PyCAMA report generated by tropl2-proc

tropl2-proc

2025-01-24 (10:00)

1 Short Introduction

1.1 The list of parameters

You may want to keep the list given in table 1 at hand when viewing the results.

2 Definitions

The averages shown here are unweighed averages:

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i \tag{1}$$

with N the number of observations in the dataset.

The spread of the measurements is indicated with the variance V(x), or rather the standard deviation $\sigma(x) = \sqrt{V(x)}$.

$$V(x) = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2$$
(2)

We also report the more robust statistics median, minimum, maximum, various percentiles and inter quartile range.

The median m is the value of parameter x for which half of the observations of x is smaller than m:

$$P(x \le m) = P(x \ge m) = \int_{-\infty}^{m} f(x) \, \mathrm{d}x = \frac{1}{2}$$
(3)

with f(x) the probability density function.

The median is a special case of a percentile. Instead of $\frac{1}{2}$ in equation 3, other threshold values can be used. We report results for 1%, 5%, 10%, 15.9%, 25%, 75%, 84.1%, 90%, 95% and 99%. The inter quartile range is the difference between the 75% and 25% percentiles. Similarly the minimum and maximum values correspond to the 0% and 100% percentiles respectively.

For normally distributed parameters the mean and median are the same, while the $\mu \pm \sigma$ values and the 15.9% and 84.1% percentiles coincide.

To get a measure for the relation of one variable $x_{(k)}$ with another $x_{(l)}$, we calculate the covariance matrix C_{kl} .

$$C_{kl} = C(x_{(k)}, x_{(l)}) = \frac{1}{N-1} \sum_{i=1}^{N} (x_{(k),i} - \overline{x_{(k)}}) (x_{(l),i} - \overline{x_{(l)}})$$
(4)

Rather than a dimensionally dependent covariance, it is often easier to interpret a correlation matrix R_{kl} , a matrix of Pearson's *r* coefficients:

$$R_{kl} = R(x_{(k)}, x_{(l)}) = \frac{C_{kl}}{\sqrt{C_{kk}C_{ll}}} = \frac{C_{kl}}{\sqrt{V(x_k)V(x_l)}}$$
(5)

The diagonal elements of the covariance matrix are the variances of the elements, $V(x_{(k)}) = C_{kk}$ and obviously $R_{kk} = 1$.

Table 1: Parameterlist and basic statistics for the ana	ılys	sis
---	------	-----

	Table 1: Parameter	list and basic	statistics for the a	nalysis			
Variable	mean $\pm \sigma$	Count	Mode	IQR	Median	Minimum	Maximum
qa value [1]	0.911 ± 0.182	24921271	0.995	0.1000	1.000	0.350	1.000
cloud pressure crb [hPa]	773 ± 197	24921271	$1.015 imes 10^3$	291	822	130	1.052×10^3
cloud pressure crb precision [hPa]	2.33 ± 8.86	24921271	0.750	1.16	0.528	$6.714 imes10^{-4}$	$1.286 imes 10^3$
cloud fraction crb [1]	0.480 ± 0.387	24921271	0.996	0.854	0.406	0.0	1.000
cloud fraction crb precision [1]	$(1.800 \pm 9.910) \times 10^{-4}$	24921271	$2.500 imes10^{-4}$	$6.007 imes 10^{-5}$	$7.518 imes10^{-5}$	1.039×10^{-9}	0.587
scene albedo [1]	0.460 ± 0.332	24921271	$1.500 imes10^{-2}$	0.601	0.433	$-2.936 imes 10^{-3}$	5.19
scene albedo precision [1]	$(8.237 \pm 9.325) \times 10^{-5}$	24921271	$2.500 imes10^{-4}$	$6.396 imes 10^{-5}$	$5.304 imes 10^{-5}$	$1.044 imes 10^{-5}$	8.427×10^{-3}
apparent scene pressure [hPa]	801 ± 176	24921271	1.008×10^3	272	848	130	1.044×10^{3}
apparent scene pressure precision [hPa]	0.931 ± 1.648	24921271	0.500	0.458	0.427	0.109	69.1
chi square [1]	$(0.218 \pm 1.352) \times 10^5$	24921271	0.150	$2.421 imes 10^4$	$1.523 imes 10^4$	63.0	$2.035 imes 10^8$
number of iterations [1]	3.36 ± 1.06	24921271	3.23	1.000	3.00	1.000	14.0
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.228 \pm 6.434) \times 10^{-9}$	24921271	$7.500 imes 10^{-10}$	$4.943 imes 10^{-9}$	1.211×10^{-9}	$-1.843 imes10^{-6}$	1.839×10^{-6}
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.722 \pm 0.689) \times 10^{-9}$	24921271	$8.500 imes 10^{-10}$	1.026×10^{-9}	1.650×10^{-9}	$4.265 imes 10^{-10}$	5.586×10^{-9}
chi square fluorescence [1]	$(0.483 \pm 0.970) \times 10^5$	24921271	1.250×10^3	$4.173 imes 10^4$	$1.261 imes 10^4$	99.0	$1.025 imes 10^7$
degrees of freedom fluorescence [1]	6.00 ± 0.00	24921271	5.95	0.0	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	24921271	49.7	0.0	50.0	44.0	50.0
wavelength calibration offset [nm]	$(3.617 \pm 8.537) \times 10^{-3}$	24921271	3.600×10^{-3}	$5.602 imes 10^{-3}$	3.643×10^{-3}	-9.333×10^{-2}	0.124

			Table 2:	Percentile rang	jes					
Variable	1 %	5 %	10 %	15.9 %	25 %	75 %	84.1 %	90 %	95 %	99 %
qa value [1]	0.500	0.500	0.500	0.700	0.900	1.000	1.000	1.000	1.000	1.000
cloud pressure crb [hPa]	247	386	479	562	644	935	970	990	1.008×10^3	1.019×10^3
cloud pressure crb precision [hPa]	0.138	0.228	0.251	0.271	0.307	1.46	2.60	4.47	8.86	30.2
cloud fraction crb [1]	$1.167 imes 10^{-3}$	$1.108 imes10^{-2}$	$2.421 imes 10^{-2}$	$4.445 imes 10^{-2}$	$9.295 imes10^{-2}$	0.947	1.000	1.000	1.000	1.000
cloud fraction crb precision [1]	$1.962 imes 10^{-5}$	$2.288 imes10^{-5}$	$2.570 imes10^{-5}$	$2.977 imes10^{-5}$	$3.993 imes 10^{-5}$	$1.000 imes 10^{-4}$	$1.306 imes 10^{-4}$	$2.424 imes 10^{-4}$	$6.833 imes10^{-4}$	$2.128 imes 10^{-3}$
scene albedo [1]	$8.706 imes 10^{-3}$	$2.035 imes 10^{-2}$	$3.741 imes 10^{-2}$	$6.751 imes 10^{-2}$	0.145	0.746	0.855	0.914	0.965	1.14
scene albedo precision [1]	1.292×10^{-5}	$1.518 imes10^{-5}$	$1.850 imes10^{-5}$	$2.309 imes 10^{-5}$	3.093×10^{-5}	9.489×10^{-5}	1.257×10^{-4}	1.706×10^{-4}	$2.587 imes10^{-4}$	4.921×10^{-4}
apparent scene pressure [hPa]	342	459	542	609	676	948	978	996	1.010×10^{3}	1.019×10^{3}
apparent scene pressure precision [hPa]	0.212	0.239	0.257	0.276	0.306	0.764	1.23	1.99	3.50	8.10
chi square [1]	295	698	1.448×10^{3}	2.838×10^{3}	5.602×10^{3}	2.982×10^{4}	3.785×10^{4}	4.530×10^{4}	5.548×10^{4}	7.612×10^{4}
number of iterations [1]	2.00	2.00	2.00	3.00	3.00	4.00	4.00	4.00	5.00	7.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	-1.468×10^{-8}	-6.751×10^{-9}	-4.021×10^{-9}	-2.487×10^{-9}	-1.115×10^{-9}	3.828×10^{-9}	5.375×10^{-9}	6.902×10^{-9}	9.152×10^{-9}	1.434×10^{-8}
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$7.200 imes 10^{-10}$	8.137×10^{-10}	8.844×10^{-10}	9.729×10^{-10}	1.148×10^{-9}	2.174×10^{-9}	2.447×10^{-9}	2.644×10^{-9}	2.955×10^{-9}	3.607×10^{-9}
chi square fluorescence [1]	432	1.075×10^{3}	1.789×10^{3}	2.641×10^{3}	4.183×10^{3}	4.591×10^{4}	8.099×10^{4}	1.292×10^{5}	2.239×10^{5}	4.961×10^{5}
degrees of freedom fluorescence [1]	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$-2.385 imes 10^{-2}$	-9.044×10^{-3}	-3.977×10^{-3}	-1.312×10^{-3}	$8.088 imes10^{-4}$	6.411×10^{-3}	8.494×10^{-3}	1.120×10^{-2}	$1.631 imes 10^{-2}$	3.108×10^{-2}

Table	3: Parameterlist and basic	statistics for	the analysis for	observations in	the northern her	nisphere		
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.981 ± 0.082	10312014	0.0	1.000	0.350	1.000	1.000	1.000
cloud pressure crb [hPa]	753 ± 217	10312014	352	817	130	1.052×10^{3}	587	939
cloud pressure crb precision [hPa]	2.96 ± 9.69	10312014	1.74	0.819	$6.714 imes10^{-4}$	1.286×10^{3}	0.407	2.15
cloud fraction crb [1]	0.399 ± 0.361	10312014	0.655	0.274	0.0	1.000	$6.684 imes 10^{-2}$	0.722
cloud fraction crb precision [1]	$(1.954 \pm 13.826) \times 10^{-4}$	10312014	$8.428 imes 10^{-5}$	$9.109 imes 10^{-5}$	$1.305 imes10^{-8}$	0.587	$4.693 imes 10^{-5}$	$1.312 imes10^{-4}$
scene albedo [1]	0.424 ± 0.312	10312014	0.505	0.389	$-1.986 imes 10^{-3}$	4.82	0.152	0.656
scene albedo precision [1]	$(9.386 \pm 10.606) \times 10^{-5}$	10312014	$7.132 imes 10^{-5}$	5.734×10^{-5}	$1.131 imes 10^{-5}$	$1.737 imes 10^{-3}$	3.367×10^{-5}	$1.050 imes10^{-4}$
apparent scene pressure [hPa]	797 ± 188	10312014	291	857	130	1.044×10^{3}	661	952
apparent scene pressure precision [hPa]	0.986 ± 1.636	10312014	0.475	0.498	0.162	58.4	0.357	0.832
chi square [1]	$(0.164 \pm 1.253) \times 10^5$	10312014	1.692×10^{4}	$1.188 imes 10^4$	63.0	8.060×10^{7}	4.903×10^{3}	2.183×10^{4}
number of iterations [1]	3.47 ± 1.16	10312014	1.000	3.00	1.000	14.0	3.00	4.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.014 \pm 4.500) \times 10^{-9}$	10312014	$3.870 imes 10^{-9}$	$1.146 imes 10^{-9}$	$-1.038 imes10^{-6}$	$1.102 imes 10^{-6}$	-7.312×10^{-10}	3.139×10^{-9}
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.530\pm0.612)\times10^{-9}$	10312014	8.672×10^{-10}	1.423×10^{-9}	$4.265 imes 10^{-10}$	5.586×10^{-9}	1.036×10^{-9}	1.903×10^{-9}
chi square fluorescence [1]	$(0.379 \pm 0.797) \times 10^5$	10312014	$3.199 imes 10^4$	8.829×10^3	107	1.762×10^{6}	2.924×10^{3}	$3.491 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	10312014	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	10312014	0.0	50.0	48.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(3.630 \pm 8.730) \times 10^{-3}$	10312014	6.341×10^{-3}	3.546×10^{-3}	-8.452×10^{-2}	$9.247 imes 10^{-2}$	$3.878 imes 10^{-4}$	6.729×10^{-3}

Table 4. Parameterlist and basic statistics	s for the analysis for observations in the southern hemisphere	
Table 4. I diameternist and basic statistics	s for the analysis for observations in the southern hemisphere	

Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.861 ± 0.214	14609257	0.1000	1.000	0.350	1.000	0.900	1.000
cloud pressure crb [hPa]	786 ± 179	14609257	267	825	130	1.032×10^3	666	933
cloud pressure crb precision [hPa]	1.90 ± 8.19	14609257	0.702	0.398	$1.892 imes 10^{-3}$	923	0.278	0.980
cloud fraction crb [1]	0.538 ± 0.395	14609257	0.876	0.537	0.0	1.000	0.124	1.000
cloud fraction crb precision [1]	$(1.692 \pm 5.707) \times 10^{-4}$	14609257	$6.367 imes10^{-5}$	$6.782 imes10^{-5}$	$1.039 imes 10^{-9}$	0.206	$3.633 imes 10^{-5}$	$1.000 imes 10^{-4}$
scene albedo [1]	0.485 ± 0.343	14609257	0.665	0.477	$-2.936 imes10^{-3}$	5.19	0.140	0.805
scene albedo precision [1]	$(7.427 \pm 8.207) \times 10^{-5}$	14609257	$6.032 imes 10^{-5}$	$5.067 imes10^{-5}$	$1.044 imes10^{-5}$	$8.427 imes 10^{-3}$	2.913×10^{-5}	$8.945 imes10^{-5}$
apparent scene pressure [hPa]	804 ± 166	14609257	262	842	130	1.032×10^{3}	683	945
apparent scene pressure precision [hPa]	0.892 ± 1.655	14609257	0.416	0.374	0.109	69.1	0.285	0.701
chi square [1]	$(0.256 \pm 1.416) \times 10^5$	14609257	$2.891 imes 10^4$	$1.967 imes 10^4$	63.3	$2.035 imes 10^8$	6.351×10^{3}	3.526×10^{4}
number of iterations [1]	3.28 ± 0.98	14609257	1.000	3.00	1.000	14.0	3.00	4.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.379 \pm 7.502) \times 10^{-9}$	14609257	$5.889 imes 10^{-9}$	$1.283 imes10^{-9}$	$-1.843 imes 10^{-6}$	$1.839 imes10^{-6}$	$-1.424 imes 10^{-9}$	$4.465 imes10^{-9}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.858 \pm 0.707) \times 10^{-9}$	14609257	$1.071 imes10^{-9}$	$1.830 imes 10^{-9}$	$4.425 imes 10^{-10}$	$5.545 imes 10^{-9}$	$1.276 imes10^{-9}$	$2.347 imes10^{-9}$
chi square fluorescence [1]	$(0.557 \pm 1.069) \times 10^5$	14609257	$4.804 imes 10^4$	$1.618 imes 10^4$	99.0	$1.025 imes 10^7$	5.337×10^{3}	$5.338 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	14609257	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	14609257	0.0	50.0	44.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$ (3.607 \pm 8.399) \times 10^{-3}$	14609257	5.125×10^{-3}	3.697×10^{-3}	-9.333×10^{-2}	0.124	1.091×10^{-3}	6.216×10^{-3}

	Table 5: Parameterlist and	d basic statis	stics for the ana	lysis for observa	tions over water			
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.982 ± 0.048	15702233	0.0	1.000	0.350	1.000	1.000	1.000
cloud pressure crb [hPa]	803 ± 194	15702233	271	869	130	1.041×10^{3}	682	953
cloud pressure crb precision [hPa]	2.40 ± 9.32	15702233	1.16	0.583	$2.197 imes10^{-3}$	923	0.336	1.50
cloud fraction crb [1]	0.389 ± 0.341	15702233	0.616	0.287	0.0	1.000	7.110×10^{-2}	0.687
cloud fraction crb precision [1]	$(8.388 \pm 30.588) \times 10^{-5}$	15702233	$5.314 imes 10^{-5}$	$5.031 imes 10^{-5}$	$2.098 imes 10^{-8}$	0.141	$2.971 imes10^{-5}$	$8.284 imes10^{-5}$
scene albedo [1]	0.334 ± 0.290	15702233	0.507	0.249	$-2.936 imes 10^{-3}$	4.82	$6.713 imes 10^{-2}$	0.575
scene albedo precision [1]	$(5.931 \pm 7.300) \times 10^{-5}$	15702233	$4.099 imes 10^{-5}$	$4.157 imes10^{-5}$	$1.044 imes 10^{-5}$	$8.427 imes 10^{-3}$	$2.311 imes 10^{-5}$	$6.410 imes 10^{-5}$
apparent scene pressure [hPa]	820 ± 183	15702233	253	882	130	1.040×10^{3}	713	966
apparent scene pressure precision [hPa]	1.24 ± 2.01	15702233	0.897	0.542	0.109	69.1	0.328	1.23
chi square [1]	$(0.164 \pm 0.989) \times 10^5$	15702233	2.154×10^4	$9.888 imes 10^3$	63.0	$2.035 imes 10^8$	2.903×10^{3}	$2.445 imes 10^4$
number of iterations [1]	2.93 ± 0.74	15702233	0.0	3.00	1.000	14.0	3.00	3.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(3.228 \pm 58.432) \times 10^{-10}$	15702233	$4.373 imes 10^{-9}$	$2.558 imes 10^{-10}$	$-1.634 imes 10^{-6}$	$1.514 imes10^{-6}$	$-1.784 imes 10^{-9}$	$2.590 imes 10^{-9}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.660 \pm 0.720) \times 10^{-9}$	15702233	$1.119 imes 10^{-9}$	$1.528 imes10^{-9}$	$4.265 imes 10^{-10}$	$5.545 imes 10^{-9}$	1.036×10^{-9}	$2.155 imes 10^{-9}$
chi square fluorescence [1]	$(0.484 \pm 0.938) \times 10^5$	15702233	$4.520 imes 10^4$	$1.588 imes 10^4$	99.0	$1.025 imes 10^7$	4.809×10^{3}	$5.001 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	15702233	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	15702233	0.0	50.0	45.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(3.570 \pm 10.048) \times 10^{-3}$	15702233	7.070×10^{-3}	3.604×10^{-3}	-9.333×10^{-2}	0.124	6.944×10^{-6}	7.077×10^{-3}

	Table 6: Parameterlist ar	nd basic stat	tistics for the ana	alysis for observ	vations over land			
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.745 ± 0.253	7456065	0.500	0.700	0.350	1.000	0.500	1.000
cloud pressure crb [hPa]	721 ± 182	7456065	234	724	130	1.050×10^3	626	861
cloud pressure crb precision [hPa]	2.02 ± 7.64	7456065	0.921	0.368	$6.714 imes10^{-4}$	1.230×10^3	0.268	1.19
cloud fraction crb [1]	0.681 ± 0.405	7456065	0.789	1.000	0.0	1.000	0.211	1.000
cloud fraction crb precision [1]	$(3.590 \pm 15.109) \times 10^{-4}$	7456065	$5.178 imes10^{-5}$	$1.000 imes 10^{-4}$	$1.039 imes 10^{-9}$	0.587	$1.000 imes 10^{-4}$	$1.518 imes10^{-4}$
scene albedo [1]	0.706 ± 0.279	7456065	0.447	0.783	$1.678 imes10^{-3}$	5.19	0.471	0.918
scene albedo precision [1]	$(1.249 \pm 1.088) \times 10^{-4}$	7456065	8.759×10^{-5}	9.532×10^{-5}	1.348×10^{-5}	1.737×10^{-3}	5.496×10^{-5}	1.426×10^{-4}
apparent scene pressure [hPa]	762 ± 149	7456065	238	759	130	1.037×10^{3}	653	890
apparent scene pressure precision [hPa]	0.387 ± 0.161	7456065	0.165	0.342	0.127	36.6	0.282	0.447
chi square [1]	$(0.325 \pm 1.738) \times 10^5$	7456065	2.337×10^4	2.404×10^4	169	$8.060 imes 10^7$	1.401×10^4	$3.738 imes 10^4$
number of iterations [1]	4.13 ± 1.09	7456065	0.0	4.00	1.000	14.0	4.00	4.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(2.940\pm6.882) imes10^{-9}$	7456065	$4.295 imes 10^{-9}$	2.937×10^{-9}	$-1.843 imes 10^{-6}$	$1.703 imes 10^{-6}$	$9.879 imes 10^{-10}$	$5.283 imes10^{-9}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.852\pm0.615)\times10^{-9}$	7456065	$8.114 imes 10^{-10}$	$1.820 imes 10^{-9}$	$5.174 imes10^{-10}$	$5.586 imes10^{-9}$	$1.394 imes10^{-9}$	$2.205 imes 10^{-9}$
chi square fluorescence [1]	$(0.433 \pm 0.948) \times 10^5$	7456065	$2.748 imes 10^4$	$7.778 imes 10^3$	141	$3.182 imes 10^6$	3.584×10^3	3.107×10^4
degrees of freedom fluorescence [1]	6.00 ± 0.00	7456065	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	7456065	0.0	50.0	44.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(3.674 \pm 4.429) \times 10^{-3}$	7456065	3.679×10^{-3}	3.679×10^{-3}	-7.347×10^{-2}	7.052×10^{-2}	1.835×10^{-3}	5.514×10^{-3}

Granule outlines

Figure 1: Outline of the granules.

4 Input data monitoring

Figure 2: Input data per granule

5 Warnings and errors

Figure 3: Fraction of pixels with specific warnings and errors during processing

6 World maps

Figure 4: Map of "Cloud pressure" for 2025-01-22 to 2025-01-23

Figure 5: Map of "Cloud fraction" for 2025-01-22 to 2025-01-23

Figure 6: Map of "Scene albedo" for 2025-01-22 to 2025-01-23

2025-01-22

Figure 7: Map of "Apparent scene pressure" for 2025-01-22 to 2025-01-23

2025-01-22

Figure 8: Map of "Fluorescence" for 2025-01-22 to 2025-01-23

Figure 9: Map of the number of observations for 2025-01-22 to 2025-01-23

7 Zonal average

Figure 10: Zonal average of "QA value" for 2025-01-22 to 2025-01-23.

Figure 11: Zonal average of "Cloud pressure" for 2025-01-22 to 2025-01-23.

Figure 12: Zonal average of "Cloud pressure precision" for 2025-01-22 to 2025-01-23.

Figure 13: Zonal average of "Cloud fraction" for 2025-01-22 to 2025-01-23.

Figure 14: Zonal average of "Cloud fraction precision" for 2025-01-22 to 2025-01-23.

Figure 15: Zonal average of "Scene albedo" for 2025-01-22 to 2025-01-23.

Figure 16: Zonal average of "Scene albedo precision" for 2025-01-22 to 2025-01-23.

Figure 17: Zonal average of "Apparent scene pressure" for 2025-01-22 to 2025-01-23.

Figure 18: Zonal average of "Apparent scene pressure precision" for 2025-01-22 to 2025-01-23.

Figure 19: Zonal average of " χ^2 " for 2025-01-22 to 2025-01-23.

Figure 20: Zonal average of "Number of iterations" for 2025-01-22 to 2025-01-23.

Figure 21: Zonal average of "Fluorescence" for 2025-01-22 to 2025-01-23.

Figure 22: Zonal average of "Fluorescence precision" for 2025-01-22 to 2025-01-23.

Figure 23: Zonal average of " χ^2 of fluorescence retrieval" for 2025-01-22 to 2025-01-23.

Figure 24: Zonal average of "Degrees of freedom for signal of fluorescence retrieval" for 2025-01-22 to 2025-01-23.

Figure 25: Zonal average of "Number of points in the spectrum" for 2025-01-22 to 2025-01-23.

Figure 26: Zonal average of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-01-22 to 2025-01-23.

8 Histograms

The definitions of the parameters given in this section can be found in section 2.

Figure 27: Histogram of "QA value" for 2025-01-22 to 2025-01-23

Figure 28: Histogram of "Cloud pressure" for 2025-01-22 to 2025-01-23

Figure 29: Histogram of "Cloud pressure precision" for 2025-01-22 to 2025-01-23

Figure 30: Histogram of "Cloud fraction" for 2025-01-22 to 2025-01-23

Figure 31: Histogram of "Cloud fraction precision" for 2025-01-22 to 2025-01-23

Figure 32: Histogram of "Scene albedo" for 2025-01-22 to 2025-01-23

Figure 33: Histogram of "Scene albedo precision" for 2025-01-22 to 2025-01-23

Figure 34: Histogram of "Apparent scene pressure" for 2025-01-22 to 2025-01-23

Figure 35: Histogram of "Apparent scene pressure precision" for 2025-01-22 to 2025-01-23

Figure 36: Histogram of " χ^2 " for 2025-01-22 to 2025-01-23

Figure 37: Histogram of "Number of iterations" for 2025-01-22 to 2025-01-23

Figure 38: Histogram of "Fluorescence" for 2025-01-22 to 2025-01-23

Figure 39: Histogram of "Fluorescence precision" for 2025-01-22 to 2025-01-23

Figure 40: Histogram of " χ^2 of fluorescence retrieval" for 2025-01-22 to 2025-01-23

Figure 41: Histogram of "Degrees of freedom for signal of fluorescence retrieval" for 2025-01-22 to 2025-01-23

Figure 42: Histogram of "Number of points in the spectrum" for 2025-01-22 to 2025-01-23

Figure 43: Histogram of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-01-22 to 2025-01-23

9 Along track statistics

The TROPOMI instrument uses different binned detector rows for different viewing directions. In this section statistics are presented for each of the binned rows in the instrument.

Figure 44: Along track statistics of "QA value" for 2025-01-22 to 2025-01-23

Figure 45: Along track statistics of "Cloud pressure" for 2025-01-22 to 2025-01-23

Figure 46: Along track statistics of "Cloud pressure precision" for 2025-01-22 to 2025-01-23

Figure 47: Along track statistics of "Cloud fraction" for 2025-01-22 to 2025-01-23

Figure 48: Along track statistics of "Cloud fraction precision" for 2025-01-22 to 2025-01-23

Figure 49: Along track statistics of "Scene albedo" for 2025-01-22 to 2025-01-23

Figure 50: Along track statistics of "Scene albedo precision" for 2025-01-22 to 2025-01-23

Figure 51: Along track statistics of "Apparent scene pressure" for 2025-01-22 to 2025-01-23

Figure 52: Along track statistics of "Apparent scene pressure precision" for 2025-01-22 to 2025-01-23

Figure 53: Along track statistics of " χ^2 " for 2025-01-22 to 2025-01-23

Figure 54: Along track statistics of "Number of iterations" for 2025-01-22 to 2025-01-23

Figure 55: Along track statistics of "Fluorescence" for 2025-01-22 to 2025-01-23

Figure 56: Along track statistics of "Fluorescence precision" for 2025-01-22 to 2025-01-23

Figure 57: Along track statistics of " χ^2 of fluorescence retrieval" for 2025-01-22 to 2025-01-23

Figure 58: Along track statistics of "Degrees of freedom for signal of fluorescence retrieval" for 2025-01-22 to 2025-01-23

Figure 59: Along track statistics of "Number of points in the spectrum" for 2025-01-22 to 2025-01-23

Figure 60: Along track statistics of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-01-22 to 2025-01-23

10 Coincidence density

To investigate the relation between parameters scatter density plots are produced. These include some 'hidden' parameters, latitude and the solar- and viewing geometries, in addition to all configured parameters. All combinations of pairs of parameters are included *once*, in one direction alone.

Contents

1	Short Introduction 1.1 The list of parameters	1 1
2	Definitions	1
3	Granule outlines	8
4	Input data monitoring	9
5	Warnings and errors	10
6	World maps	11
7	Zonal average	17
8	Histograms	34
9	Along track statistics	51
10	Coincidence density	68
11	Copyright information of 'PyCAMA'	68

List of Figures

1	Outline of the granules.	8
2	Input data per granule	9
3	Fraction of pixels with specific warnings and errors during processing	10
4	Map of "Cloud pressure" for 2025-01-22 to 2025-01-23	11
5	Map of "Cloud fraction" for 2025-01-22 to 2025-01-23	12
6	Map of "Scene albedo" for 2025-01-22 to 2025-01-23	13
7	Map of "Apparent scene pressure" for 2025-01-22 to 2025-01-23	14
8	Map of "Fluorescence" for 2025-01-22 to 2025-01-23	15
9	Map of the number of observations for 2025-01-22 to 2025-01-23	16
10	Zonal average of "QA value" for 2025-01-22 to 2025-01-23.	17
11	Zonal average of "Cloud pressure" for 2025-01-22 to 2025-01-23.	18
12	Zonal average of "Cloud pressure precision" for 2025-01-22 to 2025-01-23.	19
13	Zonal average of "Cloud fraction" for 2025-01-22 to 2025-01-23.	20
14	Zonal average of "Cloud fraction precision" for 2025-01-22 to 2025-01-23.	21
15	Zonal average of "Scene albedo" for 2025-01-22 to 2025-01-23.	22
16	Zonal average of "Scene albedo precision" for 2025-01-22 to 2025-01-23.	23
17	Zonal average of "Apparent scene pressure" for 2025-01-22 to 2025-01-23.	24
18	Zonal average of "Apparent scene pressure precision" for 2025-01-22 to 2025-01-23.	25
19	Zonal average of " χ^2 " for 2025-01-22 to 2025-01-23	26
20	Zonal average of "Number of iterations" for 2025-01-22 to 2025-01-23.	27
21	Zonal average of "Fluorescence" for 2025-01-22 to 2025-01-23.	28
22	Zonal average of "Fluorescence precision" for 2025-01-22 to 2025-01-23.	29
23	Zonal average of " χ^2 of fluorescence retrieval" for 2025-01-22 to 2025-01-23	30
24	Zonal average of "Degrees of freedom for signal of fluorescence retrieval" for 2025-01-22 to 2025-01-23.	31
25	Zonal average of "Number of points in the spectrum" for 2025-01-22 to 2025-01-23.	32
26	Zonal average of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-01-22 to 2025-01-23	33
27	Histogram of "QA value" for 2025-01-22 to 2025-01-23	34
28	Histogram of "Cloud pressure" for 2025-01-22 to 2025-01-23	35
29	Histogram of "Cloud pressure precision" for 2025-01-22 to 2025-01-23	36

30	Histogram of "Cloud fraction" for 2025-01-22 to 2025-01-23	37
31	Histogram of "Cloud fraction precision" for 2025-01-22 to 2025-01-23	38
32	Histogram of "Scene albedo" for 2025-01-22 to 2025-01-23	39
33	Histogram of "Scene albedo precision" for 2025-01-22 to 2025-01-23	40
34	Histogram of "Apparent scene pressure" for 2025-01-22 to 2025-01-23	41
35	Histogram of "Apparent scene pressure precision" for 2025-01-22 to 2025-01-23	42
36	Histogram of " χ^2 " for 2025-01-22 to 2025-01-23	43
37	Histogram of "Number of iterations" for 2025-01-22 to 2025-01-23	44
38	Histogram of "Fluorescence" for 2025-01-22 to 2025-01-23	45
39	Histogram of "Fluorescence precision" for 2025-01-22 to 2025-01-23	46
40	Histogram of " χ^2 of fluorescence retrieval" for 2025-01-22 to 2025-01-23	47
41	Histogram of "Degrees of freedom for signal of fluorescence retrieval" for 2025-01-22 to 2025-01-23	48
42	Histogram of "Number of points in the spectrum" for 2025-01-22 to 2025-01-23	49
43	Histogram of "Spectral offset $(\lambda_{true} - \lambda_{nominal})$ " for 2025-01-22 to 2025-01-23	50
44	Along track statistics of "QA value" for 2025-01-22 to 2025-01-23	51
45	Along track statistics of "Cloud pressure" for 2025-01-22 to 2025-01-23	52
46	Along track statistics of "Cloud pressure precision" for 2025-01-22 to 2025-01-23	53
47	Along track statistics of "Cloud fraction" for 2025-01-22 to 2025-01-23	54
48	Along track statistics of "Cloud fraction precision" for 2025-01-22 to 2025-01-23	55
49	Along track statistics of "Scene albedo" for 2025-01-22 to 2025-01-23	56
50	Along track statistics of "Scene albedo precision" for 2025-01-22 to 2025-01-23	57
51	Along track statistics of "Apparent scene pressure" for 2025-01-22 to 2025-01-23	58
52	Along track statistics of "Apparent scene pressure precision" for 2025-01-22 to 2025-01-23	59
53	Along track statistics of " χ^2 " for 2025-01-22 to 2025-01-23	60
54	Along track statistics of "Number of iterations" for 2025-01-22 to 2025-01-23	61
55	Along track statistics of "Fluorescence" for 2025-01-22 to 2025-01-23	62
56	Along track statistics of "Fluorescence precision" for 2025-01-22 to 2025-01-23	63
57	Along track statistics of " χ^2 of fluorescence retrieval" for 2025-01-22 to 2025-01-23	64
58	Along track statistics of "Degrees of freedom for signal of fluorescence retrieval" for 2025-01-22 to 2025-01-23	65
59	Along track statistics of "Number of points in the spectrum" for 2025-01-22 to 2025-01-23	66
60	Along track statistics of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-01-22 to 2025-01-23	67

List of Tables

1	Parameterlist and basic statistics for the analysis
2	Percentile ranges
3	Parameterlist and basic statistics for the analysis for observations in the northern hemisphere
4	Parameterlist and basic statistics for the analysis for observations in the southern hemisphere
5	Parameterlist and basic statistics for the analysis for observations over water
6	Parameterlist and basic statistics for the analysis for observations over land

11 Copyright information of 'PyCAMA'

Copyright © 2005-2023, Maarten Sneep (KNMI).

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
- 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

This software is provided by the copyright holders and contributors "as is" and any express or implied warranties, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose are disclaimed. In no event shall the copyright holder or contributors be liable for any direct, indirect, incidental, special, exemplary, or consequential damages (including, but not limited to, procurement of substitute goods or services; loss of use, data, or profits; or business interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence or otherwise) arising in any way out of the use of this software, even if advised of the possibility of such damage.

Maarten Sneep (maarten.sneep@knmi.nl).