PyCAMA report generated by tropl2-proc

tropl2-proc

2025-02-09 (07:30)

1 Short Introduction

1.1 The list of parameters

You may want to keep the list given in table 1 at hand when viewing the results.

2 Definitions

The averages shown here are unweighed averages:

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i \tag{1}$$

with N the number of observations in the dataset.

The spread of the measurements is indicated with the variance V(x), or rather the standard deviation $\sigma(x) = \sqrt{V(x)}$.

$$V(x) = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2$$
(2)

We also report the more robust statistics median, minimum, maximum, various percentiles and inter quartile range.

The median m is the value of parameter x for which half of the observations of x is smaller than m:

$$P(x \le m) = P(x \ge m) = \int_{-\infty}^{m} f(x) \, \mathrm{d}x = \frac{1}{2}$$
(3)

with f(x) the probability density function.

The median is a special case of a percentile. Instead of $\frac{1}{2}$ in equation 3, other threshold values can be used. We report results for 1%, 5%, 10%, 15.9%, 25%, 75%, 84.1%, 90%, 95% and 99%. The inter quartile range is the difference between the 75% and 25% percentiles. Similarly the minimum and maximum values correspond to the 0% and 100% percentiles respectively.

For normally distributed parameters the mean and median are the same, while the $\mu \pm \sigma$ values and the 15.9% and 84.1% percentiles coincide.

To get a measure for the relation of one variable $x_{(k)}$ with another $x_{(l)}$, we calculate the covariance matrix C_{kl} .

$$C_{kl} = C(x_{(k)}, x_{(l)}) = \frac{1}{N-1} \sum_{i=1}^{N} (x_{(k),i} - \overline{x_{(k)}}) (x_{(l),i} - \overline{x_{(l)}})$$
(4)

Rather than a dimensionally dependent covariance, it is often easier to interpret a correlation matrix R_{kl} , a matrix of Pearson's *r* coefficients:

$$R_{kl} = R(x_{(k)}, x_{(l)}) = \frac{C_{kl}}{\sqrt{C_{kk}C_{ll}}} = \frac{C_{kl}}{\sqrt{V(x_k)V(x_l)}}$$
(5)

The diagonal elements of the covariance matrix are the variances of the elements, $V(x_{(k)}) = C_{kk}$ and obviously $R_{kk} = 1$.

Table 1: Parameterlist and basic statistics for the analy

	Table 1: Parameterl	ist and basic s	tatistics for the an	alysis			
Variable	mean $\pm \sigma$	Count	Mode	IQR	Median	Minimum	Maximum
qa value [1]	0.916 ± 0.178	25000342	0.995	0.0	1.000	0.350	1.000
cloud pressure crb [hPa]	786 ± 192	25000342	1.005×10^3	277	842	130	1.054×10^3
cloud pressure crb precision [hPa]	2.37 ± 9.37	25000342	0.750	1.19	0.537	$1.831 imes 10^{-4}$	$1.168 imes 10^3$
cloud fraction crb [1]	0.474 ± 0.387	25000342	0.996	0.839	0.394	0.0	1.000
cloud fraction crb precision [1]	$(1.925 \pm 11.839) \times 10^{-4}$	25000342	$2.500 imes10^{-4}$	$6.150 imes10^{-5}$	$7.514 imes10^{-5}$	$3.172 imes 10^{-8}$	0.922
scene albedo [1]	0.456 ± 0.332	25000342	$1.500 imes10^{-2}$	0.613	0.436	$-4.291 imes 10^{-3}$	4.18
scene albedo precision [1]	$(8.298 \pm 9.731) \times 10^{-5}$	25000342	$2.500 imes10^{-4}$	$6.525 imes10^{-5}$	$5.330 imes 10^{-5}$	1.028×10^{-5}	6.831×10^{-3}
apparent scene pressure [hPa]	815 ± 171	25000342	1.008×10^3	251	866	130	1.054×10^3
apparent scene pressure precision [hPa]	0.957 ± 1.693	25000342	0.500	0.474	0.427	6.686×10^{-2}	61.7
chi square [1]	$(0.217 \pm 1.694) \times 10^5$	25000342	0.150	$2.533 imes 10^4$	$1.633 imes 10^4$	58.7	$2.444 imes 10^8$
number of iterations [1]	3.35 ± 1.06	25000342	3.23	1.000	3.00	1.000	14.0
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(9.275 \pm 67.838) \times 10^{-10}$	25000342	$2.500 imes 10^{-10}$	4.926×10^{-9}	$1.031 imes 10^{-9}$	-1.857×10^{-6}	$1.550 imes 10^{-6}$
fluorescence precision [mol $s^{-1} m^{-2} nm^{-1} sr^{-1}$]	$(1.714 \pm 0.686) \times 10^{-9}$	25000342	$8.500 imes 10^{-10}$	$1.006 imes 10^{-9}$	$1.645 imes 10^{-9}$	$3.766 imes 10^{-10}$	5.743×10^{-9}
chi square fluorescence [1]	$(0.498 \pm 0.978) \times 10^5$	25000342	1.250×10^{3}	$4.388 imes 10^4$	$1.336 imes 10^4$	94.3	$2.317 imes 10^6$
degrees of freedom fluorescence [1]	6.00 ± 0.00	25000342	5.95	0.0	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	25000342	49.7	0.0	50.0	48.0	50.0
wavelength calibration offset [nm]	$(3.390 \pm 8.458) \times 10^{-3}$	25000342	3.600×10^{-3}	$5.495 imes 10^{-3}$	3.424×10^{-3}	-0.105	0.369

			Table 2:	Percentile rang	jes					
Variable	1 %	5%	10 %	15.9 %	25 %	75 %	84.1 %	90 %	95 %	99 %
qa value [1]	0.500	0.500	0.500	0.900	1.000	1.000	1.000	1.000	1.000	1.000
cloud pressure crb [hPa]	243	399	504	588	664	940	971	991	1.007×10^3	$1.018 imes 10^3$
cloud pressure crb precision [hPa]	0.148	0.233	0.258	0.280	0.316	1.51	2.57	4.29	8.54	30.8
cloud fraction crb [1]	1.354×10^{-3}	$1.139 imes10^{-2}$	$2.481 imes 10^{-2}$	$4.434 imes10^{-2}$	$8.774 imes10^{-2}$	0.927	1.000	1.000	1.000	1.000
cloud fraction crb precision [1]	$1.955 imes 10^{-5}$	$2.263 imes10^{-5}$	$2.520 imes 10^{-5}$	$2.875 imes 10^{-5}$	$3.850 imes 10^{-5}$	$1.000 imes 10^{-4}$	$1.220 imes 10^{-4}$	$2.217 imes10^{-4}$	$6.050 imes10^{-4}$	$2.457 imes 10^{-3}$
scene albedo [1]	8.351×10^{-3}	$1.962 imes 10^{-2}$	$3.567 imes 10^{-2}$	$6.121 imes 10^{-2}$	0.130	0.744	0.849	0.908	0.965	1.12
scene albedo precision [1]	1.277×10^{-5}	$1.480 imes 10^{-5}$	$1.770 imes 10^{-5}$	$2.206 imes 10^{-5}$	3.022×10^{-5}	9.548×10^{-5}	$1.280 imes 10^{-4}$	$1.710 imes10^{-4}$	$2.589 imes 10^{-4}$	$5.142 imes 10^{-4}$
apparent scene pressure [hPa]	335	473	570	629	701	952	979	996	1.009×10^{3}	1.018×10^{3}
apparent scene pressure precision [hPa]	0.213	0.242	0.262	0.281	0.311	0.785	1.28	2.06	3.61	8.43
chi square [1]	281	653	1.331×10^{3}	2.635×10^{3}	5.372×10^{3}	3.070×10^{4}	3.815×10^{4}	4.484×10^{4}	5.405×10^{4}	7.473×10^{4}
number of iterations [1]	2.00	2.00	2.00	3.00	3.00	4.00	4.00	5.00	5.00	7.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	-1.531×10^{-8}	-7.214×10^{-9}	-4.378×10^{-9}	-2.753×10^{-9}	-1.314×10^{-9}	3.612×10^{-9}	5.017×10^{-9}	6.401×10^{-9}	8.460×10^{-9}	$1.335 imes 10^{-8}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$7.191 imes 10^{-10}$	$8.160 imes 10^{-10}$	8.904×10^{-10}	9.825×10^{-10}	1.148×10^{-9}	2.154×10^{-9}	2.410×10^{-9}	2.633×10^{-9}	2.967×10^{-9}	3.629×10^{-9}
chi square fluorescence [1]	370	911	1.455×10^{3}	2.182×10^{3}	3.709×10^{3}	4.759×10^{4}	8.570×10^{4}	1.365×10^{5}	2.351×10^{5}	4.944×10^{5}
degrees of freedom fluorescence [1]	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0
wavelength calibration offset [nm]	-2.412×10^{-2}	-8.938×10^{-3}	-3.952×10^{-3}	-1.399×10^{-3}	$6.388 imes10^{-4}$	6.134×10^{-3}	8.109×10^{-3}	$1.068 imes 10^{-2}$	$1.573 imes 10^{-2}$	$3.084 imes 10^{-2}$

Table 3	3: Parameterlist and basic	statistics for	the analysis for	observations in	the northern hen	nisphere		
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.970 ± 0.108	11052945	0.0	1.000	0.350	1.000	1.000	1.000
cloud pressure crb [hPa]	781 ± 205	11052945	285	848	130	1.054×10^{3}	657	942
cloud pressure crb precision [hPa]	2.88 ± 10.22	11052945	1.66	0.800	$1.831 imes 10^{-4}$	1.168×10^{3}	0.396	2.05
cloud fraction crb [1]	0.407 ± 0.368	11052945	0.684	0.276	0.0	1.000	$6.881 imes 10^{-2}$	0.753
cloud fraction crb precision [1]	$(2.330 \pm 16.289) \times 10^{-4}$	11052945	$8.242 imes 10^{-5}$	$9.067 imes10^{-5}$	$3.909 imes10^{-8}$	0.922	4.530×10^{-5}	$1.277 imes10^{-4}$
scene albedo [1]	0.435 ± 0.315	11052945	0.542	0.413	-3.083×10^{-3}	4.18	0.143	0.684
scene albedo precision [1]	$(9.324 \pm 11.149) \times 10^{-5}$	11052945	$6.976 imes 10^{-5}$	5.770×10^{-5}	$1.132 imes 10^{-5}$	4.693×10^{-3}	3.262×10^{-5}	$1.024 imes10^{-4}$
apparent scene pressure [hPa]	825 ± 172	11052945	220	880	130	1.054×10^3	736	956
apparent scene pressure precision [hPa]	0.969 ± 1.541	11052945	0.473	0.479	$6.686 imes10^{-2}$	59.2	0.348	0.821
chi square [1]	$(0.193 \pm 1.407) \times 10^5$	11052945	2.129×10^4	1.420×10^4	58.7	$2.388 imes 10^8$	5.081×10^{3}	2.637×10^4
number of iterations [1]	3.51 ± 1.15	11052945	1.000	3.00	1.000	14.0	3.00	4.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.041 \pm 4.831) \times 10^{-9}$	11052945	$4.236 imes 10^{-9}$	$1.162 imes 10^{-9}$	$-1.401 imes 10^{-6}$	$1.173 imes10^{-6}$	$-8.487 imes 10^{-10}$	$3.387 imes10^{-9}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.578 \pm 0.633) \times 10^{-9}$	11052945	9.111×10^{-10}	1.469×10^{-9}	$3.766 imes 10^{-10}$	5.579×10^{-9}	$1.065 imes 10^{-9}$	$1.976 imes10^{-9}$
chi square fluorescence [1]	$(0.374 \pm 0.754) \times 10^5$	11052945	3.249×10^4	$1.017 imes 10^4$	94.3	$1.843 imes 10^6$	3.207×10^{3}	$3.570 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	11052945	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	11052945	0.0	50.0	48.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(3.371 \pm 8.592) \times 10^{-3}$	11052945	5.930×10^{-3}	3.329×10^{-3}	-7.798×10^{-2}	8.832×10^{-2}	3.563×10^{-4}	6.286×10^{-3}

Table	4: Parameterlist and basic s	tatistics for	the analysis for	observations in	the southern hem	isphere		
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.873 ± 0.208	13947397	0.1000	1.000	0.350	1.000	0.900	1.000
cloud pressure crb [hPa]	790 ± 180	13947397	272	836	130	1.026×10^{3}	667	939
cloud pressure crb precision [hPa]	1.97 ± 8.61	13947397	0.736	0.411	1.831×10^{-3}	666	0.289	1.02
cloud fraction crb [1]	0.527 ± 0.394	13947397	0.888	0.524	0.0	1.000	0.112	1.000
cloud fraction crb precision [1]	$(1.604 \pm 6.383) \times 10^{-4}$	13947397	$6.524 imes 10^{-5}$	$6.798 imes10^{-5}$	$3.172 imes 10^{-8}$	0.163	3.476×10^{-5}	$1.000 imes 10^{-4}$
scene albedo [1]	0.473 ± 0.344	13947397	0.669	0.461	$-4.291 imes 10^{-3}$	4.05	0.123	0.792
scene albedo precision [1]	$(7.484 \pm 8.351) \times 10^{-5}$	13947397	$6.175 imes10^{-5}$	$5.068 imes10^{-5}$	$1.028 imes 10^{-5}$	$6.831 imes 10^{-3}$	2.835×10^{-5}	$9.010 imes10^{-5}$
apparent scene pressure [hPa]	807 ± 169	13947397	266	852	130	1.026×10^3	683	949
apparent scene pressure precision [hPa]	0.947 ± 1.804	13947397	0.454	0.384	0.163	61.7	0.293	0.746
chi square [1]	$(0.235 \pm 1.890) \times 10^5$	13947397	2.809×10^4	$1.881 imes 10^4$	62.5	2.444×10^8	$5.638 imes 10^3$	$3.373 imes 10^4$
number of iterations [1]	3.22 ± 0.96	13947397	1.000	3.00	1.000	14.0	3.00	4.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(8.378 \pm 79.988) \times 10^{-10}$	13947397	$5.541 imes 10^{-9}$	$8.931 imes 10^{-10}$	$-1.857 imes 10^{-6}$	$1.550 imes 10^{-6}$	$-1.706 imes 10^{-9}$	$3.835 imes 10^{-9}$
fluorescence precision [mol $s^{-1} m^{-2} nm^{-1} sr^{-1}$]	$(1.821 \pm 0.707) \times 10^{-9}$	13947397	$1.004 imes 10^{-9}$	$1.778 imes10^{-9}$	4.029×10^{-10}	$5.743 imes 10^{-9}$	1.233×10^{-9}	$2.237 imes 10^{-9}$
chi square fluorescence [1]	$(0.596 \pm 1.115) \times 10^5$	13947397	$5.463 imes 10^4$	$1.657 imes 10^4$	110	$2.317 imes10^6$	4.361×10^{3}	$5.899 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	13947397	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	13947397	0.0	50.0	48.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(3.405 \pm 8.350) \times 10^{-3}$	13947397	5.165×10^{-3}	$3.490 imes 10^{-3}$	-0.105	0.369	$8.603 imes 10^{-4}$	6.026×10^{-3}

	Table 5: Parameterlist and	basic statist	ics for the analy	sis for observat	tions over water			
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75% percentile
qa value [1]	0.982 ± 0.053	15746408	0.0	1.000	0.350	1.000	1.000	1.000
cloud pressure crb [hPa]	814 ± 188	15746408	243	880	130	1.054×10^{3}	713	956
cloud pressure crb precision [hPa]	2.57 ± 10.19	15746408	1.27	0.597	1.160×10^{-3}	1.168×10^{3}	0.338	1.60
cloud fraction crb [1]	0.384 ± 0.345	15746408	0.629	0.269	0.0	1.000	6.321×10^{-2}	0.692
cloud fraction crb precision [1]	$(8.829 \pm 48.343) \times 10^{-5}$	15746408	$5.286 imes 10^{-5}$	4.930×10^{-5}	$3.280 imes 10^{-8}$	0.295	$2.870 imes10^{-5}$	$8.156 imes10^{-5}$
scene albedo [1]	0.328 ± 0.292	15746408	0.515	0.233	$-4.291 imes 10^{-3}$	4.18	$6.087 imes10^{-2}$	0.575
scene albedo precision [1]	$(5.944\pm8.018) imes10^{-5}$	15746408	4.253×10^{-5}	4.100×10^{-5}	1.028×10^{-5}	$6.831 imes 10^{-3}$	$2.204 imes10^{-5}$	6.457×10^{-5}
apparent scene pressure [hPa]	831 ± 178	15746408	228	892	130	1.054×10^3	740	968
apparent scene pressure precision [hPa]	1.28 ± 2.06	15746408	0.951	0.554	0.164	61.7	0.333	1.28
chi square [1]	$(0.160 \pm 1.572) \times 10^5$	15746408	$2.195 imes 10^4$	9.755×10^{3}	58.7	$2.444 imes 10^8$	2.674×10^{3}	2.463×10^{4}
number of iterations [1]	2.93 ± 0.74	15746408	0.0	3.00	1.000	14.0	3.00	3.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.735 \pm 5470.719) \times 10^{-12}$	15746408	4.236×10^{-9}	$7.337 imes 10^{-11}$	$-1.538 imes10^{-6}$	$1.403 imes10^{-6}$	$-1.957 imes 10^{-9}$	$2.278 imes10^{-9}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.644 \pm 0.715) imes 10^{-9}$	15746408	$1.092 imes 10^{-9}$	$1.521 imes 10^{-9}$	$3.766 imes 10^{-10}$	$5.579 imes 10^{-9}$	$1.032 imes 10^{-9}$	$2.124 imes10^{-9}$
chi square fluorescence [1]	$(0.488 \pm 0.897) \times 10^5$	15746408	$4.750 imes 10^4$	$1.699 imes 10^4$	94.3	$2.198 imes10^6$	$4.928 imes 10^3$	$5.242 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	15746408	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	15746408	0.0	50.0	48.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(3.350 \pm 9.943) \times 10^{-3}$	15746408	6.760×10^{-3}	$3.394 imes 10^{-3}$	-0.105	0.369	-5.813×10^{-5}	6.702×10^{-3}

	Table 6: Parameterlist an	d basic stat	istics for the ana	alysis for observ	vations over land			
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.764 ± 0.252	7409477	0.500	1.000	0.350	1.000	0.500	1.000
cloud pressure crb [hPa]	731 ± 182	7409477	253	737	130	1.052×10^3	625	878
cloud pressure crb precision [hPa]	1.90 ± 7.46	7409477	0.927	0.408	$3.662 imes 10^{-4}$	1.120×10^3	0.284	1.21
cloud fraction crb [1]	0.667 ± 0.404	7409477	0.800	1.000	0.0	1.000	0.200	1.000
cloud fraction crb precision [1]	$(3.843 \pm 17.663) \times 10^{-4}$	7409477	$5.169 imes10^{-5}$	$1.000 imes 10^{-4}$	$3.172 imes 10^{-8}$	0.922	$1.000 imes 10^{-4}$	$1.517 imes10^{-4}$
scene albedo [1]	0.704 ± 0.272	7409477	0.438	0.777	1.790×10^{-2}	4.05	0.474	0.912
scene albedo precision [1]	$(1.294 \pm 1.125) \times 10^{-4}$	7409477	$9.901 imes10^{-5}$	$9.976 imes10^{-5}$	$1.292 imes 10^{-5}$	$1.716 imes10^{-3}$	$5.375 imes 10^{-5}$	$1.528 imes10^{-4}$
apparent scene pressure [hPa]	775 ± 148	7409477	245	783	130	1.043×10^3	659	903
apparent scene pressure precision [hPa]	0.389 ± 0.140	7409477	0.160	0.352	$6.738 imes10^{-2}$	12.9	0.290	0.450
chi square [1]	$(0.317 \pm 1.842) \times 10^5$	7409477	$2.246 imes 10^4$	$2.521 imes 10^4$	113	$2.388 imes 10^8$	$1.545 imes 10^4$	$3.791 imes 10^4$
number of iterations [1]	4.12 ± 1.10	7409477	0.0	4.00	1.000	14.0	4.00	4.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(2.618 \pm 8.046) \times 10^{-9}$	7409477	4.040×10^{-9}	2.859×10^{-9}	$-1.857 imes 10^{-6}$	$1.550 imes10^{-6}$	9.152×10^{-10}	$4.955 imes 10^{-9}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.828 \pm 0.610) \times 10^{-9}$	7409477	$8.178 imes10^{-10}$	$1.771 imes 10^{-9}$	$5.224 imes10^{-10}$	$5.743 imes 10^{-9}$	1.366×10^{-9}	$2.184 imes10^{-9}$
chi square fluorescence [1]	$(0.457 \pm 1.031) \times 10^5$	7409477	$2.655 imes 10^4$	$6.897 imes 10^3$	111	$2.317 imes10^6$	2.262×10^3	$2.881 imes10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	7409477	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	7409477	0.0	50.0	48.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(3.437 \pm 4.406) \times 10^{-3}$	7409477	3.742×10^{-3}	3.456×10^{-3}	-6.564×10^{-2}	7.229×10^{-2}	1.579×10^{-3}	5.321×10^{-3}

Granule outlines

Figure 1: Outline of the granules.

4 Input data monitoring

Figure 2: Input data per granule

5 Warnings and errors

Figure 3: Fraction of pixels with specific warnings and errors during processing

6 World maps

Figure 4: Map of "Cloud pressure" for 2025-02-07 to 2025-02-08

Figure 5: Map of "Cloud fraction" for 2025-02-07 to 2025-02-08

Figure 6: Map of "Scene albedo" for 2025-02-07 to 2025-02-08

Figure 7: Map of "Apparent scene pressure" for 2025-02-07 to 2025-02-08

2025-02-07

Figure 8: Map of "Fluorescence" for 2025-02-07 to 2025-02-08

Figure 9: Map of the number of observations for 2025-02-07 to 2025-02-08

7 Zonal average

Figure 10: Zonal average of "QA value" for 2025-02-07 to 2025-02-08.

Figure 11: Zonal average of "Cloud pressure" for 2025-02-07 to 2025-02-08.

Figure 12: Zonal average of "Cloud pressure precision" for 2025-02-07 to 2025-02-08.

Figure 13: Zonal average of "Cloud fraction" for 2025-02-07 to 2025-02-08.

Figure 14: Zonal average of "Cloud fraction precision" for 2025-02-07 to 2025-02-08.

Figure 15: Zonal average of "Scene albedo" for 2025-02-07 to 2025-02-08.

Figure 16: Zonal average of "Scene albedo precision" for 2025-02-07 to 2025-02-08.

Figure 17: Zonal average of "Apparent scene pressure" for 2025-02-07 to 2025-02-08.

Figure 18: Zonal average of "Apparent scene pressure precision" for 2025-02-07 to 2025-02-08.

Figure 19: Zonal average of " χ^2 " for 2025-02-07 to 2025-02-08.

Figure 20: Zonal average of "Number of iterations" for 2025-02-07 to 2025-02-08.

Figure 21: Zonal average of "Fluorescence" for 2025-02-07 to 2025-02-08.

Figure 22: Zonal average of "Fluorescence precision" for 2025-02-07 to 2025-02-08.

Figure 23: Zonal average of " χ^2 of fluorescence retrieval" for 2025-02-07 to 2025-02-08.

Figure 24: Zonal average of "Degrees of freedom for signal of fluorescence retrieval" for 2025-02-07 to 2025-02-08.

Figure 25: Zonal average of "Number of points in the spectrum" for 2025-02-07 to 2025-02-08.

Figure 26: Zonal average of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-02-07 to 2025-02-08.

8 Histograms

The definitions of the parameters given in this section can be found in section 2.

Figure 27: Histogram of "QA value" for 2025-02-07 to 2025-02-08

Figure 28: Histogram of "Cloud pressure" for 2025-02-07 to 2025-02-08

Figure 29: Histogram of "Cloud pressure precision" for 2025-02-07 to 2025-02-08

Figure 30: Histogram of "Cloud fraction" for 2025-02-07 to 2025-02-08

Figure 31: Histogram of "Cloud fraction precision" for 2025-02-07 to 2025-02-08

Figure 32: Histogram of "Scene albedo" for 2025-02-07 to 2025-02-08

Figure 33: Histogram of "Scene albedo precision" for 2025-02-07 to 2025-02-08

Figure 34: Histogram of "Apparent scene pressure" for 2025-02-07 to 2025-02-08

Figure 35: Histogram of "Apparent scene pressure precision" for 2025-02-07 to 2025-02-08

Figure 36: Histogram of " χ^2 " for 2025-02-07 to 2025-02-08

Figure 37: Histogram of "Number of iterations" for 2025-02-07 to 2025-02-08

Figure 38: Histogram of "Fluorescence" for 2025-02-07 to 2025-02-08

Figure 39: Histogram of "Fluorescence precision" for 2025-02-07 to 2025-02-08

Figure 40: Histogram of " χ^2 of fluorescence retrieval" for 2025-02-07 to 2025-02-08

Figure 41: Histogram of "Degrees of freedom for signal of fluorescence retrieval" for 2025-02-07 to 2025-02-08

Figure 42: Histogram of "Number of points in the spectrum" for 2025-02-07 to 2025-02-08

Figure 43: Histogram of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-02-07 to 2025-02-08

9 Along track statistics

The TROPOMI instrument uses different binned detector rows for different viewing directions. In this section statistics are presented for each of the binned rows in the instrument.

Figure 44: Along track statistics of "QA value" for 2025-02-07 to 2025-02-08

Figure 45: Along track statistics of "Cloud pressure" for 2025-02-07 to 2025-02-08

Figure 46: Along track statistics of "Cloud pressure precision" for 2025-02-07 to 2025-02-08

Figure 47: Along track statistics of "Cloud fraction" for 2025-02-07 to 2025-02-08

Figure 48: Along track statistics of "Cloud fraction precision" for 2025-02-07 to 2025-02-08

Figure 49: Along track statistics of "Scene albedo" for 2025-02-07 to 2025-02-08

Figure 50: Along track statistics of "Scene albedo precision" for 2025-02-07 to 2025-02-08

Figure 51: Along track statistics of "Apparent scene pressure" for 2025-02-07 to 2025-02-08

Figure 52: Along track statistics of "Apparent scene pressure precision" for 2025-02-07 to 2025-02-08

Figure 53: Along track statistics of " χ^2 " for 2025-02-07 to 2025-02-08

Figure 54: Along track statistics of "Number of iterations" for 2025-02-07 to 2025-02-08

Figure 55: Along track statistics of "Fluorescence" for 2025-02-07 to 2025-02-08

Figure 56: Along track statistics of "Fluorescence precision" for 2025-02-07 to 2025-02-08

Figure 57: Along track statistics of " χ^2 of fluorescence retrieval" for 2025-02-07 to 2025-02-08

Figure 58: Along track statistics of "Degrees of freedom for signal of fluorescence retrieval" for 2025-02-07 to 2025-02-08

Figure 59: Along track statistics of "Number of points in the spectrum" for 2025-02-07 to 2025-02-08

Figure 60: Along track statistics of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-02-07 to 2025-02-08

10 Coincidence density

To investigate the relation between parameters scatter density plots are produced. These include some 'hidden' parameters, latitude and the solar- and viewing geometries, in addition to all configured parameters. All combinations of pairs of parameters are included *once*, in one direction alone.

Contents

1	Short Introduction	1
	1.1 The list of parameters	1
2	Definitions	1
3	Granule outlines	8
4	Input data monitoring	9
5	Warnings and errors	10
6	World maps	11
7	Zonal average	17
8	Histograms	34
9	Along track statistics	51
10	Coincidence density	68
11	Copyright information of 'PyCAMA'	68

List of Figures

1	Outline of the granules.	8
2	Input data per granule	9
3	Fraction of pixels with specific warnings and errors during processing	10
4	Map of "Cloud pressure" for 2025-02-07 to 2025-02-08	11
5	Map of "Cloud fraction" for 2025-02-07 to 2025-02-08	12
6	Map of "Scene albedo" for 2025-02-07 to 2025-02-08	13
7	Map of "Apparent scene pressure" for 2025-02-07 to 2025-02-08	14
8	Map of "Fluorescence" for 2025-02-07 to 2025-02-08	15
9	Map of the number of observations for 2025-02-07 to 2025-02-08	16
10	Zonal average of "QA value" for 2025-02-07 to 2025-02-08.	17
11	Zonal average of "Cloud pressure" for 2025-02-07 to 2025-02-08.	18
12	Zonal average of "Cloud pressure precision" for 2025-02-07 to 2025-02-08	19
13	Zonal average of "Cloud fraction" for 2025-02-07 to 2025-02-08.	20
14	Zonal average of "Cloud fraction precision" for 2025-02-07 to 2025-02-08.	21
15	Zonal average of "Scene albedo" for 2025-02-07 to 2025-02-08	22
16	Zonal average of "Scene albedo precision" for 2025-02-07 to 2025-02-08	23
17	Zonal average of "Apparent scene pressure" for 2025-02-07 to 2025-02-08	24
18	Zonal average of "Apparent scene pressure precision" for 2025-02-07 to 2025-02-08	25
19	Zonal average of " χ^2 " for 2025-02-07 to 2025-02-08	26
20	Zonal average of "Number of iterations" for 2025-02-07 to 2025-02-08.	27
21	Zonal average of "Fluorescence" for 2025-02-07 to 2025-02-08	28
22	Zonal average of "Fluorescence precision" for 2025-02-07 to 2025-02-08	29
23	Zonal average of " χ^2 of fluorescence retrieval" for 2025-02-07 to 2025-02-08	30
24	Zonal average of "Degrees of freedom for signal of fluorescence retrieval" for 2025-02-07 to 2025-02-08.	31
25	Zonal average of "Number of points in the spectrum" for 2025-02-07 to 2025-02-08	32
26	Zonal average of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-02-07 to 2025-02-08	33
27	Histogram of "QA value" for 2025-02-07 to 2025-02-08	34
28	Histogram of "Cloud pressure" for 2025-02-07 to 2025-02-08	35
29	Histogram of "Cloud pressure precision" for 2025-02-07 to 2025-02-08	36

30	Histogram of "Cloud fraction" for 2025-02-07 to 2025-02-08	37
31	Histogram of "Cloud fraction precision" for 2025-02-07 to 2025-02-08	38
32	Histogram of "Scene albedo" for 2025-02-07 to 2025-02-08	39
33	Histogram of "Scene albedo precision" for 2025-02-07 to 2025-02-08	40
34	Histogram of "Apparent scene pressure" for 2025-02-07 to 2025-02-08	41
35	Histogram of "Apparent scene pressure precision" for 2025-02-07 to 2025-02-08	42
36	Histogram of " χ^2 " for 2025-02-07 to 2025-02-08	43
37	Histogram of "Number of iterations" for 2025-02-07 to 2025-02-08	44
38	Histogram of "Fluorescence" for 2025-02-07 to 2025-02-08	45
39	Histogram of "Fluorescence precision" for 2025-02-07 to 2025-02-08	46
40	Histogram of " χ^2 of fluorescence retrieval" for 2025-02-07 to 2025-02-08	47
41	Histogram of "Degrees of freedom for signal of fluorescence retrieval" for 2025-02-07 to 2025-02-08	48
42	Histogram of "Number of points in the spectrum" for 2025-02-07 to 2025-02-08	49
43	Histogram of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-02-07 to 2025-02-08	50
44	Along track statistics of "QA value" for 2025-02-07 to 2025-02-08	51
45	Along track statistics of "Cloud pressure" for 2025-02-07 to 2025-02-08	52
46	Along track statistics of "Cloud pressure precision" for 2025-02-07 to 2025-02-08	53
47	Along track statistics of "Cloud fraction" for 2025-02-07 to 2025-02-08	54
48	Along track statistics of "Cloud fraction precision" for 2025-02-07 to 2025-02-08	55
49	Along track statistics of "Scene albedo" for 2025-02-07 to 2025-02-08	56
50	Along track statistics of "Scene albedo precision" for 2025-02-07 to 2025-02-08	57
51	Along track statistics of "Apparent scene pressure" for 2025-02-07 to 2025-02-08	58
52	Along track statistics of "Apparent scene pressure precision" for 2025-02-07 to 2025-02-08	59
53	Along track statistics of " χ^2 " for 2025-02-07 to 2025-02-08	60
54	Along track statistics of "Number of iterations" for 2025-02-07 to 2025-02-08	61
55	Along track statistics of "Fluorescence" for 2025-02-07 to 2025-02-08	62
56	Along track statistics of "Fluorescence precision" for 2025-02-07 to 2025-02-08	63
57	Along track statistics of " χ^2 of fluorescence retrieval" for 2025-02-07 to 2025-02-08	64
58	Along track statistics of "Degrees of freedom for signal of fluorescence retrieval" for 2025-02-07 to 2025-02-08	65
59	Along track statistics of "Number of points in the spectrum" for 2025-02-07 to 2025-02-08	66
60	Along track statistics of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-02-07 to 2025-02-08	67

List of Tables

1	Parameterlist and basic statistics for the analysis
2	Percentile ranges
3	Parameterlist and basic statistics for the analysis for observations in the northern hemisphere
4	Parameterlist and basic statistics for the analysis for observations in the southern hemisphere
5	Parameterlist and basic statistics for the analysis for observations over water
6	Parameterlist and basic statistics for the analysis for observations over land

11 Copyright information of 'PyCAMA'

Copyright © 2005-2023, Maarten Sneep (KNMI).

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
- 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

This software is provided by the copyright holders and contributors "as is" and any express or implied warranties, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose are disclaimed. In no event shall the copyright holder or contributors be liable for any direct, indirect, incidental, special, exemplary, or consequential damages (including, but not limited to, procurement of substitute goods or services; loss of use, data, or profits; or business interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence or otherwise) arising in any way out of the use of this software, even if advised of the possibility of such damage.

Maarten Sneep (maarten.sneep@knmi.nl).