PyCAMA report generated by tropl2-proc

tropl2-proc

2025-01-31 (04:45)

1 Short Introduction

1.1 The list of parameters

You may want to keep the list given in table 1 at hand when viewing the results.

2 Definitions

The averages shown here are unweighed averages:

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i \tag{1}$$

with N the number of observations in the dataset.

The spread of the measurements is indicated with the variance V(x), or rather the standard deviation $\sigma(x) = \sqrt{V(x)}$.

$$V(x) = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2$$
(2)

We also report the more robust statistics median, minimum, maximum, various percentiles and inter quartile range.

The median m is the value of parameter x for which half of the observations of x is smaller than m:

$$P(x \le m) = P(x \ge m) = \int_{-\infty}^{m} f(x) \, \mathrm{d}x = \frac{1}{2}$$
(3)

with f(x) the probability density function.

The median is a special case of a percentile. Instead of $\frac{1}{2}$ in equation 3, other threshold values can be used. We report results for 1%, 5%, 10%, 15.9%, 25%, 75%, 84.1%, 90%, 95% and 99%. The inter quartile range is the difference between the 75% and 25% percentiles. Similarly the minimum and maximum values correspond to the 0% and 100% percentiles respectively.

For normally distributed parameters the mean and median are the same, while the $\mu \pm \sigma$ values and the 15.9% and 84.1% percentiles coincide.

To get a measure for the relation of one variable $x_{(k)}$ with another $x_{(l)}$, we calculate the covariance matrix C_{kl} .

$$C_{kl} = C(x_{(k)}, x_{(l)}) = \frac{1}{N-1} \sum_{i=1}^{N} (x_{(k),i} - \overline{x_{(k)}}) (x_{(l),i} - \overline{x_{(l)}})$$
(4)

Rather than a dimensionally dependent covariance, it is often easier to interpret a correlation matrix R_{kl} , a matrix of Pearson's *r* coefficients:

$$R_{kl} = R(x_{(k)}, x_{(l)}) = \frac{C_{kl}}{\sqrt{C_{kk}C_{ll}}} = \frac{C_{kl}}{\sqrt{V(x_k)V(x_l)}}$$
(5)

The diagonal elements of the covariance matrix are the variances of the elements, $V(x_{(k)}) = C_{kk}$ and obviously $R_{kk} = 1$.

Table 1: Parameterlist and basic statistics for the analysis
--

	Table 1: Parameter	list and basic	statistics for the ar	nalysis			
Variable	mean $\pm \sigma$	Count	Mode	IQR	Median	Minimum	Maximum
qa value [1]	0.914 ± 0.179	23475064	0.995	0.0	1.000	0.350	1.000
cloud pressure crb [hPa]	779 ± 194	23475064	$1.015 imes 10^3$	280	830	130	1.073×10^{3}
cloud pressure crb precision [hPa]	2.42 ± 9.12	23475064	0.750	1.24	0.545	$1.831 imes 10^{-4}$	1.564×10^3
cloud fraction crb [1]	0.473 ± 0.386	23475064	0.996	0.841	0.392	0.0	1.000
cloud fraction crb precision [1]	$(2.000 \pm 13.379) \times 10^{-4}$	23475064	$2.500 imes10^{-4}$	$5.994 imes10^{-5}$	$7.528 imes 10^{-5}$	$1.294 imes10^{-8}$	0.648
scene albedo [1]	0.459 ± 0.331	23475064	$1.500 imes10^{-2}$	0.600	0.435	$-2.898 imes10^{-3}$	4.01
scene albedo precision [1]	$(8.503 \pm 10.053) \times 10^{-5}$	23475064	$2.500 imes10^{-4}$	$6.637 imes 10^{-5}$	$5.303 imes 10^{-5}$	1.046×10^{-5}	6.156×10^{-3}
apparent scene pressure [hPa]	811 ± 172	23475064	$1.008 imes 10^3$	251	860	130	1.075×10^{3}
apparent scene pressure precision [hPa]	0.942 ± 1.687	23475064	0.500	0.466	0.428	9.250×10^{-2}	58.8
chi square [1]	$(0.223 \pm 2.288) \times 10^5$	23475064	0.150	$2.458 imes 10^4$	$1.584 imes10^4$	62.7	$1.774 imes 10^8$
number of iterations [1]	3.39 ± 1.09	23475064	3.23	1.000	3.00	1.000	14.0
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.248 \pm 6.095) \times 10^{-9}$	23475064	$7.500 imes 10^{-10}$	$4.894 imes10^{-9}$	1.256×10^{-9}	-1.768×10^{-6}	1.408×10^{-6}
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.711 \pm 0.687) \times 10^{-9}$	23475064	$8.500 imes 10^{-10}$	$1.012 imes 10^{-9}$	1.641×10^{-9}	$4.258 imes10^{-10}$	5.562×10^{-9}
chi square fluorescence [1]	$(0.461 \pm 0.908) \times 10^5$	23475064	1.750×10^{3}	$4.061 imes 10^4$	$1.321 imes 10^4$	101	$2.232 imes 10^6$
degrees of freedom fluorescence [1]	6.00 ± 0.00	23475064	5.95	0.0	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	23475064	49.7	0.0	50.0	47.0	50.0
wavelength calibration offset [nm]	$(3.526 \pm 8.275) \times 10^{-3}$	23475064	3.600×10^{-3}	5.440×10^{-3}	3.540×10^{-3}	-0.147	0.456

			Table 2:	Percentile rang	jes					
Variable	1 %	5 %	10 %	15.9 %	25 %	75 %	84.1 %	90%	95 %	99 %
qa value [1]	0.500	0.500	0.500	0.900	1.000	1.000	1.000	1.000	1.000	1.000
cloud pressure crb [hPa]	246	387	490	580	656	937	970	990	1.009×10^{3}	1.020×10^3
cloud pressure crb precision [hPa]	0.142	0.231	0.255	0.276	0.313	1.55	2.73	4.61	9.21	30.7
cloud fraction crb [1]	$9.254 imes10^{-4}$	$1.077 imes10^{-2}$	$2.376 imes10^{-2}$	$4.378 imes10^{-2}$	$8.939 imes10^{-2}$	0.931	1.000	1.000	1.000	1.000
cloud fraction crb precision [1]	$1.965 imes10^{-5}$	$2.282 imes 10^{-5}$	$2.571 imes 10^{-5}$	$2.952 imes 10^{-5}$	4.006×10^{-5}	$1.000 imes 10^{-4}$	$1.337 imes 10^{-4}$	$2.533 imes 10^{-4}$	$6.996 imes10^{-4}$	2.428×10^{-3}
scene albedo [1]	8.307×10^{-3}	$2.043 imes 10^{-2}$	$3.775 imes 10^{-2}$	$6.740 imes 10^{-2}$	0.143	0.743	0.857	0.914	0.964	1.12
scene albedo precision [1]	$1.288 imes10^{-5}$	1.520×10^{-5}	$1.838 imes10^{-5}$	$2.288 imes 10^{-5}$	3.085×10^{-5}	9.722×10^{-5}	$1.304 imes 10^{-4}$	1.766×10^{-4}	$2.709 imes 10^{-4}$	5.360×10^{-4}
apparent scene pressure [hPa]	331	465	564	626	697	949	977	996	1.010×10^{3}	1.020×10^{3}
apparent scene pressure precision [hPa]	0.212	0.240	0.260	0.279	0.309	0.775	1.24	1.99	3.49	8.36
chi square [1]	282	685	1.419×10^{3}	2.815×10^{3}	5.668×10^{3}	3.025×10^{4}	3.802×10^{4}	4.493×10^{4}	5.452×10^{4}	7.502×10^4
number of iterations [1]	2.00	2.00	2.00	3.00	3.00	4.00	4.00	5.00	5.00	7.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	-1.421×10^{-8}	-6.483×10^{-9}	-3.868×10^{-9}	-2.396×10^{-9}	-1.075×10^{-9}	3.820×10^{-9}	5.271×10^{-9}	$6.723 imes 10^{-9}$	$8.894 imes 10^{-9}$	1.402×10^{-8}
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$7.135 imes 10^{-10}$	8.116×10^{-10}	8.835×10^{-10}	9.711×10^{-10}	1.141×10^{-9}	2.153×10^{-9}	2.421×10^{-9}	2.633×10^{-9}	2.959×10^{-9}	3.615×10^{-9}
chi square fluorescence [1]	397	1.010×10^{3}	1.619×10^{3}	2.255×10^{3}	3.534×10^{3}	4.415×10^{4}	7.614×10^{4}	1.216×10^{5}	2.132×10^{5}	4.669×10^{5}
degrees of freedom fluorescence [1]	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$-2.317 imes 10^{-2}$	-8.575×10^{-3}	-3.739×10^{-3}	-1.221×10^{-3}	$7.961 imes 10^{-4}$	6.236×10^{-3}	8.246×10^{-3}	$1.082 imes 10^{-2}$	$1.571 imes 10^{-2}$	3.009×10^{-2}

Table	3: Parameterlist and basic	statistics for	the analysis for	observations in	the northern her	nisphere		
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.978 ± 0.091	10099316	0.0	1.000	0.350	1.000	1.000	1.000
cloud pressure crb [hPa]	763 ± 211	10099316	320	819	130	1.073×10^{3}	619	939
cloud pressure crb precision [hPa]	2.97 ± 9.88	10099316	1.77	0.849	$1.831 imes 10^{-4}$	1.564×10^{3}	0.413	2.19
cloud fraction crb [1]	0.398 ± 0.362	10099316	0.654	0.265	0.0	1.000	$6.916 imes 10^{-2}$	0.723
cloud fraction crb precision [1]	$(2.432 \pm 19.164) \times 10^{-4}$	10099316	$9.027 imes 10^{-5}$	$9.337 imes 10^{-5}$	$1.369 imes 10^{-8}$	0.648	$4.729 imes10^{-5}$	$1.376 imes10^{-4}$
scene albedo [1]	0.432 ± 0.311	10099316	0.510	0.404	-1.772×10^{-3}	3.63	0.157	0.667
scene albedo precision [1]	$(9.915 \pm 11.921) \times 10^{-5}$	10099316	$7.613 imes 10^{-5}$	5.727×10^{-5}	$1.113 imes 10^{-5}$	2.656×10^{-3}	3.367×10^{-5}	$1.098 imes10^{-4}$
apparent scene pressure [hPa]	810 ± 180	10099316	240	864	130	1.075×10^3	712	952
apparent scene pressure precision [hPa]	0.973 ± 1.627	10099316	0.467	0.493	$9.250 imes 10^{-2}$	56.6	0.355	0.822
chi square [1]	$(0.189 \pm 3.195) \times 10^5$	10099316	$1.842 imes 10^4$	$1.282 imes 10^4$	71.2	$1.774 imes 10^8$	$5.108 imes 10^3$	2.352×10^4
number of iterations [1]	3.55 ± 1.20	10099316	1.000	3.00	1.000	14.0	3.00	4.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.133 \pm 4.653) \times 10^{-9}$	10099316	$4.024 imes 10^{-9}$	1.266×10^{-9}	$-9.296 imes10^{-7}$	$1.140 imes10^{-6}$	$-7.030 imes 10^{-10}$	$3.321 imes10^{-9}$
fluorescence precision [mol $s^{-1} m^{-2} nm^{-1} sr^{-1}$]	$(1.538 \pm 0.616) \times 10^{-9}$	10099316	$8.613 imes 10^{-10}$	$1.436 imes 10^{-9}$	$4.258 imes 10^{-10}$	$5.528 imes 10^{-9}$	1.042×10^{-9}	$1.903 imes 10^{-9}$
chi square fluorescence [1]	$(0.365 \pm 0.793) \times 10^5$	10099316	$3.089 imes 10^4$	9.377×10^{3}	101	$1.755 imes 10^6$	2.894×10^{3}	$3.378 imes10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	10099316	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	10099316	0.0	50.0	48.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(3.543 \pm 8.374) \times 10^{-3}$	10099316	6.119×10^{-3}	3.464×10^{-3}	-8.250×10^{-2}	$9.047 imes 10^{-2}$	4.307×10^{-4}	6.550×10^{-3}

Table 4. Parameterlist and basic statistics for the ana	lysis for observations in the southern hemisphere
Table 4. I diameternist and basic statistics for the and	i ysis for observations in the southern hemisphere

Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.865 ± 0.212	13375748	0.1000	1.000	0.350	1.000	0.900	1.000
cloud pressure crb [hPa]	792 ± 180	13375748	264	839	130	1.030×10^3	671	935
cloud pressure crb precision [hPa]	2.00 ± 8.48	13375748	0.749	0.404	1.831×10^{-3}	660	0.283	1.03
cloud fraction crb [1]	0.530 ± 0.394	13375748	0.884	0.524	0.0	1.000	0.116	1.000
cloud fraction crb precision [1]	$(1.674 \pm 6.051) \times 10^{-4}$	13375748	$6.393 imes10^{-5}$	$6.718 imes10^{-5}$	$1.294 imes10^{-8}$	0.179	3.607×10^{-5}	$1.000 imes10^{-4}$
scene albedo [1]	0.479 ± 0.343	13375748	0.671	0.467	$-2.898 imes10^{-3}$	4.01	0.134	0.804
scene albedo precision [1]	$(7.438 \pm 8.211) \times 10^{-5}$	13375748	$6.049 imes10^{-5}$	$5.042 imes 10^{-5}$	$1.046 imes10^{-5}$	$6.156 imes10^{-3}$	2.903×10^{-5}	$8.952 imes 10^{-5}$
apparent scene pressure [hPa]	811 ± 165	13375748	255	856	130	1.030×10^3	691	946
apparent scene pressure precision [hPa]	0.918 ± 1.731	13375748	0.435	0.378	0.102	58.8	0.287	0.722
chi square [1]	$(0.249 \pm 1.217) \times 10^5$	13375748	$2.912 imes 10^4$	1.952×10^4	62.7	$1.170 imes10^8$	6.262×10^{3}	$3.538 imes 10^4$
number of iterations [1]	3.27 ± 0.99	13375748	1.000	3.00	1.000	14.0	3.00	4.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.335 \pm 6.988) \times 10^{-9}$	13375748	$5.726 imes 10^{-9}$	1.244×10^{-9}	$-1.768 imes10^{-6}$	$1.408 imes10^{-6}$	$-1.394 imes 10^{-9}$	$4.333 imes10^{-9}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.842 \pm 0.709) \times 10^{-9}$	13375748	$1.037 imes 10^{-9}$	1.809×10^{-9}	4.323×10^{-10}	5.562×10^{-9}	1.254×10^{-9}	$2.291 imes 10^{-9}$
chi square fluorescence [1]	$(0.533 \pm 0.979) \times 10^5$	13375748	$4.876 imes 10^4$	1.664×10^4	129	2.232×10^{6}	4.370×10^{3}	$5.313 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	13375748	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	13375748	0.0	50.0	47.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$ (3.514 \pm 8.200) \times 10^{-3}$	13375748	4.965×10^{-3}	3.586×10^{-3}	-0.147	0.456	1.060×10^{-3}	6.025×10^{-3}

	Table 5: Parameterlist and	d basic statis	stics for the ana	lysis for observa	tions over water			
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.983 ± 0.047	14332123	0.0	1.000	0.350	1.000	1.000	1.000
cloud pressure crb [hPa]	809 ± 193	14332123	254	880	130	1.047×10^3	701	955
cloud pressure crb precision [hPa]	2.48 ± 9.54	14332123	1.22	0.595	1.831×10^{-3}	616	0.337	1.56
cloud fraction crb [1]	0.382 ± 0.339	14332123	0.607	0.276	0.0	1.000	$6.730 imes 10^{-2}$	0.674
cloud fraction crb precision [1]	$(8.624 \pm 46.065) \times 10^{-5}$	14332123	$5.059 imes10^{-5}$	$4.927 imes 10^{-5}$	$8.396 imes10^{-8}$	0.303	2.912×10^{-5}	$7.970 imes10^{-5}$
scene albedo [1]	0.326 ± 0.286	14332123	0.499	0.239	$-2.898 imes 10^{-3}$	3.63	$6.410 imes 10^{-2}$	0.563
scene albedo precision [1]	$(5.834 \pm 7.520) \times 10^{-5}$	14332123	$4.030 imes 10^{-5}$	$4.092 imes 10^{-5}$	$1.046 imes 10^{-5}$	$6.156 imes 10^{-3}$	$2.245 imes 10^{-5}$	$6.275 imes 10^{-5}$
apparent scene pressure [hPa]	827 ± 183	14332123	235	891	130	$1.075 imes 10^3$	732	968
apparent scene pressure precision [hPa]	1.28 ± 2.08	14332123	0.939	0.551	0.161	58.8	0.330	1.27
chi square [1]	$(0.162 \pm 0.946) \times 10^5$	14332123	$2.193 imes 10^4$	9.667×10^{3}	62.7	$1.378 imes10^8$	2.708×10^{3}	2.464×10^4
number of iterations [1]	2.92 ± 0.74	14332123	0.0	3.00	1.000	14.0	3.00	3.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(3.057 \pm 55.433) \times 10^{-10}$	14332123	$4.286 imes 10^{-9}$	2.162×10^{-10}	$-1.733 imes 10^{-6}$	$1.408 imes10^{-6}$	$-1.766 imes 10^{-9}$	2.520×10^{-9}
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.651 \pm 0.721) \times 10^{-9}$	14332123	$1.106 imes 10^{-9}$	$1.518 imes10^{-9}$	$4.258 imes 10^{-10}$	$5.528 imes 10^{-9}$	1.033×10^{-9}	2.139×10^{-9}
chi square fluorescence [1]	$(0.449 \pm 0.834) \times 10^5$	14332123	4.312×10^4	$1.618 imes 10^4$	101	$2.006 imes 10^6$	$4.718 imes 10^3$	$4.783 imes10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	14332123	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	14332123	0.0	50.0	48.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(3.464 \pm 9.791) \times 10^{-3}$	14332123	6.864×10^{-3}	3.481×10^{-3}	-0.147	0.456	4.024×10^{-6}	$6.868 imes 10^{-3}$

	Table 6: Parameterlist an	d basic stat	tistics for the ana	alysis for observ	vations over land			
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.764 ± 0.251	7312335	0.500	1.000	0.350	1.000	0.500	1.000
cloud pressure crb [hPa]	731 ± 180	7312335	237	735	130	$1.068 imes 10^3$	634	871
cloud pressure crb precision [hPa]	2.16 ± 8.07	7312335	1.08	0.407	$1.831 imes 10^{-4}$	1.564×10^{3}	0.278	1.36
cloud fraction crb [1]	0.659 ± 0.409	7312335	0.815	1.000	0.0	1.000	0.185	1.000
cloud fraction crb precision [1]	$(3.904 \pm 19.644) \times 10^{-4}$	7312335	$5.824 imes 10^{-5}$	$1.000 imes 10^{-4}$	$1.294 imes10^{-8}$	0.648	$1.000 imes 10^{-4}$	$1.582 imes10^{-4}$
scene albedo [1]	0.699 ± 0.279	7312335	0.458	0.771	$2.305 imes 10^{-3}$	4.01	0.459	0.917
scene albedo precision [1]	$(1.309 \pm 1.194) \times 10^{-4}$	7312335	$9.654 imes10^{-5}$	$9.745 imes10^{-5}$	1.350×10^{-5}	$1.827 imes 10^{-3}$	$5.405 imes10^{-5}$	$1.506 imes10^{-4}$
apparent scene pressure [hPa]	777 ± 145	7312335	233	785	130	1.062×10^3	667	900
apparent scene pressure precision [hPa]	0.397 ± 0.161	7312335	0.173	0.351	$9.250 imes10^{-2}$	12.9	0.287	0.460
chi square [1]	$(0.325 \pm 3.144) \times 10^5$	7312335	$2.307 imes 10^4$	$2.414 imes 10^4$	146	$1.774 imes 10^8$	$1.438 imes 10^4$	$3.745 imes 10^4$
number of iterations [1]	4.16 ± 1.12	7312335	0.0	4.00	1.000	14.0	4.00	4.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(2.866 \pm 6.190) \times 10^{-9}$	7312335	$4.049 imes 10^{-9}$	$2.940 imes 10^{-9}$	$-1.732 imes 10^{-6}$	$1.303 imes10^{-6}$	$1.042 imes 10^{-9}$	$5.091 imes 10^{-9}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.821\pm0.616)\times10^{-9}$	7312335	$8.094 imes10^{-10}$	$1.782 imes 10^{-9}$	$5.181 imes10^{-10}$	5.562×10^{-9}	1.368×10^{-9}	2.177×10^{-9}
chi square fluorescence [1]	$(0.425 \pm 0.930) \times 10^5$	7312335	$2.903 imes 10^4$	7.299×10^{3}	153	$2.232 imes 10^6$	2.531×10^{3}	$3.156 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	7312335	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	7312335	0.0	50.0	48.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(3.578 \pm 4.419) \times 10^{-3}$	7312335	3.630×10^{-3}	3.578×10^{-3}	-0.129	7.712×10^{-2}	1.758×10^{-3}	$5.388 imes 10^{-3}$

Granule outlines

Figure 1: Outline of the granules.

4 Input data monitoring

Figure 2: Input data per granule

5 Warnings and errors

Figure 3: Fraction of pixels with specific warnings and errors during processing

6 World maps

Figure 4: Map of "Cloud pressure" for 2025-01-29 to 2025-01-30

Figure 5: Map of "Cloud fraction" for 2025-01-29 to 2025-01-30

Figure 6: Map of "Scene albedo" for 2025-01-29 to 2025-01-30

Figure 7: Map of "Apparent scene pressure" for 2025-01-29 to 2025-01-30

2025-01-29

Figure 8: Map of "Fluorescence" for 2025-01-29 to 2025-01-30

Figure 9: Map of the number of observations for 2025-01-29 to 2025-01-30

7 Zonal average

Figure 10: Zonal average of "QA value" for 2025-01-29 to 2025-01-30.

Figure 11: Zonal average of "Cloud pressure" for 2025-01-29 to 2025-01-30.

Figure 12: Zonal average of "Cloud pressure precision" for 2025-01-29 to 2025-01-30.

Figure 13: Zonal average of "Cloud fraction" for 2025-01-29 to 2025-01-30.

Figure 14: Zonal average of "Cloud fraction precision" for 2025-01-29 to 2025-01-30.

Figure 15: Zonal average of "Scene albedo" for 2025-01-29 to 2025-01-30.

Figure 16: Zonal average of "Scene albedo precision" for 2025-01-29 to 2025-01-30.

Figure 17: Zonal average of "Apparent scene pressure" for 2025-01-29 to 2025-01-30.

Figure 18: Zonal average of "Apparent scene pressure precision" for 2025-01-29 to 2025-01-30.

Figure 19: Zonal average of " χ^2 " for 2025-01-29 to 2025-01-30.

Figure 20: Zonal average of "Number of iterations" for 2025-01-29 to 2025-01-30.

Figure 21: Zonal average of "Fluorescence" for 2025-01-29 to 2025-01-30.

Figure 22: Zonal average of "Fluorescence precision" for 2025-01-29 to 2025-01-30.

Figure 23: Zonal average of " χ^2 of fluorescence retrieval" for 2025-01-29 to 2025-01-30.

Figure 24: Zonal average of "Degrees of freedom for signal of fluorescence retrieval" for 2025-01-29 to 2025-01-30.

Figure 25: Zonal average of "Number of points in the spectrum" for 2025-01-29 to 2025-01-30.

Figure 26: Zonal average of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-01-29 to 2025-01-30.

8 Histograms

The definitions of the parameters given in this section can be found in section 2.

Figure 27: Histogram of "QA value" for 2025-01-29 to 2025-01-30

Figure 28: Histogram of "Cloud pressure" for 2025-01-29 to 2025-01-30

Figure 29: Histogram of "Cloud pressure precision" for 2025-01-29 to 2025-01-30

Figure 30: Histogram of "Cloud fraction" for 2025-01-29 to 2025-01-30

Figure 31: Histogram of "Cloud fraction precision" for 2025-01-29 to 2025-01-30

Figure 32: Histogram of "Scene albedo" for 2025-01-29 to 2025-01-30

Figure 33: Histogram of "Scene albedo precision" for 2025-01-29 to 2025-01-30

Figure 34: Histogram of "Apparent scene pressure" for 2025-01-29 to 2025-01-30

Figure 35: Histogram of "Apparent scene pressure precision" for 2025-01-29 to 2025-01-30

Figure 36: Histogram of " χ^2 " for 2025-01-29 to 2025-01-30

Figure 37: Histogram of "Number of iterations" for 2025-01-29 to 2025-01-30

Figure 38: Histogram of "Fluorescence" for 2025-01-29 to 2025-01-30

Figure 39: Histogram of "Fluorescence precision" for 2025-01-29 to 2025-01-30

Figure 40: Histogram of " χ^2 of fluorescence retrieval" for 2025-01-29 to 2025-01-30

Figure 41: Histogram of "Degrees of freedom for signal of fluorescence retrieval" for 2025-01-29 to 2025-01-30

Figure 42: Histogram of "Number of points in the spectrum" for 2025-01-29 to 2025-01-30

Figure 43: Histogram of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-01-29 to 2025-01-30

9 Along track statistics

The TROPOMI instrument uses different binned detector rows for different viewing directions. In this section statistics are presented for each of the binned rows in the instrument.

Figure 44: Along track statistics of "QA value" for 2025-01-29 to 2025-01-30

Figure 45: Along track statistics of "Cloud pressure" for 2025-01-29 to 2025-01-30

Figure 46: Along track statistics of "Cloud pressure precision" for 2025-01-29 to 2025-01-30

Figure 47: Along track statistics of "Cloud fraction" for 2025-01-29 to 2025-01-30

Figure 48: Along track statistics of "Cloud fraction precision" for 2025-01-29 to 2025-01-30

Figure 49: Along track statistics of "Scene albedo" for 2025-01-29 to 2025-01-30

Figure 50: Along track statistics of "Scene albedo precision" for 2025-01-29 to 2025-01-30

Figure 51: Along track statistics of "Apparent scene pressure" for 2025-01-29 to 2025-01-30

Figure 52: Along track statistics of "Apparent scene pressure precision" for 2025-01-29 to 2025-01-30

Figure 53: Along track statistics of " χ^2 " for 2025-01-29 to 2025-01-30

Figure 54: Along track statistics of "Number of iterations" for 2025-01-29 to 2025-01-30

Figure 55: Along track statistics of "Fluorescence" for 2025-01-29 to 2025-01-30

Figure 56: Along track statistics of "Fluorescence precision" for 2025-01-29 to 2025-01-30

Figure 57: Along track statistics of " χ^2 of fluorescence retrieval" for 2025-01-29 to 2025-01-30

Figure 58: Along track statistics of "Degrees of freedom for signal of fluorescence retrieval" for 2025-01-29 to 2025-01-30

Figure 59: Along track statistics of "Number of points in the spectrum" for 2025-01-29 to 2025-01-30

Figure 60: Along track statistics of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-01-29 to 2025-01-30

10 Coincidence density

To investigate the relation between parameters scatter density plots are produced. These include some 'hidden' parameters, latitude and the solar- and viewing geometries, in addition to all configured parameters. All combinations of pairs of parameters are included *once*, in one direction alone.

Contents

1	Short Introduction	1
	1.1 The list of parameters	1
2	Definitions	1
3	Granule outlines	8
4	Input data monitoring	9
5	Warnings and errors	10
6	World maps	11
7	Zonal average	17
8	Histograms	34
9	Along track statistics	51
10	Coincidence density	68
11	Copyright information of 'PyCAMA'	68

List of Figures

1	Outline of the granules.	8
2	Input data per granule	9
3	Fraction of pixels with specific warnings and errors during processing	10
4	Map of "Cloud pressure" for 2025-01-29 to 2025-01-30	11
5	Map of "Cloud fraction" for 2025-01-29 to 2025-01-30	12
6	Map of "Scene albedo" for 2025-01-29 to 2025-01-30	13
7	Map of "Apparent scene pressure" for 2025-01-29 to 2025-01-30	14
8	Map of "Fluorescence" for 2025-01-29 to 2025-01-30	15
9	Map of the number of observations for 2025-01-29 to 2025-01-30	16
10	Zonal average of "QA value" for 2025-01-29 to 2025-01-30.	17
11	Zonal average of "Cloud pressure" for 2025-01-29 to 2025-01-30.	18
12	Zonal average of "Cloud pressure precision" for 2025-01-29 to 2025-01-30.	19
13	Zonal average of "Cloud fraction" for 2025-01-29 to 2025-01-30.	20
14	Zonal average of "Cloud fraction precision" for 2025-01-29 to 2025-01-30.	21
15	Zonal average of "Scene albedo" for 2025-01-29 to 2025-01-30.	22
16	Zonal average of "Scene albedo precision" for 2025-01-29 to 2025-01-30.	23
17	Zonal average of "Apparent scene pressure" for 2025-01-29 to 2025-01-30.	24
18	Zonal average of "Apparent scene pressure precision" for 2025-01-29 to 2025-01-30.	25
19	Zonal average of " χ^2 " for 2025-01-29 to 2025-01-30	26
20	Zonal average of "Number of iterations" for 2025-01-29 to 2025-01-30.	27
21	Zonal average of "Fluorescence" for 2025-01-29 to 2025-01-30.	28
22	Zonal average of "Fluorescence precision" for 2025-01-29 to 2025-01-30.	29
23	Zonal average of " χ^2 of fluorescence retrieval" for 2025-01-29 to 2025-01-30	30
24	Zonal average of "Degrees of freedom for signal of fluorescence retrieval" for 2025-01-29 to 2025-01-30.	31
25	Zonal average of "Number of points in the spectrum" for 2025-01-29 to 2025-01-30.	32
26	Zonal average of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-01-29 to 2025-01-30	33
27	Histogram of "QA value" for 2025-01-29 to 2025-01-30	34
28	Histogram of "Cloud pressure" for 2025-01-29 to 2025-01-30	35
29	Histogram of "Cloud pressure precision" for 2025-01-29 to 2025-01-30	36

30	Histogram of "Cloud fraction" for 2025-01-29 to 2025-01-30	37
31	Histogram of "Cloud fraction precision" for 2025-01-29 to 2025-01-30.	38
32	Histogram of "Scene albedo" for 2025-01-29 to 2025-01-30	39
33	Histogram of "Scene albedo precision" for 2025-01-29 to 2025-01-30	40
34	Histogram of "Apparent scene pressure" for 2025-01-29 to 2025-01-30	41
35	Histogram of "Apparent scene pressure precision" for 2025-01-29 to 2025-01-30	42
36	Histogram of " χ^2 " for 2025-01-29 to 2025-01-30	43
37	Histogram of "Number of iterations" for 2025-01-29 to 2025-01-30	44
38	Histogram of "Fluorescence" for 2025-01-29 to 2025-01-30	45
39	Histogram of "Fluorescence precision" for 2025-01-29 to 2025-01-30	46
40	Histogram of " χ^2 of fluorescence retrieval" for 2025-01-29 to 2025-01-30	47
41	Histogram of "Degrees of freedom for signal of fluorescence retrieval" for 2025-01-29 to 2025-01-30	48
42	Histogram of "Number of points in the spectrum" for 2025-01-29 to 2025-01-30	49
43	Histogram of "Spectral offset $(\lambda_{true} - \lambda_{nominal})$ " for 2025-01-29 to 2025-01-30	50
44	Along track statistics of "QA value" for 2025-01-29 to 2025-01-30	51
45	Along track statistics of "Cloud pressure" for 2025-01-29 to 2025-01-30	52
46	Along track statistics of "Cloud pressure precision" for 2025-01-29 to 2025-01-30	53
47	Along track statistics of "Cloud fraction" for 2025-01-29 to 2025-01-30	54
48	Along track statistics of "Cloud fraction precision" for 2025-01-29 to 2025-01-30	55
49	Along track statistics of "Scene albedo" for 2025-01-29 to 2025-01-30	56
50	Along track statistics of "Scene albedo precision" for 2025-01-29 to 2025-01-30	57
51	Along track statistics of "Apparent scene pressure" for 2025-01-29 to 2025-01-30	58
52	Along track statistics of "Apparent scene pressure precision" for 2025-01-29 to 2025-01-30	59
53	Along track statistics of " χ^2 " for 2025-01-29 to 2025-01-30	60
54	Along track statistics of "Number of iterations" for 2025-01-29 to 2025-01-30	61
55	Along track statistics of "Fluorescence" for 2025-01-29 to 2025-01-30	62
56	Along track statistics of "Fluorescence precision" for 2025-01-29 to 2025-01-30	63
57	Along track statistics of " χ^2 of fluorescence retrieval" for 2025-01-29 to 2025-01-30	64
58	Along track statistics of "Degrees of freedom for signal of fluorescence retrieval" for 2025-01-29 to 2025-01-30	65
59	Along track statistics of "Number of points in the spectrum" for 2025-01-29 to 2025-01-30	66
60	Along track statistics of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-01-29 to 2025-01-30	67

List of Tables

1	Parameterlist and basic statistics for the analysis
2	Percentile ranges
3	Parameterlist and basic statistics for the analysis for observations in the northern hemisphere
4	Parameterlist and basic statistics for the analysis for observations in the southern hemisphere
5	Parameterlist and basic statistics for the analysis for observations over water
6	Parameterlist and basic statistics for the analysis for observations over land

11 Copyright information of 'PyCAMA'

Copyright © 2005-2023, Maarten Sneep (KNMI).

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
- 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

This software is provided by the copyright holders and contributors "as is" and any express or implied warranties, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose are disclaimed. In no event shall the copyright holder or contributors be liable for any direct, indirect, incidental, special, exemplary, or consequential damages (including, but not limited to, procurement of substitute goods or services; loss of use, data, or profits; or business interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence or otherwise) arising in any way out of the use of this software, even if advised of the possibility of such damage.

Maarten Sneep (maarten.sneep@knmi.nl).