PyCAMA report generated by tropl2-proc

tropl2-proc

2025-02-17 (04:15)

1 Short Introduction

1.1 The list of parameters

You may want to keep the list given in table 1 at hand when viewing the results.

2 Definitions

The averages shown here are unweighed averages:

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i \tag{1}$$

with N the number of observations in the dataset.

The spread of the measurements is indicated with the variance V(x), or rather the standard deviation $\sigma(x) = \sqrt{V(x)}$.

$$V(x) = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2$$
(2)

We also report the more robust statistics median, minimum, maximum, various percentiles and inter quartile range.

The median m is the value of parameter x for which half of the observations of x is smaller than m:

$$P(x \le m) = P(x \ge m) = \int_{-\infty}^{m} f(x) \, \mathrm{d}x = \frac{1}{2}$$
(3)

with f(x) the probability density function.

The median is a special case of a percentile. Instead of $\frac{1}{2}$ in equation 3, other threshold values can be used. We report results for 1%, 5%, 10%, 15.9%, 25%, 75%, 84.1%, 90%, 95% and 99%. The inter quartile range is the difference between the 75% and 25% percentiles. Similarly the minimum and maximum values correspond to the 0% and 100% percentiles respectively.

For normally distributed parameters the mean and median are the same, while the $\mu \pm \sigma$ values and the 15.9% and 84.1% percentiles coincide.

To get a measure for the relation of one variable $x_{(k)}$ with another $x_{(l)}$, we calculate the covariance matrix C_{kl} .

$$C_{kl} = C(x_{(k)}, x_{(l)}) = \frac{1}{N-1} \sum_{i=1}^{N} (x_{(k),i} - \overline{x_{(k)}}) (x_{(l),i} - \overline{x_{(l)}})$$
(4)

Rather than a dimensionally dependent covariance, it is often easier to interpret a correlation matrix R_{kl} , a matrix of Pearson's *r* coefficients:

$$R_{kl} = R(x_{(k)}, x_{(l)}) = \frac{C_{kl}}{\sqrt{C_{kk}C_{ll}}} = \frac{C_{kl}}{\sqrt{V(x_k)V(x_l)}}$$
(5)

The diagonal elements of the covariance matrix are the variances of the elements, $V(x_{(k)}) = C_{kk}$ and obviously $R_{kk} = 1$.

Table 1: Parameterlist and basic statistics for the analysis
--

	Table 1: Parameter	list and basic	statistics for the a	nalysis			
Variable	mean $\pm \sigma$	Count	Mode	IQR	Median	Minimum	Maximum
qa value [1]	0.918 ± 0.176	23384922	0.995	0.0	1.000	0.350	1.000
cloud pressure crb [hPa]	776 ± 192	23384922	$1.015 imes 10^3$	289	829	130	1.068×10^{3}
cloud pressure crb precision [hPa]	2.33 ± 9.09	23384922	0.750	1.15	0.527	$1.831 imes10^{-4}$	921
cloud fraction crb [1]	0.483 ± 0.387	23384922	0.996	0.851	0.410	0.0	1.000
cloud fraction crb precision [1]	$(1.824 \pm 10.281) \times 10^{-4}$	23384922	$2.500 imes10^{-4}$	5.929×10^{-5}	$7.823 imes 10^{-5}$	$3.875 imes10^{-9}$	0.402
scene albedo [1]	0.468 ± 0.333	23384922	1.500×10^{-2}	0.606	0.449	-2.795×10^{-3}	4.11
scene albedo precision [1]	$(8.531 \pm 10.100) \times 10^{-5}$	23384922	$2.500 imes 10^{-4}$	$6.421 imes10^{-5}$	5.395×10^{-5}	1.027×10^{-5}	$4.205 imes 10^{-3}$
apparent scene pressure [hPa]	808 ± 171	23384922	1.008×10^3	261	858	130	1.067×10^{3}
apparent scene pressure precision [hPa]	0.923 ± 1.635	23384922	0.500	0.430	0.419	8.952×10^{-2}	58.1
chi square [1]	$(0.220 \pm 1.939) \times 10^5$	23384922	0.150	$2.445 imes 10^4$	1.661×10^4	68.6	$2.328 imes 10^8$
number of iterations [1]	3.36 ± 1.06	23384922	3.23	1.000	3.00	1.000	14.0
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.109 \pm 6.726) \times 10^{-9}$	23384922	2.500×10^{-10}	5.093×10^{-9}	$1.192 imes 10^{-9}$	-1.742×10^{-6}	$1.904 imes10^{-6}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.739 \pm 0.683) \times 10^{-9}$	23384922	$8.500 imes10^{-10}$	$9.984 imes10^{-10}$	1.677×10^{-9}	4.326×10^{-10}	$5.603 imes 10^{-9}$
chi square fluorescence [1]	$(0.501 \pm 0.985) \times 10^5$	23384922	750	$4.230 imes 10^4$	$1.299 imes 10^4$	95.3	$1.044 imes 10^7$
degrees of freedom fluorescence [1]	6.00 ± 0.00	23384922	5.95	0.0	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	23384922	49.7	0.0	50.0	43.0	50.0
wavelength calibration offset [nm]	$(3.180 \pm 8.367) \times 10^{-3}$	23384922	2.800×10^{-3}	5.475×10^{-3}	3.201×10^{-3}	-0.131	0.218

			Table 2:	Percentile rang	es					
Variable	1 %	5%	10 %	15.9 %	25 %	75 %	84.1 %	90%	95 %	99 %
qa value [1]	0.500	0.500	0.500	0.900	1.000	1.000	1.000	1.000	1.000	1.000
cloud pressure crb [hPa]	260	401	494	570	644	933	967	989	1.008×10^3	1.018×10^3
cloud pressure crb precision [hPa]	0.184	0.235	0.259	0.280	0.316	1.47	2.57	4.31	8.49	30.1
cloud fraction crb [1]	$3.918 imes10^{-4}$	$1.142 imes 10^{-2}$	$2.530 imes10^{-2}$	$4.665 imes 10^{-2}$	$9.443 imes 10^{-2}$	0.945	1.000	1.000	1.000	1.000
cloud fraction crb precision [1]	$1.970 imes10^{-5}$	$2.281 imes10^{-5}$	$2.559 imes 10^{-5}$	$2.968 imes10^{-5}$	4.071×10^{-5}	$1.000 imes 10^{-4}$	$1.185 imes10^{-4}$	$2.019 imes 10^{-4}$	$4.972 imes 10^{-4}$	$2.280 imes 10^{-3}$
scene albedo [1]	8.423×10^{-3}	$2.030 imes10^{-2}$	$3.804 imes 10^{-2}$	$6.862 imes 10^{-2}$	0.152	0.757	0.861	0.916	0.976	1.14
scene albedo precision [1]	$1.287 imes 10^{-5}$	$1.509 imes 10^{-5}$	1.838×10^{-5}	$2.320 imes 10^{-5}$	$3.135 imes 10^{-5}$	9.555×10^{-5}	$1.300 imes 10^{-4}$	1.762×10^{-4}	$2.748 imes 10^{-4}$	5.407×10^{-4}
apparent scene pressure [hPa]	351	473	557	615	686	947	976	995	1.009×10^{3}	1.018×10^{3}
apparent scene pressure precision [hPa]	0.213	0.241	0.261	0.280	0.308	0.738	1.21	1.95	3.50	8.24
chi square [1]	291	682	1.440×10^{3}	2.885×10^{3}	5.845×10^{3}	3.030×10^{4}	3.776×10^{4}	4.439×10^{4}	5.375×10^{4}	7.673×10^{4}
number of iterations [1]	2.00	2.00	2.00	3.00	3.00	4.00	4.00	5.00	5.00	7.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	-1.502×10^{-8}	-7.122×10^{-9}	-4.303×10^{-9}	-2.667×10^{-9}	-1.246×10^{-9}	3.847×10^{-9}	5.290×10^{-9}	$6.709 imes 10^{-9}$	$8.821 imes 10^{-9}$	1.387×10^{-8}
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$7.285 imes 10^{-10}$	$8.215 imes 10^{-10}$	8.972×10^{-10}	9.963×10^{-10}	1.177×10^{-9}	2.175×10^{-9}	2.439×10^{-9}	2.659×10^{-9}	3.003×10^{-9}	3.601×10^{-9}
chi square fluorescence [1]	418	873	1.353×10^{3}	2.121×10^{3}	3.751×10^{3}	4.605×10^{4}	8.540×10^{4}	1.406×10^{5}	2.428×10^{5}	4.983×10^{5}
degrees of freedom fluorescence [1]	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$-2.405 imes 10^{-2}$	-9.023×10^{-3}	-4.099×10^{-3}	-1.564×10^{-3}	$4.481 imes 10^{-4}$	5.923×10^{-3}	$7.903 imes 10^{-3}$	$1.044 imes 10^{-2}$	$1.538 imes 10^{-2}$	3.024×10^{-2}

Table	3: Parameterlist and basic	statistics for	the analysis for	observations in	the northern her	nisphere		
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75% percentile
qa value [1]	0.964 ± 0.118	10717646	0.0	1.000	0.350	1.000	1.000	1.000
cloud pressure crb [hPa]	775 ± 199	10717646	292	834	130	1.068×10^{3}	644	936
cloud pressure crb precision [hPa]	2.75 ± 9.53	10717646	1.63	0.782	$1.831 imes 10^{-4}$	841	0.387	2.02
cloud fraction crb [1]	0.418 ± 0.374	10717646	0.720	0.285	0.0	1.000	$7.292 imes 10^{-2}$	0.793
cloud fraction crb precision [1]	$(2.228 \pm 13.224) \times 10^{-4}$	10717646	$8.070 imes10^{-5}$	$9.579 imes 10^{-5}$	$3.875 imes10^{-9}$	0.402	$4.593 imes10^{-5}$	1.266×10^{-4}
scene albedo [1]	0.451 ± 0.320	10717646	0.541	0.427	$-2.016 imes10^{-3}$	3.67	0.164	0.705
scene albedo precision [1]	$(9.480 \pm 11.405) \times 10^{-5}$	10717646	$6.817 imes10^{-5}$	$5.835 imes 10^{-5}$	$1.078 imes10^{-5}$	1.931×10^{-3}	$3.291 imes 10^{-5}$	$1.011 imes10^{-4}$
apparent scene pressure [hPa]	823 ± 167	10717646	222	875	130	1.067×10^3	730	952
apparent scene pressure precision [hPa]	0.910 ± 1.452	10717646	0.442	0.462	0.167	56.1	0.338	0.780
chi square [1]	$(0.216 \pm 1.940) \times 10^5$	10717646	$2.280 imes 10^4$	$1.520 imes 10^4$	80.4	$2.057 imes 10^8$	5.407×10^{3}	$2.821 imes 10^4$
number of iterations [1]	3.56 ± 1.15	10717646	1.000	3.00	1.000	14.0	3.00	4.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.226 \pm 5.311) \times 10^{-9}$	10717646	$4.543 imes 10^{-9}$	$1.333 imes 10^{-9}$	$-1.742 imes10^{-6}$	$1.430 imes 10^{-6}$	$-8.550 imes 10^{-10}$	3.688×10^{-9}
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.626 \pm 0.643) \times 10^{-9}$	10717646	9.362×10^{-10}	1.537×10^{-9}	4.326×10^{-10}	5.529×10^{-9}	$1.102 imes 10^{-9}$	$2.038 imes10^{-9}$
chi square fluorescence [1]	$(0.394 \pm 0.783) \times 10^5$	10717646	3.200×10^4	$1.028 imes 10^4$	101	$1.639 imes 10^6$	3.695×10^{3}	$3.570 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	10717646	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	10717646	0.0	50.0	48.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(3.168 \pm 8.365) \times 10^{-3}$	10717646	5.887×10^{-3}	3.125×10^{-3}	-8.352×10^{-2}	8.728×10^{-2}	1.800×10^{-4}	6.067×10^{-3}

Table 4: Parameterlist an	d basic statistics for the ana	lysis for observations ir	the southern hemisphere

Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.879 ± 0.205	12667276	0.1000	1.000	0.350	1.000	0.900	1.000
cloud pressure crb [hPa]	777 ± 187	12667276	287	823	130	$1.035 imes 10^3$	644	931
cloud pressure crb precision [hPa]	1.98 ± 8.69	12667276	0.657	0.406	1.160×10^{-3}	921	0.291	0.948
cloud fraction crb [1]	0.537 ± 0.389	12667276	0.873	0.547	0.0	1.000	0.127	1.000
cloud fraction crb precision [1]	$(1.483 \pm 6.850) \times 10^{-4}$	12667276	$6.229 imes10^{-5}$	$6.941 imes10^{-5}$	1.109×10^{-8}	0.156	$3.771 imes 10^{-5}$	$1.000 imes 10^{-4}$
scene albedo [1]	0.483 ± 0.342	12667276	0.658	0.472	$-2.795 imes 10^{-3}$	4.11	0.143	0.801
scene albedo precision [1]	$(7.728 \pm 8.767) \times 10^{-5}$	12667276	$6.062 imes 10^{-5}$	$5.157 imes10^{-5}$	$1.027 imes 10^{-5}$	$4.205 imes 10^{-3}$	$3.011 imes 10^{-5}$	$9.073 imes10^{-5}$
apparent scene pressure [hPa]	796 ± 174	12667276	281	840	130	1.034×10^{3}	662	942
apparent scene pressure precision [hPa]	0.934 ± 1.775	12667276	0.402	0.379	8.952×10^{-2}	58.1	0.292	0.694
chi square [1]	$(0.224 \pm 1.938) \times 10^5$	12667276	2.554×10^4	$1.802 imes 10^4$	68.6	$2.328 imes 10^8$	6.275×10^{3}	3.182×10^4
number of iterations [1]	3.20 ± 0.94	12667276	1.000	3.00	1.000	14.0	3.00	4.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.011 \pm 7.722) \times 10^{-9}$	12667276	$5.609 imes 10^{-9}$	$1.039 imes10^{-9}$	$-1.674 imes 10^{-6}$	$1.904 imes10^{-6}$	-1.600×10^{-9}	$4.010 imes10^{-9}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.835 \pm 0.702) \times 10^{-9}$	12667276	$9.895 imes 10^{-10}$	$1.792 imes 10^{-9}$	$5.216 imes 10^{-10}$	$5.603 imes 10^{-9}$	$1.258 imes10^{-9}$	$2.248 imes10^{-9}$
chi square fluorescence [1]	$(0.592 \pm 1.119) \times 10^5$	12667276	$5.234 imes 10^4$	$1.603 imes 10^4$	95.3	$1.044 imes 10^7$	3.839×10^{3}	$5.618 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	12667276	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	12667276	0.0	50.0	43.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(3.190 \pm 8.368) \times 10^{-3}$	12667276	5.136×10^{-3}	3.258×10^{-3}	-0.131	0.218	6.736×10^{-4}	5.809×10^{-3}

	Table 5: Parameterlist and	l basic statis	tics for the ana	lysis for observa	tions over water			
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.981 ± 0.056	14632996	0.0	1.000	0.350	1.000	1.000	1.000
cloud pressure crb [hPa]	805 ± 190	14632996	266	870	130	1.067×10^{3}	687	952
cloud pressure crb precision [hPa]	2.55 ± 10.16	14632996	1.18	0.569	3.662×10^{-4}	921	0.332	1.51
cloud fraction crb [1]	0.402 ± 0.349	14632996	0.646	0.305	0.0	1.000	$7.058 imes10^{-2}$	0.716
cloud fraction crb precision [1]	$(9.323\pm50.467) imes10^{-5}$	14632996	5.592×10^{-5}	$5.178 imes10^{-5}$	$3.115 imes 10^{-7}$	0.402	$2.954 imes10^{-5}$	$8.546 imes10^{-5}$
scene albedo [1]	0.344 ± 0.297	14632996	0.526	0.263	$-2.795 imes 10^{-3}$	3.47	$6.761 imes 10^{-2}$	0.594
scene albedo precision [1]	$(6.352 \pm 8.574) \times 10^{-5}$	14632996	$4.340 imes 10^{-5}$	$4.296 imes 10^{-5}$	$1.027 imes 10^{-5}$	$4.205 imes 10^{-3}$	$2.313 imes10^{-5}$	$6.653 imes10^{-5}$
apparent scene pressure [hPa]	822 ± 180	14632996	250	883	130	1.067×10^{3}	716	965
apparent scene pressure precision [hPa]	1.24 ± 2.00	14632996	0.889	0.534	0.125	58.1	0.327	1.22
chi square [1]	$(0.161 \pm 1.759) \times 10^5$	14632996	2.124×10^4	$1.010 imes 10^4$	68.6	$2.328 imes 10^8$	2.873×10^{3}	2.411×10^4
number of iterations [1]	2.94 ± 0.77	14632996	0.0	3.00	1.000	14.0	3.00	3.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.768 \pm 59.469) \times 10^{-10}$	14632996	4.406×10^{-9}	$1.667 imes 10^{-10}$	$-1.674 imes 10^{-6}$	$1.904 imes 10^{-6}$	$-1.870 imes 10^{-9}$	$2.536 imes 10^{-9}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.662 \pm 0.711) \times 10^{-9}$	14632996	$1.102 imes 10^{-9}$	1.550×10^{-9}	4.326×10^{-10}	5.603×10^{-9}	$1.042 imes 10^{-9}$	$2.144 imes10^{-9}$
chi square fluorescence [1]	$(0.484 \pm 0.921) imes 10^5$	14632996	4.327×10^4	$1.575 imes 10^4$	95.3	$1.044 imes 10^7$	4.929×10^{3}	$4.820 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	14632996	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	14632996	0.0	50.0	43.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(3.146 \pm 9.864) \times 10^{-3}$	14632996	6.769×10^{-3}	3.193×10^{-3}	-0.131	0.218	$-2.615 imes 10^{-4}$	6.507×10^{-3}

	Table 6: Parameterlist an	d basic stat	tistics for the ana	alysis for observ	vations over land			
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.776 ± 0.252	6919935	0.500	1.000	0.350	1.000	0.500	1.000
cloud pressure crb [hPa]	721 ± 180	6919935	249	724	130	1.060×10^{3}	617	866
cloud pressure crb precision [hPa]	1.90 ± 6.90	6919935	1.01	0.428	$1.831 imes10^{-4}$	866	0.293	1.31
cloud fraction crb [1]	0.649 ± 0.409	6919935	0.823	1.000	0.0	1.000	0.177	1.000
cloud fraction crb precision [1]	$(3.478 \pm 15.547) \times 10^{-4}$	6919935	$3.476 imes 10^{-5}$	$1.000 imes 10^{-4}$	$3.875 imes10^{-9}$	0.393	$1.000 imes 10^{-4}$	$1.348 imes 10^{-4}$
scene albedo [1]	0.701 ± 0.278	6919935	0.459	0.776	$1.888 imes10^{-2}$	4.11	0.457	0.916
scene albedo precision [1]	$(1.293 \pm 1.169) \times 10^{-4}$	6919935	$1.021 imes 10^{-4}$	$9.799 imes 10^{-5}$	$1.402 imes 10^{-5}$	$1.794 imes 10^{-3}$	$5.090 imes 10^{-5}$	$1.530 imes 10^{-4}$
apparent scene pressure [hPa]	773 ± 147	6919935	249	784	130	1.057×10^{3}	654	903
apparent scene pressure precision [hPa]	0.385 ± 0.132	6919935	0.156	0.353	$8.952 imes 10^{-2}$	5.75	0.291	0.447
chi square [1]	$(0.316 \pm 2.107) \times 10^5$	6919935	$2.191 imes 10^4$	$2.481 imes 10^4$	479	$1.726 imes 10^8$	1.551×10^4	3.742×10^4
number of iterations [1]	4.11 ± 1.08	6919935	0.0	4.00	1.000	14.0	4.00	4.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(2.710\pm7.437)\times10^{-9}$	6919935	$4.095 imes 10^{-9}$	2.945×10^{-9}	-1.742×10^{-6}	$1.569 imes 10^{-6}$	9.522×10^{-10}	5.047×10^{-9}
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.844 \pm 0.604) \times 10^{-9}$	6919935	$7.889 imes 10^{-10}$	$1.774 imes 10^{-9}$	5.242×10^{-10}	$5.438 imes 10^{-9}$	1.400×10^{-9}	$2.189 imes 10^{-9}$
chi square fluorescence [1]	$(0.471 \pm 1.009) \times 10^5$	6919935	$3.039 imes 10^4$	7.177×10^3	170	$1.684 imes 10^6$	2.067×10^{3}	3.246×10^4
degrees of freedom fluorescence [1]	6.00 ± 0.00	6919935	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	6919935	0.0	50.0	48.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(3.225 \pm 4.320) \times 10^{-3}$	6919935	3.731×10^{-3}	3.212×10^{-3}	-6.418×10^{-2}	6.718×10^{-2}	1.362×10^{-3}	$5.093 imes 10^{-3}$

Granule outlines

Figure 1: Outline of the granules.

4 Input data monitoring

Figure 2: Input data per granule

5 Warnings and errors

Figure 3: Fraction of pixels with specific warnings and errors during processing

6 World maps

Figure 4: Map of "Cloud pressure" for 2025-02-15 to 2025-02-16

Figure 5: Map of "Cloud fraction" for 2025-02-15 to 2025-02-16

Figure 6: Map of "Scene albedo" for 2025-02-15 to 2025-02-16

Figure 7: Map of "Apparent scene pressure" for 2025-02-15 to 2025-02-16

2025-02-15

Figure 8: Map of "Fluorescence" for 2025-02-15 to 2025-02-16

Figure 9: Map of the number of observations for 2025-02-15 to 2025-02-16

7 Zonal average

Figure 10: Zonal average of "QA value" for 2025-02-15 to 2025-02-16.

Figure 11: Zonal average of "Cloud pressure" for 2025-02-15 to 2025-02-16.

Figure 12: Zonal average of "Cloud pressure precision" for 2025-02-15 to 2025-02-16.

Figure 13: Zonal average of "Cloud fraction" for 2025-02-15 to 2025-02-16.

Figure 14: Zonal average of "Cloud fraction precision" for 2025-02-15 to 2025-02-16.

Figure 15: Zonal average of "Scene albedo" for 2025-02-15 to 2025-02-16.

Figure 16: Zonal average of "Scene albedo precision" for 2025-02-15 to 2025-02-16.

Figure 17: Zonal average of "Apparent scene pressure" for 2025-02-15 to 2025-02-16.

Figure 18: Zonal average of "Apparent scene pressure precision" for 2025-02-15 to 2025-02-16.

Figure 19: Zonal average of " χ^2 " for 2025-02-15 to 2025-02-16.

Figure 20: Zonal average of "Number of iterations" for 2025-02-15 to 2025-02-16.

Figure 21: Zonal average of "Fluorescence" for 2025-02-15 to 2025-02-16.

Figure 22: Zonal average of "Fluorescence precision" for 2025-02-15 to 2025-02-16.

Figure 23: Zonal average of " χ^2 of fluorescence retrieval" for 2025-02-15 to 2025-02-16.

Figure 24: Zonal average of "Degrees of freedom for signal of fluorescence retrieval" for 2025-02-15 to 2025-02-16.

Figure 25: Zonal average of "Number of points in the spectrum" for 2025-02-15 to 2025-02-16.

Figure 26: Zonal average of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-02-15 to 2025-02-16.

8 Histograms

The definitions of the parameters given in this section can be found in section 2.

Figure 27: Histogram of "QA value" for 2025-02-15 to 2025-02-16

Figure 28: Histogram of "Cloud pressure" for 2025-02-15 to 2025-02-16

Figure 29: Histogram of "Cloud pressure precision" for 2025-02-15 to 2025-02-16

Figure 30: Histogram of "Cloud fraction" for 2025-02-15 to 2025-02-16

Figure 31: Histogram of "Cloud fraction precision" for 2025-02-15 to 2025-02-16

Figure 32: Histogram of "Scene albedo" for 2025-02-15 to 2025-02-16

Figure 33: Histogram of "Scene albedo precision" for 2025-02-15 to 2025-02-16

Figure 34: Histogram of "Apparent scene pressure" for 2025-02-15 to 2025-02-16

Figure 35: Histogram of "Apparent scene pressure precision" for 2025-02-15 to 2025-02-16

Figure 36: Histogram of " χ^2 " for 2025-02-15 to 2025-02-16

Figure 37: Histogram of "Number of iterations" for 2025-02-15 to 2025-02-16

Figure 38: Histogram of "Fluorescence" for 2025-02-15 to 2025-02-16

Figure 39: Histogram of "Fluorescence precision" for 2025-02-15 to 2025-02-16

Figure 40: Histogram of " χ^2 of fluorescence retrieval" for 2025-02-15 to 2025-02-16

Figure 41: Histogram of "Degrees of freedom for signal of fluorescence retrieval" for 2025-02-15 to 2025-02-16

Figure 42: Histogram of "Number of points in the spectrum" for 2025-02-15 to 2025-02-16

Figure 43: Histogram of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-02-15 to 2025-02-16

9 Along track statistics

The TROPOMI instrument uses different binned detector rows for different viewing directions. In this section statistics are presented for each of the binned rows in the instrument.

Figure 44: Along track statistics of "QA value" for 2025-02-15 to 2025-02-16

Figure 45: Along track statistics of "Cloud pressure" for 2025-02-15 to 2025-02-16

Figure 46: Along track statistics of "Cloud pressure precision" for 2025-02-15 to 2025-02-16

Figure 47: Along track statistics of "Cloud fraction" for 2025-02-15 to 2025-02-16

Figure 48: Along track statistics of "Cloud fraction precision" for 2025-02-15 to 2025-02-16

Figure 49: Along track statistics of "Scene albedo" for 2025-02-15 to 2025-02-16

Figure 50: Along track statistics of "Scene albedo precision" for 2025-02-15 to 2025-02-16

Figure 51: Along track statistics of "Apparent scene pressure" for 2025-02-15 to 2025-02-16

Figure 52: Along track statistics of "Apparent scene pressure precision" for 2025-02-15 to 2025-02-16

Figure 53: Along track statistics of " χ^2 " for 2025-02-15 to 2025-02-16

Figure 54: Along track statistics of "Number of iterations" for 2025-02-15 to 2025-02-16

Figure 55: Along track statistics of "Fluorescence" for 2025-02-15 to 2025-02-16

Figure 56: Along track statistics of "Fluorescence precision" for 2025-02-15 to 2025-02-16

Figure 57: Along track statistics of " χ^2 of fluorescence retrieval" for 2025-02-15 to 2025-02-16

Figure 58: Along track statistics of "Degrees of freedom for signal of fluorescence retrieval" for 2025-02-15 to 2025-02-16

Figure 59: Along track statistics of "Number of points in the spectrum" for 2025-02-15 to 2025-02-16

Figure 60: Along track statistics of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-02-15 to 2025-02-16

10 Coincidence density

To investigate the relation between parameters scatter density plots are produced. These include some 'hidden' parameters, latitude and the solar- and viewing geometries, in addition to all configured parameters. All combinations of pairs of parameters are included *once*, in one direction alone.

Contents

1	Short Introduction	1
	1.1 The list of parameters	1
2	Definitions	1
3	Granule outlines	8
4	Input data monitoring	9
5	Warnings and errors	10
6	World maps	11
7	Zonal average	17
8	Histograms	34
9	Along track statistics	51
10	Coincidence density	68
11	Copyright information of 'PyCAMA'	68

List of Figures

1	Outline of the granules.	8
2	Input data per granule	9
3	Fraction of pixels with specific warnings and errors during processing	10
4	Map of "Cloud pressure" for 2025-02-15 to 2025-02-16	11
5	Map of "Cloud fraction" for 2025-02-15 to 2025-02-16	12
6	Map of "Scene albedo" for 2025-02-15 to 2025-02-16	13
7	Map of "Apparent scene pressure" for 2025-02-15 to 2025-02-16	14
8	Map of "Fluorescence" for 2025-02-15 to 2025-02-16	15
9	Map of the number of observations for 2025-02-15 to 2025-02-16	16
10	Zonal average of "QA value" for 2025-02-15 to 2025-02-16.	17
11	Zonal average of "Cloud pressure" for 2025-02-15 to 2025-02-16.	18
12	Zonal average of "Cloud pressure precision" for 2025-02-15 to 2025-02-16.	19
13	Zonal average of "Cloud fraction" for 2025-02-15 to 2025-02-16.	20
14	Zonal average of "Cloud fraction precision" for 2025-02-15 to 2025-02-16.	21
15	Zonal average of "Scene albedo" for 2025-02-15 to 2025-02-16.	22
16	Zonal average of "Scene albedo precision" for 2025-02-15 to 2025-02-16.	23
17	Zonal average of "Apparent scene pressure" for 2025-02-15 to 2025-02-16.	24
18	Zonal average of "Apparent scene pressure precision" for 2025-02-15 to 2025-02-16.	25
19	Zonal average of " χ^2 " for 2025-02-15 to 2025-02-16	26
20	Zonal average of "Number of iterations" for 2025-02-15 to 2025-02-16.	27
21	Zonal average of "Fluorescence" for 2025-02-15 to 2025-02-16.	28
22	Zonal average of "Fluorescence precision" for 2025-02-15 to 2025-02-16.	29
23	Zonal average of " χ^2 of fluorescence retrieval" for 2025-02-15 to 2025-02-16	30
24	Zonal average of "Degrees of freedom for signal of fluorescence retrieval" for 2025-02-15 to 2025-02-16.	31
25	Zonal average of "Number of points in the spectrum" for 2025-02-15 to 2025-02-16.	32
26	Zonal average of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-02-15 to 2025-02-16	33
27	Histogram of "QA value" for 2025-02-15 to 2025-02-16	34
28	Histogram of "Cloud pressure" for 2025-02-15 to 2025-02-16	35
29	Histogram of "Cloud pressure precision" for 2025-02-15 to 2025-02-16	36

30	Histogram of "Cloud fraction" for 2025-02-15 to 2025-02-16	37
31	Histogram of "Cloud fraction precision" for 2025-02-15 to 2025-02-16	38
32	Histogram of "Scene albedo" for 2025-02-15 to 2025-02-16	39
33	Histogram of "Scene albedo precision" for 2025-02-15 to 2025-02-16	40
34	Histogram of "Apparent scene pressure" for 2025-02-15 to 2025-02-16	41
35	Histogram of "Apparent scene pressure precision" for 2025-02-15 to 2025-02-16	42
36	Histogram of " χ^2 " for 2025-02-15 to 2025-02-16	43
37	Histogram of "Number of iterations" for 2025-02-15 to 2025-02-16	44
38	Histogram of "Fluorescence" for 2025-02-15 to 2025-02-16	45
39	Histogram of "Fluorescence precision" for 2025-02-15 to 2025-02-16	46
40	Histogram of " χ^2 of fluorescence retrieval" for 2025-02-15 to 2025-02-16	47
41	Histogram of "Degrees of freedom for signal of fluorescence retrieval" for 2025-02-15 to 2025-02-16	48
42	Histogram of "Number of points in the spectrum" for 2025-02-15 to 2025-02-16	49
43	Histogram of "Spectral offset $(\lambda_{true} - \lambda_{nominal})$ " for 2025-02-15 to 2025-02-16	50
44	Along track statistics of "QA value" for 2025-02-15 to 2025-02-16	51
45	Along track statistics of "Cloud pressure" for 2025-02-15 to 2025-02-16	52
46	Along track statistics of "Cloud pressure precision" for 2025-02-15 to 2025-02-16	53
47	Along track statistics of "Cloud fraction" for 2025-02-15 to 2025-02-16	54
48	Along track statistics of "Cloud fraction precision" for 2025-02-15 to 2025-02-16	55
49	Along track statistics of "Scene albedo" for 2025-02-15 to 2025-02-16	56
50	Along track statistics of "Scene albedo precision" for 2025-02-15 to 2025-02-16	57
51	Along track statistics of "Apparent scene pressure" for 2025-02-15 to 2025-02-16	58
52	Along track statistics of "Apparent scene pressure precision" for 2025-02-15 to 2025-02-16	59
53	Along track statistics of " χ^2 " for 2025-02-15 to 2025-02-16	60
54	Along track statistics of "Number of iterations" for 2025-02-15 to 2025-02-16	61
55	Along track statistics of "Fluorescence" for 2025-02-15 to 2025-02-16	62
56	Along track statistics of "Fluorescence precision" for 2025-02-15 to 2025-02-16	63
57	Along track statistics of " χ^2 of fluorescence retrieval" for 2025-02-15 to 2025-02-16	64
58	Along track statistics of "Degrees of freedom for signal of fluorescence retrieval" for 2025-02-15 to 2025-02-16	65
59	Along track statistics of "Number of points in the spectrum" for 2025-02-15 to 2025-02-16	66
60	Along track statistics of "Spectral offset $(\lambda_{true} - \lambda_{nominal})$ " for 2025-02-15 to 2025-02-16	67

List of Tables

1	Parameterlist and basic statistics for the analysis
2	Percentile ranges
3	Parameterlist and basic statistics for the analysis for observations in the northern hemisphere
4	Parameterlist and basic statistics for the analysis for observations in the southern hemisphere
5	Parameterlist and basic statistics for the analysis for observations over water
6	Parameterlist and basic statistics for the analysis for observations over land

11 Copyright information of 'PyCAMA'

Copyright © 2005-2023, Maarten Sneep (KNMI).

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
- 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

This software is provided by the copyright holders and contributors "as is" and any express or implied warranties, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose are disclaimed. In no event shall the copyright holder or contributors be liable for any direct, indirect, incidental, special, exemplary, or consequential damages (including, but not limited to, procurement of substitute goods or services; loss of use, data, or profits; or business interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence or otherwise) arising in any way out of the use of this software, even if advised of the possibility of such damage.

Maarten Sneep (maarten.sneep@knmi.nl).