	Maximum
qa value [1]	0.910 ± 0.183	23366450	0.995	0.1000	1.000	0.350	1.000
cloud pressure crb [hPa]	775 ± 198	23366450	$1.015 imes 10^3$	295	829	130	$1.073 imes 10^3$
cloud pressure crb precision [hPa]	2.86 ± 10.91	23366450	0.750	1.33	0.547	$2.441 imes 10^{-4}$	$1.538 imes 10^3$
cloud fraction crb [1]	0.471 ± 0.389	23366450	0.996	0.854	0.386	0.0	1.000
cloud fraction crb precision [1]	$(1.688 \pm 8.369) \times 10^{-4}$	23366450	$2.500 imes10^{-4}$	$6.021 imes 10^{-5}$	$7.501 imes 10^{-5}$	$6.019 imes10^{-8}$	0.387
scene albedo [1]	0.454 ± 0.334	23366450	$1.500 imes10^{-2}$	0.608	0.423	$-3.206 imes 10^{-2}$	4.26
scene albedo precision [1]	$(8.353 \pm 9.671) \times 10^{-5}$	23366450	$2.500 imes10^{-4}$	6.599×10^{-5}	$5.380 imes10^{-5}$	$1.031 imes 10^{-5}$	1.110×10^{-2}
apparent scene pressure [hPa]	808 ± 174	23366450	1.008×10^3	268	859	130	$1.074 imes 10^3$
apparent scene pressure precision [hPa]	1.05 ± 1.99	23366450	0.500	0.503	0.433	$6.200 imes 10^{-2}$	70.7
chi square [1]	$(0.224 \pm 2.530) \times 10^5$	23366450	0.150	$2.551 imes 10^4$	$1.484 imes 10^4$	47.5	$5.994 imes 10^8$
number of iterations [1]	3.37 ± 1.07	23366450	3.23	1.000	3.00	1.000	14.0
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.364 \pm 6.267) \times 10^{-9}$	23366450	$7.500 imes 10^{-10}$	$4.865 imes 10^{-9}$	1.241×10^{-9}	-2.407×10^{-6}	1.966×10^{-6}
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.709 \pm 0.703) \times 10^{-9}$	23366450	$8.500 imes 10^{-10}$	1.066×10^{-9}	1.636×10^{-9}	$4.088 imes10^{-10}$	5.475×10^{-9}
chi square fluorescence [1]	$(0.469 \pm 0.902) \times 10^5$	23366450	1.750×10^{3}	$4.169 imes 10^4$	$1.369 imes 10^4$	98.0	$4.450 imes 10^6$
degrees of freedom fluorescence [1]	6.00 ± 0.00	23366450	5.95	0.0	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	23366450	49.7	0.0	50.0	45.0	50.0
wavelength calibration offset [nm]	$(3.727 \pm 8.377) \times 10^{-3}$	23366450	3.600×10^{-3}	$5.389 imes 10^{-3}$	3.761×10^{-3}	-0.141	0.272
	•						

	Table 2: Percentile ranges									
Variable	1 %	5 %	10 %	15.9 %	25 %	75 %	84.1 %	90 %	95 %	99 %
qa value [1]	0.500	0.500	0.500	0.700	0.900	1.000	1.000	1.000	1.000	1.000
cloud pressure crb [hPa]	245	384	476	560	645	939	972	992	1.010×10^3	1.020×10^3
cloud pressure crb precision [hPa]	0.153	0.231	0.252	0.272	0.307	1.64	3.11	5.59	11.4	38.7
cloud fraction crb [1]	0.0	$8.476 imes 10^{-3}$	$1.953 imes10^{-2}$	$3.764 imes 10^{-2}$	$8.239 imes10^{-2}$	0.936	1.000	1.000	1.000	1.000
cloud fraction crb precision [1]	$1.927 imes 10^{-5}$	$2.250 imes10^{-5}$	$2.547 imes 10^{-5}$	$2.949 imes 10^{-5}$	$3.979 imes 10^{-5}$	1.000×10^{-4}	1.340×10^{-4}	2.440×10^{-4}	$5.897 imes 10^{-4}$	1.980×10^{-3}
scene albedo [1]	$7.185 imes 10^{-3}$	$1.704 imes10^{-2}$	$3.212 imes 10^{-2}$	$6.040 imes 10^{-2}$	0.136	0.744	0.865	0.919	0.967	1.11
scene albedo precision [1]	$1.285 imes 10^{-5}$	1.531×10^{-5}	$1.876 imes 10^{-5}$	2.357×10^{-5}	3.143×10^{-5}	9.742×10^{-5}	$1.282 imes 10^{-4}$	$1.717 imes10^{-4}$	$2.575 imes 10^{-4}$	4.975×10^{-4}
apparent scene pressure [hPa]	345	465	550	616	685	952	981	998	1.011×10^{3}	1.020×10^{3}
apparent scene pressure precision [hPa]	0.212	0.238	0.256	0.275	0.304	0.808	1.36	2.32	4.28	9.81
chi square [1]	247	555	1.163×10^{3}	2.405×10^{3}	5.080×10^{3}	3.059×10^{4}	3.915×10^{4}	4.653×10^{4}	5.610×10^{4}	7.662×10^{4}
number of iterations [1]	2.00	2.00	2.00	3.00	3.00	4.00	4.00	5.00	5.00	7.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$-1.388 imes 10^{-8}$	$-6.315 imes 10^{-9}$	-3.750×10^{-9}	$-2.285 imes 10^{-9}$	$-9.771 imes 10^{-10}$	$3.888 imes 10^{-9}$	$5.495 imes 10^{-9}$	$7.060 imes 10^{-9}$	$9.323 imes 10^{-9}$	$1.444 imes10^{-8}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$6.983 imes 10^{-10}$	$7.904 imes 10^{-10}$	$8.582 imes 10^{-10}$	$9.445 imes 10^{-10}$	1.110×10^{-9}	2.176×10^{-9}	2.458×10^{-9}	2.646×10^{-9}	2.950×10^{-9}	3.631×10^{-9}
chi square fluorescence [1]	387	1.005×10^{3}	1.678×10^{3}	2.510×10^{3}	4.223×10^{3}	4.591×10^{4}	7.979×10^{4}	1.249×10^{5}	2.135×10^{5}	4.613×10^{5}
degrees of freedom fluorescence [1]	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$-2.343 imes 10^{-2}$	-8.500×10^{-3}	-3.549×10^{-3}	-1.007×10^{-3}	1.019×10^{-3}	6.408×10^{-3}	8.385×10^{-3}	$1.097 imes 10^{-2}$	$1.599 imes 10^{-2}$	3.089×10^{-2}

Table 3. Parameterlist and	basic statistics for the an	lysis for observations	in the northern hemisphere
rable 5. r arameternst and	busic statistics for the and	arysis for 00301 varions	in the northern nemisphere

Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.984 ± 0.074	9584145	0.0	1.000	0.350	1.000	1.000	1.000
cloud pressure crb [hPa]	756 ± 217	9584145	352	823	130	$1.073 imes 10^3$	589	941
cloud pressure crb precision [hPa]	3.65 ± 12.08	9584145	2.13	0.893	$2.441 imes 10^{-4}$	$1.538 imes 10^3$	0.430	2.56
cloud fraction crb [1]	0.378 ± 0.356	9584145	0.622	0.246	0.0	1.000	5.665×10^{-2}	0.678
cloud fraction crb precision [1]	$(1.878 \pm 11.315) \times 10^{-4}$	9584145	$9.251 imes 10^{-5}$	$8.896 imes10^{-5}$	$6.019 imes10^{-8}$	0.387	$4.730 imes 10^{-5}$	$1.398 imes10^{-4}$
scene albedo [1]	0.407 ± 0.305	9584145	0.492	0.368	$-2.384 imes 10^{-2}$	4.18	0.140	0.632
scene albedo precision [1]	$(9.537 \pm 11.147) \times 10^{-5}$	9584145	$7.339 imes 10^{-5}$	$5.799 imes 10^{-5}$	$1.080 imes10^{-5}$	$1.110 imes10^{-2}$	3.469×10^{-5}	$1.081 imes10^{-4}$
apparent scene pressure [hPa]	807 ± 182	9584145	273	865	130	1.074×10^3	682	955
apparent scene pressure precision [hPa]	1.16 ± 2.09	9584145	0.534	0.516	$6.969 imes 10^{-2}$	70.7	0.365	0.900
chi square [1]	$(0.163 \pm 2.307) \times 10^5$	9584145	$1.673 imes 10^4$	$1.117 imes 10^4$	47.5	$1.872 imes 10^8$	4.204×10^{3}	$2.094 imes 10^4$
number of iterations [1]	3.46 ± 1.17	9584145	1.000	3.00	1.000	14.0	3.00	4.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(9.954 \pm 45.145) \times 10^{-10}$	9584145	$3.727 imes 10^{-9}$	$1.096 imes 10^{-9}$	$-1.393 imes10^{-6}$	$1.391 imes10^{-6}$	$-6.909 imes 10^{-10}$	$3.036 imes 10^{-9}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.495 \pm 0.611) \times 10^{-9}$	9584145	$8.518 imes10^{-10}$	$1.388 imes10^{-9}$	$4.088 imes10^{-10}$	$5.401 imes 10^{-9}$	$9.939 imes 10^{-10}$	$1.846 imes 10^{-9}$
chi square fluorescence [1]	$(0.377 \pm 0.736) \times 10^5$	9584145	$3.495 imes 10^4$	$1.044 imes 10^4$	98.0	$1.667 imes 10^6$	2.959×10^3	$3.791 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	9584145	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	9584145	0.0	50.0	48.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(3.774 \pm 8.753) \times 10^{-3}$	9584145	6.234×10^{-3}	3.694×10^{-3}	-7.745×10^{-2}	9.043×10^{-2}	$5.962 imes 10^{-4}$	6.830×10^{-3}

Table 4: Parameterlist and basic statistics for the analysis for observations in the southern hemist	here
Table 4. I arameternist and basic statistics for the analysis for observations in the southern nemis	JILLIC

Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.859 ± 0.215	13782305	0.500	1.000	0.350	1.000	0.500	1.000
cloud pressure crb [hPa]	788 ± 183	13782305	271	833	130	1.030×10^3	667	938
cloud pressure crb precision [hPa]	2.32 ± 9.99	13782305	0.762	0.397	$1.221 imes 10^{-3}$	827	0.278	1.04
cloud fraction crb [1]	0.536 ± 0.398	13782305	0.885	0.534	0.0	1.000	0.115	1.000
cloud fraction crb precision [1]	$(1.555 \pm 5.449) \times 10^{-4}$	13782305	$6.412 imes 10^{-5}$	$6.778 imes10^{-5}$	$6.175 imes10^{-8}$	0.110	$3.588 imes10^{-5}$	$1.000 imes 10^{-4}$
scene albedo [1]	0.487 ± 0.350	13782305	0.690	0.480	$-3.206 imes 10^{-2}$	4.26	0.134	0.824
scene albedo precision [1]	$(7.529 \pm 8.396) \times 10^{-5}$	13782305	$6.187 imes10^{-5}$	$5.135 imes10^{-5}$	$1.031 imes 10^{-5}$	$7.763 imes 10^{-3}$	$2.921 imes 10^{-5}$	$9.109 imes10^{-5}$
apparent scene pressure [hPa]	808 ± 169	13782305	264	854	130	1.030×10^3	686	950
apparent scene pressure precision [hPa]	0.972 ± 1.909	13782305	0.442	0.371	$6.200 imes 10^{-2}$	59.4	0.282	0.724
chi square [1]	$(0.267 \pm 2.674) \times 10^5$	13782305	$3.131 imes 10^4$	$1.971 imes10^4$	70.0	$5.994 imes 10^8$	5.959×10^{3}	$3.727 imes 10^4$
number of iterations [1]	3.30 ± 0.99	13782305	1.000	3.00	1.000	14.0	3.00	4.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.620 \pm 7.229) \times 10^{-9}$	13782305	$5.882 imes 10^{-9}$	$1.404 imes 10^{-9}$	-2.407×10^{-6}	1.966×10^{-6}	-1.210×10^{-9}	$4.672 imes 10^{-9}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.859 \pm 0.724) \times 10^{-9}$	13782305	1.118×10^{-9}	1.832×10^{-9}	$4.284 imes 10^{-10}$	$5.475 imes 10^{-9}$	1.256×10^{-9}	2.375×10^{-9}
chi square fluorescence [1]	$(0.533 \pm 0.997) \times 10^5$	13782305	$4.658 imes 10^4$	$1.612 imes 10^4$	107	$4.450 imes 10^6$	5.404×10^{3}	$5.199 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	13782305	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	13782305	0.0	50.0	45.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(3.693 \pm 8.105) \times 10^{-3}$	13782305	4.858×10^{-3}	3.797×10^{-3}	-0.141	0.272	1.298×10^{-3}	6.156×10^{-3}

Table 5: Parameterlist and basic statistics for the analysis for observations over water								
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.983 ± 0.046	14327469	0.0	1.000	0.350	1.000	1.000	1.000
cloud pressure crb [hPa]	811 ± 191	14327469	263	881	130	1.035×10^{3}	695	958
cloud pressure crb precision [hPa]	3.14 ± 12.16	14327469	1.39	0.618	1.221×10^{-3}	1.235×10^3	0.340	1.73
cloud fraction crb [1]	0.373 ± 0.339	14327469	0.604	0.261	0.0	1.000	5.949×10^{-2}	0.663
cloud fraction crb precision [1]	$(8.306 \pm 29.812) \times 10^{-5}$	14327469	5.030×10^{-5}	4.910×10^{-5}	$6.175 imes10^{-8}$	0.380	2.912×10^{-5}	$7.943 imes 10^{-5}$
scene albedo [1]	0.320 ± 0.288	14327469	0.499	0.227	-3.206×10^{-2}	4.26	5.761×10^{-2}	0.556
scene albedo precision [1]	$(6.071 \pm 8.115) \times 10^{-5}$	14327469	$4.059 imes10^{-5}$	$4.197 imes10^{-5}$	$1.031 imes 10^{-5}$	1.110×10^{-2}	2.328×10^{-5}	$6.388 imes10^{-5}$
apparent scene pressure [hPa]	830 ± 180	14327469	243	893	130	1.074×10^3	728	971
apparent scene pressure precision [hPa]	1.45 ± 2.45	14327469	1.07	0.571	0.133	70.7	0.331	1.40
chi square [1]	$(0.166 \pm 2.432) \times 10^5$	14327469	2.228×10^4	9.167×10^{3}	47.5	$5.994 imes 10^8$	2.376×10^{3}	2.466×10^{4}
number of iterations [1]	2.92 ± 0.74	14327469	0.0	3.00	1.000	14.0	3.00	3.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(4.059 \pm 59.249) \times 10^{-10}$	14327469	$4.219 imes10^{-9}$	$2.716 imes 10^{-10}$	$-2.407 imes 10^{-6}$	$1.966 imes 10^{-6}$	-1.664×10^{-9}	$2.555 imes 10^{-9}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.633 \pm 0.733) \times 10^{-9}$	14327469	1.151×10^{-9}	$1.485 imes 10^{-9}$	$4.088 imes 10^{-10}$	5.447×10^{-9}	$9.931 imes 10^{-10}$	2.144×10^{-9}
chi square fluorescence [1]	$(0.459 \pm 0.844) \times 10^5$	14327469	$4.458 imes 10^4$	1.562×10^4	98.0	$4.450 imes 10^6$	4.396×10^{3}	$4.897 imes10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	14327469	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	14327469	0.0	50.0	45.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(3.667 \pm 9.961) \times 10^{-3}$	14327469	$6.907 imes 10^{-3}$	3.700×10^{-3}	-0.141	0.272	$1.775 imes 10^{-4}$	$7.085 imes 10^{-3}$

	Table 6: Parameterlist an	d basic stat	istics for the ana	alysis for observ	vations over land			
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.751 ± 0.253	7288093	0.500	1.000	0.350	1.000	0.500	1.000
cloud pressure crb [hPa]	715 ± 188	7288093	240	723	130	1.066×10^{3}	621	861
cloud pressure crb precision [hPa]	2.22 ± 8.18	7288093	0.973	0.368	$2.441 imes10^{-4}$	$1.485 imes 10^3$	0.270	1.24
cloud fraction crb [1]	0.673 ± 0.407	7288093	0.799	1.000	0.0	1.000	0.201	1.000
cloud fraction crb precision [1]	$(3.154 \pm 12.520) \times 10^{-4}$	7288093	$4.487 imes 10^{-5}$	$1.000 imes 10^{-4}$	$6.019 imes10^{-8}$	0.385	$1.000 imes 10^{-4}$	$1.449 imes10^{-4}$
scene albedo [1]	0.702 ± 0.281	7288093	0.464	0.788	1.770×10^{-3}	4.15	0.460	0.924
scene albedo precision [1]	$(1.218 \pm 1.053) \times 10^{-4}$	7288093	$8.586 imes10^{-5}$	$9.472 imes 10^{-5}$	$1.188 imes10^{-5}$	$1.737 imes 10^{-3}$	$5.492 imes 10^{-5}$	$1.408 imes 10^{-4}$
apparent scene pressure [hPa]	763 ± 152	7288093	242	764	130	1.064×10^3	652	895
apparent scene pressure precision [hPa]	0.391 ± 0.170	7288093	0.172	0.340	$6.200 imes10^{-2}$	25.9	0.279	0.451
chi square [1]	$(0.333 \pm 2.621) \times 10^5$	7288093	$2.537 imes 10^4$	$2.382 imes 10^4$	163	$2.057 imes 10^8$	$1.335 imes 10^4$	3.872×10^4
number of iterations [1]	4.12 ± 1.09	7288093	0.0	4.00	1.000	14.0	4.00	4.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(3.063 \pm 6.101) \times 10^{-9}$	7288093	$4.432 imes 10^{-9}$	2.949×10^{-9}	-1.493×10^{-6}	1.336×10^{-6}	$9.881 imes 10^{-10}$	$5.420 imes10^{-9}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.863 \pm 0.629) \times 10^{-9}$	7288093	8.268×10^{-10}	1.822×10^{-9}	$4.658 imes 10^{-10}$	5.475×10^{-9}	1.400×10^{-9}	2.227×10^{-9}
chi square fluorescence [1]	$(0.438 \pm 0.915) \times 10^5$	7288093	$3.135 imes 10^4$	$1.013 imes 10^4$	141	$1.965 imes 10^6$	4.027×10^3	$3.538 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	7288093	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	7288093	0.0	50.0	48.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(3.789 \pm 4.289) \times 10^{-3}$	7288093	3.524×10^{-3}	3.811×10^{-3}	$-7.699 imes 10^{-2}$	7.351×10^{-2}	2.027×10^{-3}	5.551×10^{-3}

Granule outlines

Figure 1: Outline of the granules.

4 Input data monitoring

Figure 2: Input data per granule

5 Warnings and errors

Figure 3: Fraction of pixels with specific warnings and errors during processing

6 World maps

0.2 0.4 0.6 ا 0.8 1.0 ×10³ Cloud pressure [hPa]

2025-01-18

Figure 4: Map of "Cloud pressure" for 2025-01-18 to 2025-01-19

Figure 5: Map of "Cloud fraction" for 2025-01-18 to 2025-01-19

Figure 6: Map of "Scene albedo" for 2025-01-18 to 2025-01-19

Figure 7: Map of "Apparent scene pressure" for 2025-01-18 to 2025-01-19

2025-01-18

Figure 8: Map of "Fluorescence" for 2025-01-18 to 2025-01-19

Figure 9: Map of the number of observations for 2025-01-18 to 2025-01-19

7 Zonal average

Figure 10: Zonal average of "QA value" for 2025-01-18 to 2025-01-19.

Figure 11: Zonal average of "Cloud pressure" for 2025-01-18 to 2025-01-19.

Figure 12: Zonal average of "Cloud pressure precision" for 2025-01-18 to 2025-01-19.

Figure 13: Zonal average of "Cloud fraction" for 2025-01-18 to 2025-01-19.

Figure 14: Zonal average of "Cloud fraction precision" for 2025-01-18 to 2025-01-19.

Figure 15: Zonal average of "Scene albedo" for 2025-01-18 to 2025-01-19.

Figure 16: Zonal average of "Scene albedo precision" for 2025-01-18 to 2025-01-19.

Figure 17: Zonal average of "Apparent scene pressure" for 2025-01-18 to 2025-01-19.

Figure 18: Zonal average of "Apparent scene pressure precision" for 2025-01-18 to 2025-01-19.

Figure 19: Zonal average of " χ^2 " for 2025-01-18 to 2025-01-19.

Figure 20: Zonal average of "Number of iterations" for 2025-01-18 to 2025-01-19.

Figure 21: Zonal average of "Fluorescence" for 2025-01-18 to 2025-01-19.

Figure 22: Zonal average of "Fluorescence precision" for 2025-01-18 to 2025-01-19.

Figure 23: Zonal average of " χ^2 of fluorescence retrieval" for 2025-01-18 to 2025-01-19.

Figure 24: Zonal average of "Degrees of freedom for signal of fluorescence retrieval" for 2025-01-18 to 2025-01-19.

Figure 25: Zonal average of "Number of points in the spectrum" for 2025-01-18 to 2025-01-19.

Figure 26: Zonal average of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-01-18 to 2025-01-19.

8 Histograms

The definitions of the parameters given in this section can be found in section 2.

Figure 27: Histogram of "QA value" for 2025-01-18 to 2025-01-19

Figure 28: Histogram of "Cloud pressure" for 2025-01-18 to 2025-01-19

Figure 29: Histogram of "Cloud pressure precision" for 2025-01-18 to 2025-01-19

Figure 30: Histogram of "Cloud fraction" for 2025-01-18 to 2025-01-19

Figure 31: Histogram of "Cloud fraction precision" for 2025-01-18 to 2025-01-19

Figure 32: Histogram of "Scene albedo" for 2025-01-18 to 2025-01-19

Figure 33: Histogram of "Scene albedo precision" for 2025-01-18 to 2025-01-19

Figure 34: Histogram of "Apparent scene pressure" for 2025-01-18 to 2025-01-19

Figure 35: Histogram of "Apparent scene pressure precision" for 2025-01-18 to 2025-01-19

Figure 36: Histogram of " χ^2 " for 2025-01-18 to 2025-01-19

Figure 37: Histogram of "Number of iterations" for 2025-01-18 to 2025-01-19

Figure 38: Histogram of "Fluorescence" for 2025-01-18 to 2025-01-19

Figure 39: Histogram of "Fluorescence precision" for 2025-01-18 to 2025-01-19

Figure 40: Histogram of " χ^2 of fluorescence retrieval" for 2025-01-18 to 2025-01-19

Figure 41: Histogram of "Degrees of freedom for signal of fluorescence retrieval" for 2025-01-18 to 2025-01-19

Figure 42: Histogram of "Number of points in the spectrum" for 2025-01-18 to 2025-01-19

Figure 43: Histogram of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-01-18 to 2025-01-19

9 Along track statistics

The TROPOMI instrument uses different binned detector rows for different viewing directions. In this section statistics are presented for each of the binned rows in the instrument.

Figure 44: Along track statistics of "QA value" for 2025-01-18 to 2025-01-19

Figure 45: Along track statistics of "Cloud pressure" for 2025-01-18 to 2025-01-19

Figure 46: Along track statistics of "Cloud pressure precision" for 2025-01-18 to 2025-01-19

Figure 47: Along track statistics of "Cloud fraction" for 2025-01-18 to 2025-01-19

Figure 48: Along track statistics of "Cloud fraction precision" for 2025-01-18 to 2025-01-19

Figure 49: Along track statistics of "Scene albedo" for 2025-01-18 to 2025-01-19

Figure 50: Along track statistics of "Scene albedo precision" for 2025-01-18 to 2025-01-19

Figure 51: Along track statistics of "Apparent scene pressure" for 2025-01-18 to 2025-01-19

Figure 52: Along track statistics of "Apparent scene pressure precision" for 2025-01-18 to 2025-01-19

Figure 53: Along track statistics of " χ^2 " for 2025-01-18 to 2025-01-19

Figure 54: Along track statistics of "Number of iterations" for 2025-01-18 to 2025-01-19

Figure 55: Along track statistics of "Fluorescence" for 2025-01-18 to 2025-01-19

Figure 56: Along track statistics of "Fluorescence precision" for 2025-01-18 to 2025-01-19

Figure 57: Along track statistics of " χ^2 of fluorescence retrieval" for 2025-01-18 to 2025-01-19

Figure 58: Along track statistics of "Degrees of freedom for signal of fluorescence retrieval" for 2025-01-18 to 2025-01-19

Figure 59: Along track statistics of "Number of points in the spectrum" for 2025-01-18 to 2025-01-19

Figure 60: Along track statistics of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-01-18 to 2025-01-19

10 Coincidence density

To investigate the relation between parameters scatter density plots are produced. These include some 'hidden' parameters, latitude and the solar- and viewing geometries, in addition to all configured parameters. All combinations of pairs of parameters are included *once*, in one direction alone.

Contents

1	Short Introduction	1
	1.1 The list of parameters	1
2	Definitions	1
3	Granule outlines	8
4	Input data monitoring	9
5	Warnings and errors	10
6	World maps	11
7	Zonal average	17
8	Histograms	34
9	Along track statistics	51
10	Coincidence density	68
11	Copyright information of 'PyCAMA'	68

List of Figures

1	Outline of the granules.	8
2	Input data per granule	9
3	Fraction of pixels with specific warnings and errors during processing	10
4	Map of "Cloud pressure" for 2025-01-18 to 2025-01-19	11
5	Map of "Cloud fraction" for 2025-01-18 to 2025-01-19	12
6	Map of "Scene albedo" for 2025-01-18 to 2025-01-19	13
7	Map of "Apparent scene pressure" for 2025-01-18 to 2025-01-19	14
8	Map of "Fluorescence" for 2025-01-18 to 2025-01-19	15
9	Map of the number of observations for 2025-01-18 to 2025-01-19	16
10	Zonal average of "QA value" for 2025-01-18 to 2025-01-19.	17
11	Zonal average of "Cloud pressure" for 2025-01-18 to 2025-01-19.	18
12	Zonal average of "Cloud pressure precision" for 2025-01-18 to 2025-01-19.	19
13	Zonal average of "Cloud fraction" for 2025-01-18 to 2025-01-19.	20
14	Zonal average of "Cloud fraction precision" for 2025-01-18 to 2025-01-19.	21
15	Zonal average of "Scene albedo" for 2025-01-18 to 2025-01-19.	22
16	Zonal average of "Scene albedo precision" for 2025-01-18 to 2025-01-19.	23
17	Zonal average of "Apparent scene pressure" for 2025-01-18 to 2025-01-19.	24
18	Zonal average of "Apparent scene pressure precision" for 2025-01-18 to 2025-01-19.	25
19	Zonal average of " χ^2 " for 2025-01-18 to 2025-01-19	26
20	Zonal average of "Number of iterations" for 2025-01-18 to 2025-01-19.	27
21	Zonal average of "Fluorescence" for 2025-01-18 to 2025-01-19.	28
22	Zonal average of "Fluorescence precision" for 2025-01-18 to 2025-01-19.	29
23	Zonal average of " χ^2 of fluorescence retrieval" for 2025-01-18 to 2025-01-19	30
24	Zonal average of "Degrees of freedom for signal of fluorescence retrieval" for 2025-01-18 to 2025-01-19.	31
25	Zonal average of "Number of points in the spectrum" for 2025-01-18 to 2025-01-19.	32
26	Zonal average of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-01-18 to 2025-01-19	33
27	Histogram of "QA value" for 2025-01-18 to 2025-01-19	34
28	Histogram of "Cloud pressure" for 2025-01-18 to 2025-01-19	35
29	Histogram of "Cloud pressure precision" for 2025-01-18 to 2025-01-19	36

30	Histogram of "Cloud fraction" for 2025-01-18 to 2025-01-19	37
31	Histogram of "Cloud fraction precision" for 2025-01-18 to 2025-01-19	38
32	Histogram of "Scene albedo" for 2025-01-18 to 2025-01-19	39
33	Histogram of "Scene albedo precision" for 2025-01-18 to 2025-01-19	40
34	Histogram of "Apparent scene pressure" for 2025-01-18 to 2025-01-19	41
35	Histogram of "Apparent scene pressure precision" for 2025-01-18 to 2025-01-19	42
36	Histogram of " χ^2 " for 2025-01-18 to 2025-01-19	43
37	Histogram of "Number of iterations" for 2025-01-18 to 2025-01-19	44
38	Histogram of "Fluorescence" for 2025-01-18 to 2025-01-19	45
39	Histogram of "Fluorescence precision" for 2025-01-18 to 2025-01-19	46
40	Histogram of " χ^2 of fluorescence retrieval" for 2025-01-18 to 2025-01-19	47
41	Histogram of "Degrees of freedom for signal of fluorescence retrieval" for 2025-01-18 to 2025-01-19	48
42	Histogram of "Number of points in the spectrum" for 2025-01-18 to 2025-01-19	49
43	Histogram of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-01-18 to 2025-01-19	50
44	Along track statistics of "QA value" for 2025-01-18 to 2025-01-19	51
45	Along track statistics of "Cloud pressure" for 2025-01-18 to 2025-01-19	52
46	Along track statistics of "Cloud pressure precision" for 2025-01-18 to 2025-01-19	53
47	Along track statistics of "Cloud fraction" for 2025-01-18 to 2025-01-19	54
48	Along track statistics of "Cloud fraction precision" for 2025-01-18 to 2025-01-19	55
49	Along track statistics of "Scene albedo" for 2025-01-18 to 2025-01-19	56
50	Along track statistics of "Scene albedo precision" for 2025-01-18 to 2025-01-19	57
51	Along track statistics of "Apparent scene pressure" for 2025-01-18 to 2025-01-19	58
52	Along track statistics of "Apparent scene pressure precision" for 2025-01-18 to 2025-01-19	59
53	Along track statistics of " χ^2 " for 2025-01-18 to 2025-01-19	60
54	Along track statistics of "Number of iterations" for 2025-01-18 to 2025-01-19	61
55	Along track statistics of "Fluorescence" for 2025-01-18 to 2025-01-19	62
56	Along track statistics of "Fluorescence precision" for 2025-01-18 to 2025-01-19	63
57	Along track statistics of " χ^2 of fluorescence retrieval" for 2025-01-18 to 2025-01-19	64
58	Along track statistics of "Degrees of freedom for signal of fluorescence retrieval" for 2025-01-18 to 2025-01-19	65
59	Along track statistics of "Number of points in the spectrum" for 2025-01-18 to 2025-01-19	66
60	Along track statistics of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-01-18 to 2025-01-19	67

List of Tables

1	Parameterlist and basic statistics for the analysis
2	Percentile ranges
3	Parameterlist and basic statistics for the analysis for observations in the northern hemisphere
4	Parameterlist and basic statistics for the analysis for observations in the southern hemisphere
5	Parameterlist and basic statistics for the analysis for observations over water
6	Parameterlist and basic statistics for the analysis for observations over land

11 Copyright information of 'PyCAMA'

Copyright © 2005-2023, Maarten Sneep (KNMI).

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
- 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

This software is provided by the copyright holders and contributors "as is" and any express or implied warranties, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose are disclaimed. In no event shall the copyright holder or contributors be liable for any direct, indirect, incidental, special, exemplary, or consequential damages (including, but not limited to, procurement of substitute goods or services; loss of use, data, or profits; or business interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence or otherwise) arising in any way out of the use of this software, even if advised of the possibility of such damage.

Maarten Sneep (maarten.sneep@knmi.nl).