PyCAMA report generated by tropl2-proc

tropl2-proc

2025-02-06 (04:30)

1 Short Introduction

1.1 The list of parameters

You may want to keep the list given in table 1 at hand when viewing the results.

2 Definitions

The averages shown here are unweighed averages:

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i \tag{1}$$

with N the number of observations in the dataset.

The spread of the measurements is indicated with the variance V(x), or rather the standard deviation $\sigma(x) = \sqrt{V(x)}$.

$$V(x) = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2$$
(2)

We also report the more robust statistics median, minimum, maximum, various percentiles and inter quartile range.

The median m is the value of parameter x for which half of the observations of x is smaller than m:

$$P(x \le m) = P(x \ge m) = \int_{-\infty}^{m} f(x) \, \mathrm{d}x = \frac{1}{2}$$
(3)

with f(x) the probability density function.

The median is a special case of a percentile. Instead of $\frac{1}{2}$ in equation 3, other threshold values can be used. We report results for 1%, 5%, 10%, 15.9%, 25%, 75%, 84.1%, 90%, 95% and 99%. The inter quartile range is the difference between the 75% and 25% percentiles. Similarly the minimum and maximum values correspond to the 0% and 100% percentiles respectively.

For normally distributed parameters the mean and median are the same, while the $\mu \pm \sigma$ values and the 15.9% and 84.1% percentiles coincide.

To get a measure for the relation of one variable $x_{(k)}$ with another $x_{(l)}$, we calculate the covariance matrix C_{kl} .

$$C_{kl} = C(x_{(k)}, x_{(l)}) = \frac{1}{N-1} \sum_{i=1}^{N} (x_{(k),i} - \overline{x_{(k)}}) (x_{(l),i} - \overline{x_{(l)}})$$
(4)

Rather than a dimensionally dependent covariance, it is often easier to interpret a correlation matrix R_{kl} , a matrix of Pearson's *r* coefficients:

$$R_{kl} = R(x_{(k)}, x_{(l)}) = \frac{C_{kl}}{\sqrt{C_{kk}C_{ll}}} = \frac{C_{kl}}{\sqrt{V(x_k)V(x_l)}}$$
(5)

The diagonal elements of the covariance matrix are the variances of the elements, $V(x_{(k)}) = C_{kk}$ and obviously $R_{kk} = 1$.

Table 1: Parameterlist and basic statistics for the anal	ys	31	i	
--	----	----	---	--

	Table 1: Parameterl	ist and basic s	statistics for the ar	alysis			
Variable	mean $\pm \sigma$	Count	Mode	IQR	Median	Minimum	Maximum
qa value [1]	0.914 ± 0.179	23165620	0.995	0.0	1.000	0.350	1.000
cloud pressure crb [hPa]	777 ± 196	23165620	$1.005 imes 10^3$	289	829	130	1.068×10^3
cloud pressure crb precision [hPa]	2.46 ± 9.15	23165620	0.750	1.26	0.553	$3.662 imes 10^{-4}$	1.453×10^3
cloud fraction crb [1]	0.467 ± 0.387	23165620	0.996	0.837	0.376	0.0	1.000
cloud fraction crb precision [1]	$(1.826 \pm 10.866) \times 10^{-4}$	23165620	$2.500 imes 10^{-4}$	$6.097 imes10^{-5}$	$7.439 imes 10^{-5}$	$8.169 imes 10^{-9}$	1.01
scene albedo [1]	0.454 ± 0.334	23165620	$1.500 imes 10^{-2}$	0.607	0.423	-2.451×10^{-3}	4.89
scene albedo precision [1]	$(8.201 \pm 9.373) \times 10^{-5}$	23165620	2.500×10^{-4}	6.451×10^{-5}	5.232×10^{-5}	1.023×10^{-5}	6.843×10^{-3}
apparent scene pressure [hPa]	808 ± 172	23165620	$1.008 imes 10^3$	263	857	130	1.069×10^{3}
apparent scene pressure precision [hPa]	0.970 ± 1.749	23165620	0.500	0.466	0.429	7.799×10^{-2}	58.5
chi square [1]	$(0.221 \pm 1.986) \times 10^5$	23165620	0.150	2.476×10^4	$1.577 imes 10^4$	56.5	$2.575 imes 10^8$
number of iterations [1]	3.36 ± 1.07	23165620	3.23	1.000	3.00	1.000	14.0
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.026 \pm 6.994) \times 10^{-9}$	23165620	$7.500 imes 10^{-10}$	$4.838 imes 10^{-9}$	$1.082 imes 10^{-9}$	$-4.662 imes 10^{-6}$	1.952×10^{-6}
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.715 \pm 0.684) \times 10^{-9}$	23165620	$8.500 imes 10^{-10}$	1.003×10^{-9}	1.638×10^{-9}	$3.833 imes 10^{-10}$	5.537×10^{-9}
chi square fluorescence [1]	$(0.472 \pm 0.939) \times 10^5$	23165620	1.250×10^{3}	$4.171 imes 10^4$	$1.252 imes 10^4$	96.1	1.053×10^7
degrees of freedom fluorescence [1]	6.00 ± 0.00	23165620	5.95	0.0	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	23165620	49.7	0.0	50.0	43.0	50.0
wavelength calibration offset [nm]	$(3.402 \pm 8.472) \times 10^{-3}$	23165620	3.600×10^{-3}	5.432×10^{-3}	3.432×10^{-3}	-0.107	0.207

	Table 2: Percentile ranges									
Variable	1 %	5%	10 %	15.9 %	25 %	75 %	84.1 %	90 %	95 %	99 %
qa value [1]	0.500	0.500	0.500	0.900	1.000	1.000	1.000	1.000	1.000	1.000
cloud pressure crb [hPa]	235	388	487	569	649	938	970	990	1.007×10^3	1.018×10^3
cloud pressure crb precision [hPa]	0.158	0.234	0.258	0.278	0.317	1.58	2.81	4.78	9.42	31.1
cloud fraction crb [1]	$9.111 imes 10^{-4}$	$1.018 imes10^{-2}$	$2.250 imes10^{-2}$	$4.122 imes 10^{-2}$	$8.394 imes10^{-2}$	0.921	1.000	1.000	1.000	1.000
cloud fraction crb precision [1]	$1.964 imes 10^{-5}$	$2.260 imes10^{-5}$	$2.533 imes10^{-5}$	$2.909 imes 10^{-5}$	$3.903 imes 10^{-5}$	$1.000 imes 10^{-4}$	$1.222 imes 10^{-4}$	$2.177 imes10^{-4}$	$5.662 imes 10^{-4}$	$2.306 imes 10^{-3}$
scene albedo [1]	$8.080 imes 10^{-3}$	$1.909 imes10^{-2}$	$3.514 imes10^{-2}$	$6.274 imes10^{-2}$	0.135	0.743	0.856	0.914	0.968	1.14
scene albedo precision [1]	$1.283 imes 10^{-5}$	$1.504 imes 10^{-5}$	$1.821 imes 10^{-5}$	$2.269 imes 10^{-5}$	3.050×10^{-5}	9.501×10^{-5}	1.269×10^{-4}	1.720×10^{-4}	$2.573 imes 10^{-4}$	4.964×10^{-4}
apparent scene pressure [hPa]	342	471	556	619	689	951	979	996	1.009×10^{3}	1.018×10^3
apparent scene pressure precision [hPa]	0.213	0.241	0.261	0.280	0.310	0.776	1.28	2.11	3.74	8.54
chi square [1]	273	644	1.340×10^{3}	2.684×10^{3}	5.460×10^{3}	3.022×10^{4}	3.790×10^{4}	4.469×10^{4}	5.426×10^{4}	$7.618 imes 10^4$
number of iterations [1]	2.00	2.00	2.00	3.00	3.00	4.00	4.00	4.00	5.00	7.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	-1.464×10^{-8}	-6.877×10^{-9}	-4.155×10^{-9}	-2.608×10^{-9}	-1.227×10^{-9}	3.611×10^{-9}	5.054×10^{-9}	6.476×10^{-9}	$8.569 imes 10^{-9}$	1.346×10^{-8}
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$7.217 imes 10^{-10}$	$8.118 imes 10^{-10}$	8.859×10^{-10}	9.795×10^{-10}	1.155×10^{-9}	2.157×10^{-9}	2.419×10^{-9}	2.634×10^{-9}	2.963×10^{-9}	3.620×10^{-9}
chi square fluorescence [1]	383	883	1.370×10^{3}	1.984×10^{3}	3.411×10^{3}	4.512×10^{4}	$8.078 imes 10^4$	1.280×10^{5}	2.193×10^{5}	4.796×10^{5}
degrees of freedom fluorescence [1]	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0
wavelength calibration offset [nm]	-2.427×10^{-2}	-8.965×10^{-3}	-3.914×10^{-3}	-1.333×10^{-3}	$6.894 imes10^{-4}$	6.121×10^{-3}	8.110×10^{-3}	1.071×10^{-2}	$1.578 imes10^{-2}$	3.082×10^{-2}

Table 3: Parameterlist	and basic statistics fo	r the analysis for o	observations in the no	orthern hemisphere

Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.972 ± 0.103	10053575	0.0	1.000	0.350	1.000	1.000	1.000
cloud pressure crb [hPa]	763 ± 215	10053575	332	830	130	1.068×10^3	610	941
cloud pressure crb precision [hPa]	3.16 ± 10.70	10053575	1.87	0.869	$3.662 imes 10^{-4}$	1.427×10^3	0.415	2.28
cloud fraction crb [1]	0.388 ± 0.362	10053575	0.640	0.252	0.0	1.000	$6.238 imes10^{-2}$	0.702
cloud fraction crb precision [1]	$(2.182 \pm 14.850) \times 10^{-4}$	10053575	$8.303 imes10^{-5}$	$8.849 imes10^{-5}$	8.169×10^{-9}	1.01	$4.613 imes10^{-5}$	$1.292 imes10^{-4}$
scene albedo [1]	0.426 ± 0.314	10053575	0.514	0.389	-2.451×10^{-3}	4.89	0.150	0.663
scene albedo precision [1]	$(9.234 \pm 10.657) \times 10^{-5}$	10053575	$7.004 imes10^{-5}$	$5.525 imes 10^{-5}$	$1.151 imes 10^{-5}$	$4.407 imes 10^{-3}$	$3.307 imes 10^{-5}$	$1.031 imes 10^{-4}$
apparent scene pressure [hPa]	813 ± 178	10053575	253	870	130	1.069×10^{3}	703	956
apparent scene pressure precision [hPa]	1.02 ± 1.77	10053575	0.458	0.482	0.163	52.9	0.355	0.813
chi square [1]	$(0.195 \pm 1.996) \times 10^5$	10053575	$1.979 imes 10^4$	$1.330 imes 10^4$	56.5	$1.750 imes 10^8$	5.117×10^{3}	$2.491 imes 10^4$
number of iterations [1]	3.53 ± 1.18	10053575	1.000	3.00	1.000	14.0	3.00	4.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(9.666 \pm 47.464) \times 10^{-10}$	10053575	$4.024 imes 10^{-9}$	$1.121 imes 10^{-9}$	-1.620×10^{-6}	$8.374 imes 10^{-7}$	$-8.391 imes 10^{-10}$	$3.185 imes10^{-9}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.561 \pm 0.627) \times 10^{-9}$	10053575	$8.766 imes 10^{-10}$	$1.455 imes 10^{-9}$	$3.833 imes 10^{-10}$	$5.500 imes 10^{-9}$	1.062×10^{-9}	1.939×10^{-9}
chi square fluorescence [1]	$(0.375 \pm 0.790) \times 10^5$	10053575	$3.143 imes 10^4$	$8.919 imes 10^3$	96.1	$2.046 imes 10^6$	2.571×10^{3}	3.400×10^4
degrees of freedom fluorescence [1]	6.00 ± 0.00	10053575	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	10053575	0.0	50.0	48.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(3.391 \pm 8.731) \times 10^{-3}$	10053575	5.941×10^{-3}	3.331×10^{-3}	$-7.967 imes 10^{-2}$	0.207	$3.747 imes 10^{-4}$	6.316×10^{-3}

Table 4. Parameterlist and basic statistics for the anal	vsis for observations in the southern hemisphere
Tuble 4. I drameternist and busic statistics for the anal	ysis for observations in the southern hemisphere

Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.870 ± 0.210	13112045	0.1000	1.000	0.350	1.000	0.900	1.000
cloud pressure crb [hPa]	787 ± 180	13112045	271	829	130	1.031×10^{3}	664	935
cloud pressure crb precision [hPa]	1.93 ± 7.72	13112045	0.750	0.410	1.892×10^{-3}	1.453×10^{3}	0.286	1.04
cloud fraction crb [1]	0.527 ± 0.395	13112045	0.889	0.519	0.0	1.000	0.111	1.000
cloud fraction crb precision [1]	$(1.553 \pm 6.271) \times 10^{-4}$	13112045	$6.480 imes10^{-5}$	$6.734 imes10^{-5}$	$1.123 imes10^{-8}$	0.168	$3.520 imes 10^{-5}$	$1.000 imes 10^{-4}$
scene albedo [1]	0.476 ± 0.346	13112045	0.676	0.458	$-2.322 imes10^{-3}$	4.42	0.127	0.802
scene albedo precision [1]	$(7.409 \pm 8.166) \times 10^{-5}$	13112045	$6.086 imes10^{-5}$	$5.038 imes 10^{-5}$	$1.023 imes 10^{-5}$	$6.843 imes 10^{-3}$	$2.861 imes 10^{-5}$	$8.947 imes10^{-5}$
apparent scene pressure [hPa]	805 ± 168	13112045	265	845	130	1.031×10^3	682	947
apparent scene pressure precision [hPa]	0.933 ± 1.730	13112045	0.450	0.380	$7.799 imes10^{-2}$	58.5	0.289	0.740
chi square [1]	$(0.242 \pm 1.978) \times 10^5$	13112045	2.822×10^4	$1.868 imes 10^4$	74.0	$2.575 imes 10^8$	5.790×10^{3}	3.401×10^4
number of iterations [1]	3.24 ± 0.96	13112045	1.000	3.00	1.000	14.0	3.00	4.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.072 \pm 8.316) \times 10^{-9}$	13112045	5.571×10^{-9}	$1.038 imes 10^{-9}$	$-4.662 imes 10^{-6}$	$1.952 imes10^{-6}$	$-1.545 imes10^{-9}$	$4.027 imes 10^{-9}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.832 \pm 0.703) \times 10^{-9}$	13112045	$1.012 imes 10^{-9}$	1.792×10^{-9}	4.331×10^{-10}	$5.537 imes 10^{-9}$	1.250×10^{-9}	2.263×10^{-9}
chi square fluorescence [1]	$(0.547 \pm 1.032) \times 10^5$	13112045	$4.995 imes 10^4$	$1.619 imes 10^4$	115	$1.053 imes 10^7$	4.378×10^{3}	$5.432 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	13112045	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	13112045	0.0	50.0	43.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(3.409 \pm 8.267) \times 10^{-3}$	13112045	5.063×10^{-3}	3.497×10^{-3}	-0.107	0.158	$9.253 imes 10^{-4}$	$5.988 imes 10^{-3}$

	Table 5: Parameterlist and	basic statis	tics for the anal	ysis for observa	tions over water			
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.982 ± 0.050	14184270	0.0	1.000	0.350	1.000	1.000	1.000
cloud pressure crb [hPa]	816 ± 186	14184270	242	882	130	1.044×10^3	714	957
cloud pressure crb precision [hPa]	2.63 ± 10.02	14184270	1.31	0.612	1.892×10^{-3}	1.453×10^3	0.339	1.65
cloud fraction crb [1]	0.374 ± 0.341	14184270	0.606	0.257	0.0	1.000	$6.177 imes10^{-2}$	0.668
cloud fraction crb precision [1]	$(8.235 \pm 36.142) \times 10^{-5}$	14184270	$4.947 imes 10^{-5}$	$4.825 imes 10^{-5}$	$1.292 imes 10^{-8}$	0.168	$2.877 imes10^{-5}$	$7.824 imes 10^{-5}$
scene albedo [1]	0.320 ± 0.288	14184270	0.497	0.223	-2.451×10^{-3}	4.42	$5.991 imes 10^{-2}$	0.557
scene albedo precision [1]	$(5.683 \pm 7.138) \times 10^{-5}$	14184270	$4.030 imes 10^{-5}$	4.035×10^{-5}	$1.023 imes 10^{-5}$	6.843×10^{-3}	2.230×10^{-5}	$6.260 imes10^{-5}$
apparent scene pressure [hPa]	833 ± 176	14184270	228	894	130	1.069×10^{3}	742	970
apparent scene pressure precision [hPa]	1.33 ± 2.15	14184270	0.991	0.566	0.161	58.5	0.333	1.32
chi square [1]	$(0.163 \pm 1.660) \times 10^5$	14184270	$2.240 imes 10^4$	9.682×10^{3}	56.5	$2.575 imes 10^8$	2.635×10^3	$2.503 imes 10^4$
number of iterations [1]	2.92 ± 0.74	14184270	0.0	3.00	1.000	14.0	3.00	3.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(9.272 \pm 548.800) \times 10^{-11}$	14184270	$4.220 imes 10^{-9}$	$1.031 imes 10^{-10}$	$-1.620 imes10^{-6}$	$1.840 imes10^{-6}$	-1.920×10^{-9}	$2.300 imes10^{-9}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.648 \pm 0.722) \times 10^{-9}$	14184270	$1.108 imes 10^{-9}$	$1.511 imes 10^{-9}$	3.833×10^{-10}	$5.500 imes 10^{-9}$	$1.030 imes 10^{-9}$	2.138×10^{-9}
chi square fluorescence [1]	$(0.462 \pm 0.863) \times 10^5$	14184270	$4.535 imes 10^4$	$1.608 imes 10^4$	96.1	$2.250 imes 10^6$	4.567×10^{3}	$4.992 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	14184270	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	14184270	0.0	50.0	48.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(3.351 \pm 10.088) \times 10^{-3}$	14184270	6.951×10^{-3}	3.411×10^{-3}	-0.107	0.207	-1.419×10^{-4}	6.809×10^{-3}

	Table 6: Parameterlist an	nd basic star	tistics for the ana	alysis for observ	vations over land			
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.768 ± 0.253	7164151	0.500	1.000	0.350	1.000	0.500	1.000
cloud pressure crb [hPa]	709 ± 190	7164151	247	713	130	1.060×10^{3}	610	857
cloud pressure crb precision [hPa]	2.04 ± 7.29	7164151	1.02	0.413	$3.662 imes 10^{-4}$	1.427×10^3	0.284	1.30
cloud fraction crb [1]	0.655 ± 0.408	7164151	0.817	1.000	0.0	1.000	0.183	1.000
cloud fraction crb precision [1]	$(3.557 \pm 16.802) \times 10^{-4}$	7164151	$4.391 imes10^{-5}$	$1.000 imes 10^{-4}$	$8.169 imes 10^{-9}$	1.01	$1.000 imes 10^{-4}$	$1.439 imes10^{-4}$
scene albedo [1]	0.699 ± 0.282	7164151	0.461	0.773	1.671×10^{-3}	4.89	0.456	0.917
scene albedo precision [1]	$(1.273 \pm 1.114) \times 10^{-4}$	7164151	$9.895 imes10^{-5}$	$9.787 imes10^{-5}$	$1.373 imes10^{-5}$	$1.914 imes 10^{-3}$	$5.164 imes10^{-5}$	$1.506 imes10^{-4}$
apparent scene pressure [hPa]	757 ± 154	7164151	240	759	130	1.060×10^{3}	648	887
apparent scene pressure precision [hPa]	0.388 ± 0.150	7164151	0.161	0.352	7.799×10^{-2}	37.4	0.289	0.450
chi square [1]	$(0.322 \pm 2.359) \times 10^5$	7164151	$2.293 imes 10^4$	$2.365 imes 10^4$	207	$1.750 imes 10^8$	$1.399 imes 10^4$	$3.692 imes 10^4$
number of iterations [1]	4.11 ± 1.12	7164151	0.0	4.00	1.000	14.0	4.00	4.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(2.647 \pm 8.174) \times 10^{-9}$	7164151	$4.021 imes 10^{-9}$	$2.752 imes 10^{-9}$	$-4.662 imes 10^{-6}$	$1.952 imes10^{-6}$	$8.542 imes 10^{-10}$	$4.875 imes 10^{-9}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.825 \pm 0.600) \times 10^{-9}$	7164151	$7.912 imes 10^{-10}$	$1.769 imes 10^{-9}$	$4.368 imes 10^{-10}$	$5.537 imes10^{-9}$	$1.388 imes10^{-9}$	$2.179 imes10^{-9}$
chi square fluorescence [1]	$(0.425 \pm 0.965) \times 10^5$	7164151	$2.598 imes 10^4$	6.726×10^3	142	$1.053 imes 10^7$	2.130×10^3	$2.811 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	7164151	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	7164151	0.0	50.0	43.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(3.446 \pm 4.248) \times 10^{-3}$	7164151	3.593×10^{-3}	3.437×10^{-3}	-7.419×10^{-2}	$6.980 imes 10^{-2}$	1.642×10^{-3}	$5.236 imes 10^{-3}$

 \neg

Granule outlines

Figure 1: Outline of the granules.

4 Input data monitoring

Figure 2: Input data per granule

5 Warnings and errors

Figure 3: Fraction of pixels with specific warnings and errors during processing

6 World maps

Figure 4: Map of "Cloud pressure" for 2025-02-04 to 2025-02-05

Figure 5: Map of "Cloud fraction" for 2025-02-04 to 2025-02-05

Figure 6: Map of "Scene albedo" for 2025-02-04 to 2025-02-05

Figure 7: Map of "Apparent scene pressure" for 2025-02-04 to 2025-02-05

Figure 8: Map of "Fluorescence" for 2025-02-04 to 2025-02-05

Figure 9: Map of the number of observations for 2025-02-04 to 2025-02-05

7 Zonal average

Figure 10: Zonal average of "QA value" for 2025-02-04 to 2025-02-05.

Figure 11: Zonal average of "Cloud pressure" for 2025-02-04 to 2025-02-05.

Figure 12: Zonal average of "Cloud pressure precision" for 2025-02-04 to 2025-02-05.

Figure 13: Zonal average of "Cloud fraction" for 2025-02-04 to 2025-02-05.

Figure 14: Zonal average of "Cloud fraction precision" for 2025-02-04 to 2025-02-05.

Figure 15: Zonal average of "Scene albedo" for 2025-02-04 to 2025-02-05.

Figure 16: Zonal average of "Scene albedo precision" for 2025-02-04 to 2025-02-05.

Figure 17: Zonal average of "Apparent scene pressure" for 2025-02-04 to 2025-02-05.

Figure 18: Zonal average of "Apparent scene pressure precision" for 2025-02-04 to 2025-02-05.

Figure 19: Zonal average of " χ^2 " for 2025-02-04 to 2025-02-05.

Figure 20: Zonal average of "Number of iterations" for 2025-02-04 to 2025-02-05.

Figure 21: Zonal average of "Fluorescence" for 2025-02-04 to 2025-02-05.

Figure 22: Zonal average of "Fluorescence precision" for 2025-02-04 to 2025-02-05.

Figure 23: Zonal average of " χ^2 of fluorescence retrieval" for 2025-02-04 to 2025-02-05.

Figure 24: Zonal average of "Degrees of freedom for signal of fluorescence retrieval" for 2025-02-04 to 2025-02-05.

Figure 25: Zonal average of "Number of points in the spectrum" for 2025-02-04 to 2025-02-05.

Figure 26: Zonal average of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-02-04 to 2025-02-05.

8 Histograms

The definitions of the parameters given in this section can be found in section 2.

Figure 27: Histogram of "QA value" for 2025-02-04 to 2025-02-05

Figure 28: Histogram of "Cloud pressure" for 2025-02-04 to 2025-02-05

Figure 29: Histogram of "Cloud pressure precision" for 2025-02-04 to 2025-02-05

Figure 30: Histogram of "Cloud fraction" for 2025-02-04 to 2025-02-05

Figure 31: Histogram of "Cloud fraction precision" for 2025-02-04 to 2025-02-05

Figure 32: Histogram of "Scene albedo" for 2025-02-04 to 2025-02-05

Figure 33: Histogram of "Scene albedo precision" for 2025-02-04 to 2025-02-05

Figure 34: Histogram of "Apparent scene pressure" for 2025-02-04 to 2025-02-05

Figure 35: Histogram of "Apparent scene pressure precision" for 2025-02-04 to 2025-02-05

Figure 36: Histogram of " χ^2 " for 2025-02-04 to 2025-02-05

Figure 37: Histogram of "Number of iterations" for 2025-02-04 to 2025-02-05

Figure 38: Histogram of "Fluorescence" for 2025-02-04 to 2025-02-05

Figure 39: Histogram of "Fluorescence precision" for 2025-02-04 to 2025-02-05

Figure 40: Histogram of " χ^2 of fluorescence retrieval" for 2025-02-04 to 2025-02-05

Figure 41: Histogram of "Degrees of freedom for signal of fluorescence retrieval" for 2025-02-04 to 2025-02-05

Figure 42: Histogram of "Number of points in the spectrum" for 2025-02-04 to 2025-02-05

Figure 43: Histogram of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-02-04 to 2025-02-05

9 Along track statistics

The TROPOMI instrument uses different binned detector rows for different viewing directions. In this section statistics are presented for each of the binned rows in the instrument.

Figure 44: Along track statistics of "QA value" for 2025-02-04 to 2025-02-05

Figure 45: Along track statistics of "Cloud pressure" for 2025-02-04 to 2025-02-05

Figure 46: Along track statistics of "Cloud pressure precision" for 2025-02-04 to 2025-02-05

Figure 47: Along track statistics of "Cloud fraction" for 2025-02-04 to 2025-02-05

Figure 48: Along track statistics of "Cloud fraction precision" for 2025-02-04 to 2025-02-05

Figure 49: Along track statistics of "Scene albedo" for 2025-02-04 to 2025-02-05

Figure 50: Along track statistics of "Scene albedo precision" for 2025-02-04 to 2025-02-05

Figure 51: Along track statistics of "Apparent scene pressure" for 2025-02-04 to 2025-02-05

Figure 52: Along track statistics of "Apparent scene pressure precision" for 2025-02-04 to 2025-02-05

Figure 53: Along track statistics of " χ^2 " for 2025-02-04 to 2025-02-05

Figure 54: Along track statistics of "Number of iterations" for 2025-02-04 to 2025-02-05

Figure 55: Along track statistics of "Fluorescence" for 2025-02-04 to 2025-02-05

Figure 56: Along track statistics of "Fluorescence precision" for 2025-02-04 to 2025-02-05

Figure 57: Along track statistics of " χ^2 of fluorescence retrieval" for 2025-02-04 to 2025-02-05

Figure 58: Along track statistics of "Degrees of freedom for signal of fluorescence retrieval" for 2025-02-04 to 2025-02-05

Figure 59: Along track statistics of "Number of points in the spectrum" for 2025-02-04 to 2025-02-05

Figure 60: Along track statistics of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-02-04 to 2025-02-05

10 Coincidence density

To investigate the relation between parameters scatter density plots are produced. These include some 'hidden' parameters, latitude and the solar- and viewing geometries, in addition to all configured parameters. All combinations of pairs of parameters are included *once*, in one direction alone.

Contents

1	Short Introduction	1
	1.1 The list of parameters	1
2	Definitions	1
3	Granule outlines	8
4	Input data monitoring	9
5	Warnings and errors	10
6	World maps	11
7	Zonal average	17
8	Histograms	34
9	Along track statistics	51
10	Coincidence density	68
11	Copyright information of 'PyCAMA'	68

List of Figures

1	Outline of the granules.	8
2	Input data per granule	9
3	Fraction of pixels with specific warnings and errors during processing	10
4	Map of "Cloud pressure" for 2025-02-04 to 2025-02-05	11
5	Map of "Cloud fraction" for 2025-02-04 to 2025-02-05	12
6	Map of "Scene albedo" for 2025-02-04 to 2025-02-05	13
7	Map of "Apparent scene pressure" for 2025-02-04 to 2025-02-05	14
8	Map of "Fluorescence" for 2025-02-04 to 2025-02-05	15
9	Map of the number of observations for 2025-02-04 to 2025-02-05	16
10	Zonal average of "QA value" for 2025-02-04 to 2025-02-05.	17
11	Zonal average of "Cloud pressure" for 2025-02-04 to 2025-02-05.	18
12	Zonal average of "Cloud pressure precision" for 2025-02-04 to 2025-02-05.	19
13	Zonal average of "Cloud fraction" for 2025-02-04 to 2025-02-05.	20
14	Zonal average of "Cloud fraction precision" for 2025-02-04 to 2025-02-05.	21
15	Zonal average of "Scene albedo" for 2025-02-04 to 2025-02-05.	22
16	Zonal average of "Scene albedo precision" for 2025-02-04 to 2025-02-05.	23
17	Zonal average of "Apparent scene pressure" for 2025-02-04 to 2025-02-05.	24
18	Zonal average of "Apparent scene pressure precision" for 2025-02-04 to 2025-02-05.	25
19	Zonal average of " χ^2 " for 2025-02-04 to 2025-02-05	26
20	Zonal average of "Number of iterations" for 2025-02-04 to 2025-02-05.	27
21	Zonal average of "Fluorescence" for 2025-02-04 to 2025-02-05.	28
22	Zonal average of "Fluorescence precision" for 2025-02-04 to 2025-02-05.	29
23	Zonal average of " χ^2 of fluorescence retrieval" for 2025-02-04 to 2025-02-05	30
24	Zonal average of "Degrees of freedom for signal of fluorescence retrieval" for 2025-02-04 to 2025-02-05.	31
25	Zonal average of "Number of points in the spectrum" for 2025-02-04 to 2025-02-05	32
26	Zonal average of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-02-04 to 2025-02-05	33
27	Histogram of "QA value" for 2025-02-04 to 2025-02-05	34
28	Histogram of "Cloud pressure" for 2025-02-04 to 2025-02-05	35
29	Histogram of "Cloud pressure precision" for 2025-02-04 to 2025-02-05	36

30	Histogram of "Cloud fraction" for 2025-02-04 to 2025-02-05	37
31	Histogram of "Cloud fraction precision" for 2025-02-04 to 2025-02-05	38
32	Histogram of "Scene albedo" for 2025-02-04 to 2025-02-05	39
33	Histogram of "Scene albedo precision" for 2025-02-04 to 2025-02-05	40
34	Histogram of "Apparent scene pressure" for 2025-02-04 to 2025-02-05	41
35	Histogram of "Apparent scene pressure precision" for 2025-02-04 to 2025-02-05	42
36	Histogram of " χ^2 " for 2025-02-04 to 2025-02-05	43
37	Histogram of "Number of iterations" for 2025-02-04 to 2025-02-05	44
38	Histogram of "Fluorescence" for 2025-02-04 to 2025-02-05	45
39	Histogram of "Fluorescence precision" for 2025-02-04 to 2025-02-05	46
40	Histogram of " χ^2 of fluorescence retrieval" for 2025-02-04 to 2025-02-05	47
41	Histogram of "Degrees of freedom for signal of fluorescence retrieval" for 2025-02-04 to 2025-02-05	48
42	Histogram of "Number of points in the spectrum" for 2025-02-04 to 2025-02-05	49
43	Histogram of "Spectral offset $(\lambda_{true} - \lambda_{nominal})$ " for 2025-02-04 to 2025-02-05	50
44	Along track statistics of "QA value" for 2025-02-04 to 2025-02-05	51
45	Along track statistics of "Cloud pressure" for 2025-02-04 to 2025-02-05	52
46	Along track statistics of "Cloud pressure precision" for 2025-02-04 to 2025-02-05	53
47	Along track statistics of "Cloud fraction" for 2025-02-04 to 2025-02-05	54
48	Along track statistics of "Cloud fraction precision" for 2025-02-04 to 2025-02-05	55
49	Along track statistics of "Scene albedo" for 2025-02-04 to 2025-02-05	56
50	Along track statistics of "Scene albedo precision" for 2025-02-04 to 2025-02-05	57
51	Along track statistics of "Apparent scene pressure" for 2025-02-04 to 2025-02-05	58
52	Along track statistics of "Apparent scene pressure precision" for 2025-02-04 to 2025-02-05	59
53	Along track statistics of " χ^2 " for 2025-02-04 to 2025-02-05	60
54	Along track statistics of "Number of iterations" for 2025-02-04 to 2025-02-05	61
55	Along track statistics of "Fluorescence" for 2025-02-04 to 2025-02-05	62
56	Along track statistics of "Fluorescence precision" for 2025-02-04 to 2025-02-05	63
57	Along track statistics of " χ^2 of fluorescence retrieval" for 2025-02-04 to 2025-02-05	64
58	Along track statistics of "Degrees of freedom for signal of fluorescence retrieval" for 2025-02-04 to 2025-02-05	65
59	Along track statistics of "Number of points in the spectrum" for 2025-02-04 to 2025-02-05	66
60	Along track statistics of "Spectral offset $(\lambda_{true} - \lambda_{nominal})$ " for 2025-02-04 to 2025-02-05	67

List of Tables

1	Parameterlist and basic statistics for the analysis
2	Percentile ranges
3	Parameterlist and basic statistics for the analysis for observations in the northern hemisphere
4	Parameterlist and basic statistics for the analysis for observations in the southern hemisphere
5	Parameterlist and basic statistics for the analysis for observations over water
6	Parameterlist and basic statistics for the analysis for observations over land

11 Copyright information of 'PyCAMA'

Copyright © 2005-2023, Maarten Sneep (KNMI).

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
- 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

This software is provided by the copyright holders and contributors "as is" and any express or implied warranties, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose are disclaimed. In no event shall the copyright holder or contributors be liable for any direct, indirect, incidental, special, exemplary, or consequential damages (including, but not limited to, procurement of substitute goods or services; loss of use, data, or profits; or business interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence or otherwise) arising in any way out of the use of this software, even if advised of the possibility of such damage.

Maarten Sneep (maarten.sneep@knmi.nl).