PyCAMA report generated by tropl2-proc

tropl2-proc

2025-01-29 (02:15)

1 Short Introduction

1.1 The list of parameters

You may want to keep the list given in table 1 at hand when viewing the results.

2 Definitions

The averages shown here are unweighed averages:

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i \tag{1}$$

with N the number of observations in the dataset.

The spread of the measurements is indicated with the variance V(x), or rather the standard deviation $\sigma(x) = \sqrt{V(x)}$.

$$V(x) = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2$$
(2)

We also report the more robust statistics median, minimum, maximum, various percentiles and inter quartile range.

The median m is the value of parameter x for which half of the observations of x is smaller than m:

$$P(x \le m) = P(x \ge m) = \int_{-\infty}^{m} f(x) \, \mathrm{d}x = \frac{1}{2}$$
(3)

with f(x) the probability density function.

The median is a special case of a percentile. Instead of $\frac{1}{2}$ in equation 3, other threshold values can be used. We report results for 1%, 5%, 10%, 15.9%, 25%, 75%, 84.1%, 90%, 95% and 99%. The inter quartile range is the difference between the 75% and 25% percentiles. Similarly the minimum and maximum values correspond to the 0% and 100% percentiles respectively.

For normally distributed parameters the mean and median are the same, while the $\mu \pm \sigma$ values and the 15.9% and 84.1% percentiles coincide.

To get a measure for the relation of one variable $x_{(k)}$ with another $x_{(l)}$, we calculate the covariance matrix C_{kl} .

$$C_{kl} = C(x_{(k)}, x_{(l)}) = \frac{1}{N-1} \sum_{i=1}^{N} (x_{(k),i} - \overline{x_{(k)}}) (x_{(l),i} - \overline{x_{(l)}})$$
(4)

Rather than a dimensionally dependent covariance, it is often easier to interpret a correlation matrix R_{kl} , a matrix of Pearson's *r* coefficients:

$$R_{kl} = R(x_{(k)}, x_{(l)}) = \frac{C_{kl}}{\sqrt{C_{kk}C_{ll}}} = \frac{C_{kl}}{\sqrt{V(x_k)V(x_l)}}$$
(5)

The diagonal elements of the covariance matrix are the variances of the elements, $V(x_{(k)}) = C_{kk}$ and obviously $R_{kk} = 1$.

Table 1: Parameterlist and	basic statistics	for the ana	lysi
----------------------------	------------------	-------------	------

	Table 1: Parameterl	ist and basic s	statistics for the ar	alysis			
Variable	mean $\pm \sigma$	Count	Mode	IQR	Median	Minimum	Maximum
qa value [1]	0.911 ± 0.181	25056158	0.995	0.1000	1.000	0.350	1.000
cloud pressure crb [hPa]	777 ± 194	25056158	$1.015 imes 10^3$	289	829	130	1.071×10^3
cloud pressure crb precision [hPa]	2.36 ± 9.20	25056158	0.750	1.17	0.529	$1.831 imes 10^{-4}$	1.530×10^3
cloud fraction crb [1]	0.480 ± 0.387	25056158	0.996	0.855	0.405	0.0	1.000
cloud fraction crb precision [1]	$(1.842 \pm 11.507) \times 10^{-4}$	25056158	$2.500 imes10^{-4}$	5.960×10^{-5}	7.511×10^{-5}	$1.247 imes10^{-8}$	0.839
scene albedo [1]	0.462 ± 0.334	25056158	1.500×10^{-2}	0.606	0.435	-4.123×10^{-3}	5.81
scene albedo precision [1]	$(8.365 \pm 9.709) \times 10^{-5}$	25056158	$2.500 imes10^{-4}$	$6.471 imes10^{-5}$	$5.287 imes10^{-5}$	1.007×10^{-5}	9.687×10^{-3}
apparent scene pressure [hPa]	807 ± 172	25056158	1.008×10^3	265	859	130	1.069×10^{3}
apparent scene pressure precision [hPa]	0.908 ± 1.584	25056158	0.500	0.463	0.425	0.123	58.1
chi square [1]	$(0.218 \pm 1.682) \times 10^5$	25056158	0.150	$2.477 imes 10^4$	$1.576 imes 10^4$	47.5	$2.413 imes 10^8$
number of iterations [1]	3.37 ± 1.08	25056158	3.23	1.000	3.00	1.000	14.0
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.118 \pm 6.700) \times 10^{-9}$	25056158	$7.500 imes 10^{-10}$	4.968×10^{-9}	$1.184 imes10^{-9}$	-2.462×10^{-6}	1.831×10^{-6}
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.722 \pm 0.688) \times 10^{-9}$	25056158	$8.500 imes 10^{-10}$	$1.023 imes 10^{-9}$	1.653×10^{-9}	$4.036 imes 10^{-10}$	5.574×10^{-9}
chi square fluorescence [1]	$(0.491 \pm 0.956) \times 10^5$	25056158	1.750×10^{3}	$4.258 imes 10^4$	$1.395 imes 10^4$	100.0	$1.504 imes 10^7$
degrees of freedom fluorescence [1]	6.00 ± 0.00	25056158	5.95	0.0	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	25056158	49.7	0.0	50.0	45.0	50.0
wavelength calibration offset [nm]	$(3.559 \pm 8.571) \times 10^{-3}$	25056158	3.600×10^{-3}	5.462×10^{-3}	3.595×10^{-3}	-0.159	0.167

			Table 2:	Percentile rang	es					
Variable	1 %	5 %	10 %	15.9 %	25 %	75 %	84.1 %	90 %	95 %	99 %
qa value [1]	0.500	0.500	0.500	0.700	0.900	1.000	1.000	1.000	1.000	1.000
cloud pressure crb [hPa]	251	397	491	571	648	937	970	989	1.008×10^3	1.019×10^3
cloud pressure crb precision [hPa]	0.147	0.230	0.253	0.274	0.309	1.48	2.58	4.37	8.74	31.1
cloud fraction crb [1]	$9.212 imes 10^{-4}$	$1.144 imes10^{-2}$	$2.517 imes10^{-2}$	$4.558 imes10^{-2}$	$9.196 imes 10^{-2}$	0.947	1.000	1.000	1.000	1.000
cloud fraction crb precision [1]	$1.970 imes10^{-5}$	$2.288 imes10^{-5}$	$2.572 imes 10^{-5}$	$2.970 imes10^{-5}$	$4.040 imes 10^{-5}$	$1.000 imes 10^{-4}$	$1.244 imes10^{-4}$	$2.262 imes 10^{-4}$	$6.409 imes10^{-4}$	2.357×10^{-3}
scene albedo [1]	$8.747 imes 10^{-3}$	$2.176 imes10^{-2}$	$3.970 imes 10^{-2}$	$6.913 imes 10^{-2}$	0.144	0.750	0.863	0.919	0.968	1.14
scene albedo precision [1]	$1.283 imes10^{-5}$	$1.496 imes 10^{-5}$	$1.819 imes10^{-5}$	$2.278 imes10^{-5}$	$3.092 imes 10^{-5}$	$9.564 imes 10^{-5}$	$1.277 imes10^{-4}$	$1.738 imes10^{-4}$	$2.676 imes10^{-4}$	$5.146 imes 10^{-4}$
apparent scene pressure [hPa]	342	474	554	616	684	949	977	994	1.010×10^{3}	1.019×10^{3}
apparent scene pressure precision [hPa]	0.212	0.239	0.258	0.277	0.306	0.769	1.20	1.87	3.28	7.93
chi square [1]	306	739	1.551×10^{3}	2.973×10^{3}	5.709×10^{3}	3.048×10^4	$3.818 imes 10^4$	4.522×10^4	5.484×10^{4}	7.470×10^{4}
number of iterations [1]	2.00	2.00	2.00	3.00	3.00	4.00	4.00	5.00	5.00	7.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$-1.508 imes 10^{-8}$	-7.129×10^{-9}	-4.199×10^{-9}	-2.588×10^{-9}	-1.200×10^{-9}	$3.768 imes 10^{-9}$	5.258×10^{-9}	$6.738 imes 10^{-9}$	$8.928 imes10^{-9}$	1.400×10^{-8}
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$7.294 imes 10^{-10}$	$8.199 imes 10^{-10}$	$8.909 imes 10^{-10}$	$9.774 imes 10^{-10}$	$1.146 imes 10^{-9}$	$2.169 imes 10^{-9}$	$2.435 imes 10^{-9}$	2.639×10^{-9}	2.957×10^{-9}	3.620×10^{-9}
chi square fluorescence [1]	407	1.049×10^{3}	1.667×10^{3}	2.349×10^{3}	3.717×10^{3}	4.630×10^{4}	8.062×10^{4}	1.298×10^{5}	2.393×10^{5}	4.895×10^{5}
degrees of freedom fluorescence [1]	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0
wavelength calibration offset [nm]	-2.440×10^{-2}	-9.074×10^{-3}	-3.939×10^{-3}	-1.267×10^{-3}	$8.310 imes 10^{-4}$	$6.293 imes 10^{-3}$	8.345×10^{-3}	$1.104 imes10^{-2}$	1.621×10^{-2}	3.123×10^{-2}

Table	Table 3: Parameterlist and basic statistics for the analysis for observations in the northern hemisphere							
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.977 ± 0.091	10556637	0.0	1.000	0.350	1.000	1.000	1.000
cloud pressure crb [hPa]	757 ± 210	10556637	337	818	130	1.071×10^{3}	597	934
cloud pressure crb precision [hPa]	3.21 ± 11.25	10556637	1.77	0.810	$1.831 imes 10^{-4}$	1.530×10^{3}	0.404	2.18
cloud fraction crb [1]	0.402 ± 0.363	10556637	0.663	0.275	0.0	1.000	$6.840 imes 10^{-2}$	0.731
cloud fraction crb precision [1]	$(2.087 \pm 16.193) \times 10^{-4}$	10556637	$7.935 imes 10^{-5}$	$8.968 imes 10^{-5}$	$1.247 imes10^{-8}$	0.839	$4.817 imes 10^{-5}$	$1.275 imes10^{-4}$
scene albedo [1]	0.431 ± 0.318	10556637	0.511	0.396	-3.479×10^{-3}	4.77	0.154	0.666
scene albedo precision [1]	$(9.651 \pm 11.429) \times 10^{-5}$	10556637	7.067×10^{-5}	5.699×10^{-5}	1.129×10^{-5}	4.715×10^{-3}	$3.425 imes 10^{-5}$	$1.049 imes10^{-4}$
apparent scene pressure [hPa]	804 ± 179	10556637	269	861	133	1.069×10^{3}	679	948
apparent scene pressure precision [hPa]	0.985 ± 1.696	10556637	0.477	0.494	0.162	52.6	0.351	0.828
chi square [1]	$(0.176 \pm 1.719) \times 10^5$	10556637	1.796×10^{4}	1.257×10^{4}	47.5	1.274×10^{8}	5.259×10^{3}	2.322×10^4
number of iterations [1]	3.52 ± 1.21	10556637	1.000	3.00	1.000	14.0	3.00	4.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(9.663 \pm 47.889) \times 10^{-10}$	10556637	4.047×10^{-9}	1.168×10^{-9}	-1.273×10^{-6}	1.119×10^{-6}	-8.326×10^{-10}	3.214×10^{-9}
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.548 \pm 0.624) \times 10^{-9}$	10556637	9.097×10^{-10}	1.440×10^{-9}	4.036×10^{-10}	5.402×10^{-9}	1.039×10^{-9}	1.948×10^{-9}
chi square fluorescence [1]	$(0.402 \pm 0.860) \times 10^5$	10556637	3.404×10^{4}	8.979×10^{3}	100.0	1.727×10^{6}	2.669×10^{3}	3.671×10^{4}
degrees of freedom fluorescence [1]	6.00 ± 0.00	10556637	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	10556637	0.0	50.0	48.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(3.565 \pm 8.941) \times 10^{-3}$	10556637	6.179×10^{-3}	3.502×10^{-3}	-7.981×10^{-2}	9.334×10^{-2}	4.263×10^{-4}	6.605×10^{-3}

Table 4. Parameterlist and basic statistics for the ana	lysis for observations in the southern hemisphere
Table 4. I drameternist and basic statistics for the and	iysis for observations in the southern hemisphere

Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.864 ± 0.212	14499521	0.1000	1.000	0.350	1.000	0.900	1.000
cloud pressure crb [hPa]	792 ± 180	14499521	269	838	130	1.030×10^3	670	939
cloud pressure crb precision [hPa]	1.75 ± 7.29	14499521	0.710	0.402	$2.380 imes10^{-3}$	633	0.282	0.992
cloud fraction crb [1]	0.536 ± 0.394	14499521	0.880	0.537	0.0	1.000	0.120	1.000
cloud fraction crb precision [1]	$(1.664 \pm 6.150) \times 10^{-4}$	14499521	$6.394 imes10^{-5}$	$6.797 imes10^{-5}$	$3.640 imes 10^{-8}$	0.184	$3.607 imes 10^{-5}$	$1.000 imes 10^{-4}$
scene albedo [1]	0.484 ± 0.343	14499521	0.673	0.474	$-4.123 imes 10^{-3}$	5.81	0.137	0.810
scene albedo precision [1]	$(7.428 \pm 8.107) \times 10^{-5}$	14499521	$6.097 imes10^{-5}$	$5.032 imes 10^{-5}$	$1.007 imes 10^{-5}$	$9.687 imes10^{-3}$	$2.871 imes10^{-5}$	$8.969 imes10^{-5}$
apparent scene pressure [hPa]	809 ± 168	14499521	263	856	130	1.030×10^3	686	949
apparent scene pressure precision [hPa]	0.851 ± 1.494	14499521	0.423	0.377	0.123	58.1	0.287	0.710
chi square [1]	$(0.249 \pm 1.654) \times 10^5$	14499521	$2.916 imes 10^4$	$1.981 imes 10^4$	74.0	$2.413 imes 10^8$	6.175×10^{3}	3.534×10^{4}
number of iterations [1]	3.26 ± 0.96	14499521	1.000	3.00	1.000	14.0	3.00	4.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.229 \pm 7.800) \times 10^{-9}$	14499521	$5.791 imes 10^{-9}$	$1.200 imes 10^{-9}$	$-2.462 imes10^{-6}$	$1.831 imes 10^{-6}$	$-1.492 imes 10^{-9}$	$4.299 imes10^{-9}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.848 \pm 0.705) \times 10^{-9}$	14499521	1.048×10^{-9}	$1.815 imes10^{-9}$	$4.285 imes 10^{-10}$	$5.574 imes 10^{-9}$	1.259×10^{-9}	$2.307 imes10^{-9}$
chi square fluorescence [1]	$(0.556 \pm 1.016) \times 10^5$	14499521	$4.832 imes 10^4$	$1.774 imes 10^4$	110	$1.504 imes 10^7$	4.970×10^{3}	$5.329 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	14499521	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	14499521	0.0	50.0	45.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(3.555\pm8.291)\times10^{-3}$	14499521	4.989×10^{-3}	3.648×10^{-3}	-0.159	0.167	1.108×10^{-3}	6.097×10^{-3}

	Table 5: Parameterlist and	d basic statis	stics for the ana	lysis for observa	ations over water			
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.982 ± 0.049	15563534	0.0	1.000	0.350	1.000	1.000	1.000
cloud pressure crb [hPa]	808 ± 190	15563534	262	878	130	1.071×10^3	691	953
cloud pressure crb precision [hPa]	2.34 ± 9.41	15563534	1.14	0.580	$1.038 imes 10^{-3}$	633	0.333	1.47
cloud fraction crb [1]	0.387 ± 0.339	15563534	0.608	0.285	0.0	1.000	7.164×10^{-2}	0.680
cloud fraction crb precision [1]	$(8.348 \pm 38.749) \times 10^{-5}$	15563534	$5.062 imes 10^{-5}$	$5.037 imes 10^{-5}$	$1.145 imes10^{-7}$	0.396	$2.947 imes 10^{-5}$	$8.009 imes 10^{-5}$
scene albedo [1]	0.331 ± 0.288	15563534	0.500	0.246	-4.123×10^{-3}	4.77	6.742×10^{-2}	0.568
scene albedo precision [1]	$(5.639 \pm 6.888) \times 10^{-5}$	15563534	$3.977 imes 10^{-5}$	4.116×10^{-5}	$1.007 imes 10^{-5}$	$9.687 imes 10^{-3}$	2.260×10^{-5}	$6.237 imes10^{-5}$
apparent scene pressure [hPa]	824 ± 181	15563534	244	889	130	$1.058 imes 10^3$	721	965
apparent scene pressure precision [hPa]	1.21 ± 1.94	15563534	0.885	0.540	0.162	58.1	0.326	1.21
chi square [1]	$(0.166 \pm 1.223) \times 10^5$	15563534	$2.247 imes 10^4$	$1.016 imes 10^4$	47.5	$2.413 imes 10^8$	$2.969 imes 10^3$	$2.544 imes 10^4$
number of iterations [1]	2.92 ± 0.73	15563534	0.0	3.00	1.000	14.0	3.00	3.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(2.078 \pm 58.384) \times 10^{-10}$	15563534	$4.434 imes 10^{-9}$	1.523×10^{-10}	$-1.502 imes10^{-6}$	$1.624 imes10^{-6}$	$-1.893 imes 10^{-9}$	2.541×10^{-9}
fluorescence precision [mol $s^{-1} m^{-2} nm^{-1} sr^{-1}$]	$(1.675 \pm 0.727) \times 10^{-9}$	15563534	1.119×10^{-9}	$1.538 imes10^{-9}$	$4.036 imes 10^{-10}$	$5.521 imes 10^{-9}$	1.049×10^{-9}	$2.167 imes 10^{-9}$
chi square fluorescence [1]	$(0.479 \pm 0.881) \times 10^5$	15563534	4.611×10^4	$1.700 imes 10^4$	100.0	$4.444 imes 10^6$	4.852×10^3	$5.096 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	15563534	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	15563534	0.0	50.0	48.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(3.493 \pm 10.143) \times 10^{-3}$	15563534	$6.941 imes 10^{-3}$	3.535×10^{-3}	-0.159	0.167	4.555×10^{-6}	6.945×10^{-3}

	Table 6: Parameterlist an	d basic stat	tistics for the ana	alysis for observ	ations over land			
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.754 ± 0.252	7662488	0.500	1.000	0.350	1.000	0.500	1.000
cloud pressure crb [hPa]	730 ± 181	7662488	247	730	130	1.060×10^{3}	629	876
cloud pressure crb precision [hPa]	2.24 ± 8.72	7662488	1.02	0.393	$1.831 imes 10^{-4}$	1.504×10^3	0.277	1.30
cloud fraction crb [1]	0.673 ± 0.408	7662488	0.804	1.000	0.0	1.000	0.196	1.000
cloud fraction crb precision [1]	$(3.649 \pm 16.993) \times 10^{-4}$	7662488	$4.965 imes10^{-5}$	$1.000 imes 10^{-4}$	$1.247 imes10^{-8}$	0.674	$1.000 imes 10^{-4}$	$1.496 imes10^{-4}$
scene albedo [1]	0.708 ± 0.282	7662488	0.453	0.789	$2.789 imes 10^{-3}$	5.81	0.469	0.922
scene albedo precision [1]	$(1.326 \pm 1.176) \times 10^{-4}$	7662488	$9.867 imes10^{-5}$	$9.931 imes10^{-5}$	$1.284 imes10^{-5}$	$1.902 imes 10^{-3}$	$5.531 imes10^{-5}$	$1.540 imes10^{-4}$
apparent scene pressure [hPa]	774 ± 146	7662488	243	776	130	1.053×10^3	659	902
apparent scene pressure precision [hPa]	0.397 ± 0.167	7662488	0.169	0.349	0.133	17.8	0.287	0.456
chi square [1]	$(0.314 \pm 1.850) \times 10^5$	7662488	$2.349 imes 10^4$	$2.425 imes 10^4$	152	$1.558 imes 10^8$	1.402×10^4	$3.751 imes 10^4$
number of iterations [1]	4.15 ± 1.12	7662488	0.0	4.00	1.000	14.0	4.00	4.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(2.773 \pm 6.863) \times 10^{-9}$	7662488	$4.051 imes 10^{-9}$	2.874×10^{-9}	-2.462×10^{-6}	$1.831 imes 10^{-6}$	$1.003 imes 10^{-9}$	$5.054 imes10^{-9}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.811 \pm 0.609) \times 10^{-9}$	7662488	$8.233 imes 10^{-10}$	$1.785 imes10^{-9}$	$5.089 imes 10^{-10}$	$5.574 imes10^{-9}$	1.358×10^{-9}	$2.181 imes10^{-9}$
chi square fluorescence [1]	$(0.457 \pm 0.984) \times 10^5$	7662488	$2.926 imes 10^4$	8.007×10^3	132	$2.835 imes 10^6$	2.702×10^3	$3.196 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	7662488	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	7662488	0.0	50.0	47.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(3.647 \pm 4.414) \times 10^{-3}$	7662488	$3.573 imes 10^{-3}$	3.649×10^{-3}	-6.888×10^{-2}	7.684×10^{-2}	1.861×10^{-3}	5.435×10^{-3}

Granule outlines

Figure 1: Outline of the granules.

4 Input data monitoring

Figure 2: Input data per granule

5 Warnings and errors

Figure 3: Fraction of pixels with specific warnings and errors during processing

6 World maps

Figure 4: Map of "Cloud pressure" for 2025-01-27 to 2025-01-28

Figure 5: Map of "Cloud fraction" for 2025-01-27 to 2025-01-28

Figure 6: Map of "Scene albedo" for 2025-01-27 to 2025-01-28

Figure 7: Map of "Apparent scene pressure" for 2025-01-27 to 2025-01-28

2025-01-27

Figure 8: Map of "Fluorescence" for 2025-01-27 to 2025-01-28

Figure 9: Map of the number of observations for 2025-01-27 to 2025-01-28

7 Zonal average

Figure 10: Zonal average of "QA value" for 2025-01-27 to 2025-01-28.

Figure 11: Zonal average of "Cloud pressure" for 2025-01-27 to 2025-01-28.

Figure 12: Zonal average of "Cloud pressure precision" for 2025-01-27 to 2025-01-28.

Figure 13: Zonal average of "Cloud fraction" for 2025-01-27 to 2025-01-28.

Figure 14: Zonal average of "Cloud fraction precision" for 2025-01-27 to 2025-01-28.

Figure 15: Zonal average of "Scene albedo" for 2025-01-27 to 2025-01-28.

Figure 16: Zonal average of "Scene albedo precision" for 2025-01-27 to 2025-01-28.

Figure 17: Zonal average of "Apparent scene pressure" for 2025-01-27 to 2025-01-28.

Figure 18: Zonal average of "Apparent scene pressure precision" for 2025-01-27 to 2025-01-28.

Figure 19: Zonal average of " χ^2 " for 2025-01-27 to 2025-01-28.

Figure 20: Zonal average of "Number of iterations" for 2025-01-27 to 2025-01-28.

Figure 21: Zonal average of "Fluorescence" for 2025-01-27 to 2025-01-28.

Figure 22: Zonal average of "Fluorescence precision" for 2025-01-27 to 2025-01-28.

Figure 23: Zonal average of " χ^2 of fluorescence retrieval" for 2025-01-27 to 2025-01-28.

Figure 24: Zonal average of "Degrees of freedom for signal of fluorescence retrieval" for 2025-01-27 to 2025-01-28.

Figure 25: Zonal average of "Number of points in the spectrum" for 2025-01-27 to 2025-01-28.

Figure 26: Zonal average of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-01-27 to 2025-01-28.

8 Histograms

The definitions of the parameters given in this section can be found in section 2.

Figure 27: Histogram of "QA value" for 2025-01-27 to 2025-01-28

Figure 28: Histogram of "Cloud pressure" for 2025-01-27 to 2025-01-28

Figure 29: Histogram of "Cloud pressure precision" for 2025-01-27 to 2025-01-28

Figure 30: Histogram of "Cloud fraction" for 2025-01-27 to 2025-01-28

Figure 31: Histogram of "Cloud fraction precision" for 2025-01-27 to 2025-01-28

Figure 32: Histogram of "Scene albedo" for 2025-01-27 to 2025-01-28

Figure 33: Histogram of "Scene albedo precision" for 2025-01-27 to 2025-01-28

Figure 34: Histogram of "Apparent scene pressure" for 2025-01-27 to 2025-01-28

Figure 35: Histogram of "Apparent scene pressure precision" for 2025-01-27 to 2025-01-28

Figure 36: Histogram of " χ^2 " for 2025-01-27 to 2025-01-28

Figure 37: Histogram of "Number of iterations" for 2025-01-27 to 2025-01-28

Figure 38: Histogram of "Fluorescence" for 2025-01-27 to 2025-01-28

Figure 39: Histogram of "Fluorescence precision" for 2025-01-27 to 2025-01-28

Figure 40: Histogram of " χ^2 of fluorescence retrieval" for 2025-01-27 to 2025-01-28

Figure 41: Histogram of "Degrees of freedom for signal of fluorescence retrieval" for 2025-01-27 to 2025-01-28

Figure 42: Histogram of "Number of points in the spectrum" for 2025-01-27 to 2025-01-28

Figure 43: Histogram of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-01-27 to 2025-01-28

9 Along track statistics

The TROPOMI instrument uses different binned detector rows for different viewing directions. In this section statistics are presented for each of the binned rows in the instrument.

Figure 44: Along track statistics of "QA value" for 2025-01-27 to 2025-01-28

Figure 45: Along track statistics of "Cloud pressure" for 2025-01-27 to 2025-01-28

Figure 46: Along track statistics of "Cloud pressure precision" for 2025-01-27 to 2025-01-28

Figure 47: Along track statistics of "Cloud fraction" for 2025-01-27 to 2025-01-28

Figure 48: Along track statistics of "Cloud fraction precision" for 2025-01-27 to 2025-01-28

Figure 49: Along track statistics of "Scene albedo" for 2025-01-27 to 2025-01-28

Figure 50: Along track statistics of "Scene albedo precision" for 2025-01-27 to 2025-01-28

Figure 51: Along track statistics of "Apparent scene pressure" for 2025-01-27 to 2025-01-28

Figure 52: Along track statistics of "Apparent scene pressure precision" for 2025-01-27 to 2025-01-28

Figure 53: Along track statistics of " χ^2 " for 2025-01-27 to 2025-01-28

Figure 54: Along track statistics of "Number of iterations" for 2025-01-27 to 2025-01-28

Figure 55: Along track statistics of "Fluorescence" for 2025-01-27 to 2025-01-28

Figure 56: Along track statistics of "Fluorescence precision" for 2025-01-27 to 2025-01-28

Figure 57: Along track statistics of " χ^2 of fluorescence retrieval" for 2025-01-27 to 2025-01-28

Figure 58: Along track statistics of "Degrees of freedom for signal of fluorescence retrieval" for 2025-01-27 to 2025-01-28

Figure 59: Along track statistics of "Number of points in the spectrum" for 2025-01-27 to 2025-01-28

Figure 60: Along track statistics of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-01-27 to 2025-01-28

10 Coincidence density

To investigate the relation between parameters scatter density plots are produced. These include some 'hidden' parameters, latitude and the solar- and viewing geometries, in addition to all configured parameters. All combinations of pairs of parameters are included *once*, in one direction alone.

Contents

1	Short Introduction 1.1 The list of parameters	1 1
2	Definitions	1
3	Granule outlines	8
4	Input data monitoring	9
5	Warnings and errors	10
6	World maps	11
7	Zonal average	17
8	Histograms	34
9	Along track statistics	51
10	Coincidence density	68
11	Copyright information of 'PyCAMA'	68

List of Figures

1	Outline of the granules.	8
2	Input data per granule	9
3	Fraction of pixels with specific warnings and errors during processing	10
4	Map of "Cloud pressure" for 2025-01-27 to 2025-01-28	11
5	Map of "Cloud fraction" for 2025-01-27 to 2025-01-28	12
6	Map of "Scene albedo" for 2025-01-27 to 2025-01-28	13
7	Map of "Apparent scene pressure" for 2025-01-27 to 2025-01-28	14
8	Map of "Fluorescence" for 2025-01-27 to 2025-01-28	15
9	Map of the number of observations for 2025-01-27 to 2025-01-28	16
10	Zonal average of "QA value" for 2025-01-27 to 2025-01-28	17
11	Zonal average of "Cloud pressure" for 2025-01-27 to 2025-01-28.	18
12	Zonal average of "Cloud pressure precision" for 2025-01-27 to 2025-01-28	19
13	Zonal average of "Cloud fraction" for 2025-01-27 to 2025-01-28.	20
14	Zonal average of "Cloud fraction precision" for 2025-01-27 to 2025-01-28	21
15	Zonal average of "Scene albedo" for 2025-01-27 to 2025-01-28	22
16	Zonal average of "Scene albedo precision" for 2025-01-27 to 2025-01-28	23
17	Zonal average of "Apparent scene pressure" for 2025-01-27 to 2025-01-28	24
18	Zonal average of "Apparent scene pressure precision" for 2025-01-27 to 2025-01-28	25
19	Zonal average of " χ^2 " for 2025-01-27 to 2025-01-28	26
20	Zonal average of "Number of iterations" for 2025-01-27 to 2025-01-28.	27
21	Zonal average of "Fluorescence" for 2025-01-27 to 2025-01-28	28
22	Zonal average of "Fluorescence precision" for 2025-01-27 to 2025-01-28	29
23	Zonal average of " χ^2 of fluorescence retrieval" for 2025-01-27 to 2025-01-28	30
24	Zonal average of "Degrees of freedom for signal of fluorescence retrieval" for 2025-01-27 to 2025-01-28.	31
25	Zonal average of "Number of points in the spectrum" for 2025-01-27 to 2025-01-28	32
26	Zonal average of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-01-27 to 2025-01-28	33
27	Histogram of "QA value" for 2025-01-27 to 2025-01-28	34
28	Histogram of "Cloud pressure" for 2025-01-27 to 2025-01-28	35
29	Histogram of "Cloud pressure precision" for 2025-01-27 to 2025-01-28	36

30	Histogram of "Cloud fraction" for 2025-01-27 to 2025-01-28	37
31	Histogram of "Cloud fraction precision" for 2025-01-27 to 2025-01-28	38
32	Histogram of "Scene albedo" for 2025-01-27 to 2025-01-28	39
33	Histogram of "Scene albedo precision" for 2025-01-27 to 2025-01-28	40
34	Histogram of "Apparent scene pressure" for 2025-01-27 to 2025-01-28	41
35	Histogram of "Apparent scene pressure precision" for 2025-01-27 to 2025-01-28	42
36	Histogram of " χ^2 " for 2025-01-27 to 2025-01-28	43
37	Histogram of "Number of iterations" for 2025-01-27 to 2025-01-28	44
38	Histogram of "Fluorescence" for 2025-01-27 to 2025-01-28	45
39	Histogram of "Fluorescence precision" for 2025-01-27 to 2025-01-28	46
40	Histogram of " χ^2 of fluorescence retrieval" for 2025-01-27 to 2025-01-28	47
41	Histogram of "Degrees of freedom for signal of fluorescence retrieval" for 2025-01-27 to 2025-01-28	48
42	Histogram of "Number of points in the spectrum" for 2025-01-27 to 2025-01-28	49
43	Histogram of "Spectral offset $(\lambda_{true} - \lambda_{nominal})$ " for 2025-01-27 to 2025-01-28	50
44	Along track statistics of "QA value" for 2025-01-27 to 2025-01-28	51
45	Along track statistics of "Cloud pressure" for 2025-01-27 to 2025-01-28	52
46	Along track statistics of "Cloud pressure precision" for 2025-01-27 to 2025-01-28	53
47	Along track statistics of "Cloud fraction" for 2025-01-27 to 2025-01-28	54
48	Along track statistics of "Cloud fraction precision" for 2025-01-27 to 2025-01-28	55
49	Along track statistics of "Scene albedo" for 2025-01-27 to 2025-01-28	56
50	Along track statistics of "Scene albedo precision" for 2025-01-27 to 2025-01-28	57
51	Along track statistics of "Apparent scene pressure" for 2025-01-27 to 2025-01-28	58
52	Along track statistics of "Apparent scene pressure precision" for 2025-01-27 to 2025-01-28	59
53	Along track statistics of " χ^2 " for 2025-01-27 to 2025-01-28	60
54	Along track statistics of "Number of iterations" for 2025-01-27 to 2025-01-28	61
55	Along track statistics of "Fluorescence" for 2025-01-27 to 2025-01-28	62
56	Along track statistics of "Fluorescence precision" for 2025-01-27 to 2025-01-28	63
57	Along track statistics of " χ^2 of fluorescence retrieval" for 2025-01-27 to 2025-01-28	64
58	Along track statistics of "Degrees of freedom for signal of fluorescence retrieval" for 2025-01-27 to 2025-01-28	65
59	Along track statistics of "Number of points in the spectrum" for 2025-01-27 to 2025-01-28	66
60	Along track statistics of "Spectral offset $(\lambda_{true} - \lambda_{nominal})$ " for 2025-01-27 to 2025-01-28	67

List of Tables

1	Parameterlist and basic statistics for the analysis
2	Percentile ranges
3	Parameterlist and basic statistics for the analysis for observations in the northern hemisphere
4	Parameterlist and basic statistics for the analysis for observations in the southern hemisphere
5	Parameterlist and basic statistics for the analysis for observations over water
6	Parameterlist and basic statistics for the analysis for observations over land

11 Copyright information of 'PyCAMA'

Copyright © 2005-2023, Maarten Sneep (KNMI).

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
- 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

This software is provided by the copyright holders and contributors "as is" and any express or implied warranties, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose are disclaimed. In no event shall the copyright holder or contributors be liable for any direct, indirect, incidental, special, exemplary, or consequential damages (including, but not limited to, procurement of substitute goods or services; loss of use, data, or profits; or business interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence or otherwise) arising in any way out of the use of this software, even if advised of the possibility of such damage.

Maarten Sneep (maarten.sneep@knmi.nl).