## PyCAMA report generated by tropl2-proc

#### tropl2-proc

#### 2025-02-19 (10:30)

#### **1** Short Introduction

#### 1.1 The list of parameters

You may want to keep the list given in table 1 at hand when viewing the results.

#### 2 Definitions

The averages shown here are unweighed averages:

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i \tag{1}$$

with N the number of observations in the dataset.

The spread of the measurements is indicated with the variance V(x), or rather the standard deviation  $\sigma(x) = \sqrt{V(x)}$ .

$$V(x) = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2$$
(2)

We also report the more robust statistics median, minimum, maximum, various percentiles and inter quartile range.

The median m is the value of parameter x for which half of the observations of x is smaller than m:

$$P(x \le m) = P(x \ge m) = \int_{-\infty}^{m} f(x) \, \mathrm{d}x = \frac{1}{2}$$
(3)

with f(x) the probability density function.

The median is a special case of a percentile. Instead of  $\frac{1}{2}$  in equation 3, other threshold values can be used. We report results for 1%, 5%, 10%, 15.9%, 25%, 75%, 84.1%, 90%, 95% and 99%. The inter quartile range is the difference between the 75% and 25% percentiles. Similarly the minimum and maximum values correspond to the 0% and 100% percentiles respectively.

For normally distributed parameters the mean and median are the same, while the  $\mu \pm \sigma$  values and the 15.9% and 84.1% percentiles coincide.

To get a measure for the relation of one variable  $x_{(k)}$  with another  $x_{(l)}$ , we calculate the covariance matrix  $C_{kl}$ .

$$C_{kl} = C(x_{(k)}, x_{(l)}) = \frac{1}{N-1} \sum_{i=1}^{N} (x_{(k),i} - \overline{x_{(k)}}) (x_{(l),i} - \overline{x_{(l)}})$$
(4)

Rather than a dimensionally dependent covariance, it is often easier to interpret a correlation matrix  $R_{kl}$ , a matrix of Pearson's *r* coefficients:

$$R_{kl} = R(x_{(k)}, x_{(l)}) = \frac{C_{kl}}{\sqrt{C_{kk}C_{ll}}} = \frac{C_{kl}}{\sqrt{V(x_k)V(x_l)}}$$
(5)

The diagonal elements of the covariance matrix are the variances of the elements,  $V(x_{(k)}) = C_{kk}$  and obviously  $R_{kk} = 1$ .

| Table 1: Parameterlist and basic statistics for the analy | 'si |
|-----------------------------------------------------------|-----|
|-----------------------------------------------------------|-----|

|                                                                                                                                                     | Table 1: Parameterl                  | ist and basic s | statistics for the ar  | alysis                 |                        |                         |                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------|------------------------|------------------------|------------------------|-------------------------|------------------------|
| Variable                                                                                                                                            | mean $\pm \sigma$                    | Count           | Mode                   | IQR                    | Median                 | Minimum                 | Maximum                |
| qa value [1]                                                                                                                                        | $0.921 \pm 0.173$                    | 24987662        | 0.995                  | 0.0                    | 1.000                  | 0.350                   | 1.000                  |
| cloud pressure crb [hPa]                                                                                                                            | $782 \pm 193$                        | 24987662        | $1.015 \times 10^{3}$  | 287                    | 837                    | 130                     | $1.069 \times 10^{3}$  |
| cloud pressure crb precision [hPa]                                                                                                                  | $2.53 \pm 9.57$                      | 24987662        | 0.750                  | 1.27                   | 0.558                  | $3.662 \times 10^{-4}$  | $1.484 \times 10^{3}$  |
| cloud fraction crb [1]                                                                                                                              | $0.466 \pm 0.384$                    | 24987662        | 0.996                  | 0.818                  | 0.381                  | 0.0                     | 1.000                  |
| cloud fraction crb precision [1]                                                                                                                    | $(2.033 \pm 14.471) \times 10^{-4}$  | 24987662        | $2.500 	imes 10^{-4}$  | $5.985	imes10^{-5}$    | $7.503	imes10^{-5}$    | $9.409 	imes 10^{-10}$  | 0.734                  |
| scene albedo [1]                                                                                                                                    | $0.455 \pm 0.330$                    | 24987662        | $1.500 	imes 10^{-2}$  | 0.599                  | 0.428                  | $-3.321 \times 10^{-3}$ | 4.40                   |
| scene albedo precision [1]                                                                                                                          | $(8.456 \pm 10.023) \times 10^{-5}$  | 24987662        | $2.500 	imes 10^{-4}$  | $6.444 	imes 10^{-5}$  | $5.289	imes10^{-5}$    | $1.042 	imes 10^{-5}$   | $7.819 	imes 10^{-3}$  |
| apparent scene pressure [hPa]                                                                                                                       | $814\pm172$                          | 24987662        | $1.008 \times 10^3$    | 255                    | 868                    | 130                     | $1.062 \times 10^{3}$  |
| apparent scene pressure precision [hPa]                                                                                                             | $0.953 \pm 1.671$                    | 24987662        | 0.500                  | 0.464                  | 0.429                  | $8.481	imes10^{-2}$     | 61.8                   |
| chi square [1]                                                                                                                                      | $(0.215 \pm 1.886) \times 10^5$      | 24987662        | 0.150                  | $2.360 	imes 10^4$     | $1.585 	imes 10^4$     | 66.4                    | $2.355 	imes 10^8$     |
| number of iterations [1]                                                                                                                            | $3.34 \pm 1.07$                      | 24987662        | 3.23                   | 1.000                  | 3.00                   | 1.000                   | 14.0                   |
| fluorescence [mol s <sup><math>-1</math></sup> m <sup><math>-2</math></sup> nm <sup><math>-1</math></sup> sr <sup><math>-1</math></sup> ]           | $(9.041 \pm 59.450) \times 10^{-10}$ | 24987662        | $2.500\times10^{-10}$  | $4.944 	imes 10^{-9}$  | $1.034	imes10^{-9}$    | $-2.052	imes10^{-6}$    | $1.814	imes10^{-6}$    |
| fluorescence precision [mol s <sup><math>-1</math></sup> m <sup><math>-2</math></sup> nm <sup><math>-1</math></sup> sr <sup><math>-1</math></sup> ] | $(1.715\pm0.678)\times10^{-9}$       | 24987662        | $8.500 	imes 10^{-10}$ | $9.915 	imes 10^{-10}$ | $1.648 	imes 10^{-9}$  | $4.373 	imes 10^{-10}$  | $5.758 \times 10^{-9}$ |
| chi square fluorescence [1]                                                                                                                         | $(0.489 \pm 0.987) \times 10^5$      | 24987662        | 750                    | $4.113 	imes 10^4$     | $1.298 	imes 10^4$     | 107                     | $2.909 	imes 10^6$     |
| degrees of freedom fluorescence [1]                                                                                                                 | $6.00\pm0.00$                        | 24987662        | 5.95                   | 0.0                    | 6.00                   | 6.00                    | 6.00                   |
| number of spectral points in retrieval [1]                                                                                                          | $50.0 \pm 0.1$                       | 24987662        | 49.7                   | 0.0                    | 50.0                   | 47.0                    | 50.0                   |
| wavelength calibration offset [nm]                                                                                                                  | $(3.145 \pm 8.446) \times 10^{-3}$   | 24987662        | $3.600 \times 10^{-3}$ | $5.584 	imes 10^{-3}$  | $3.186 \times 10^{-3}$ | $-9.586 \times 10^{-2}$ | 0.176                  |

|                                                                                                                                                     |                         |                         | Table 2:                | Percentile rang         | jes                     |                        |                        |                        |                        |                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|
| Variable                                                                                                                                            | 1 %                     | 5 %                     | 10 %                    | 15.9 %                  | 25 %                    | 75 %                   | 84.1 %                 | 90 %                   | 95 %                   | 99 %                   |
| qa value [1]                                                                                                                                        | 0.500                   | 0.500                   | 0.500                   | 0.900                   | 1.000                   | 1.000                  | 1.000                  | 1.000                  | 1.000                  | 1.000                  |
| cloud pressure crb [hPa]                                                                                                                            | 253                     | 402                     | 498                     | 575                     | 651                     | 938                    | 971                    | 991                    | $1.008 \times 10^3$    | $1.018 \times 10^3$    |
| cloud pressure crb precision [hPa]                                                                                                                  | 0.177                   | 0.237                   | 0.262                   | 0.285                   | 0.323                   | 1.59                   | 2.77                   | 4.73                   | 9.50                   | 33.1                   |
| cloud fraction crb [1]                                                                                                                              | 0.0                     | $1.002 	imes 10^{-2}$   | $2.273	imes10^{-2}$     | $4.208 	imes 10^{-2}$   | $8.510	imes10^{-2}$     | 0.904                  | 1.000                  | 1.000                  | 1.000                  | 1.000                  |
| cloud fraction crb precision [1]                                                                                                                    | $1.953	imes10^{-5}$     | $2.249 	imes 10^{-5}$   | $2.532 	imes 10^{-5}$   | $2.931 	imes 10^{-5}$   | $4.015 	imes 10^{-5}$   | $1.000 	imes 10^{-4}$  | $1.214	imes10^{-4}$    | $2.176	imes10^{-4}$    | $6.060	imes10^{-4}$    | $2.571 \times 10^{-3}$ |
| scene albedo [1]                                                                                                                                    | $8.255 	imes 10^{-3}$   | $1.959	imes10^{-2}$     | $3.656 	imes 10^{-2}$   | $6.423 	imes 10^{-2}$   | 0.140                   | 0.739                  | 0.846                  | 0.907                  | 0.970                  | 1.14                   |
| scene albedo precision [1]                                                                                                                          | $1.282 	imes 10^{-5}$   | $1.497 	imes 10^{-5}$   | $1.813 	imes 10^{-5}$   | $2.295 	imes 10^{-5}$   | $3.089 \times 10^{-5}$  | $9.533 \times 10^{-5}$ | $1.309 \times 10^{-4}$ | $1.774 	imes 10^{-4}$  | $2.717	imes10^{-4}$    | $5.372 \times 10^{-4}$ |
| apparent scene pressure [hPa]                                                                                                                       | 344                     | 474                     | 558                     | 617                     | 697                     | 952                    | 979                    | 996                    | $1.010 \times 10^{3}$  | $1.019 \times 10^{3}$  |
| apparent scene pressure precision [hPa]                                                                                                             | 0.213                   | 0.244                   | 0.265                   | 0.284                   | 0.314                   | 0.778                  | 1.27                   | 2.04                   | 3.65                   | 8.35                   |
| chi square [1]                                                                                                                                      | 278                     | 652                     | $1.377 \times 10^{3}$   | $2.716 \times 10^{3}$   | $5.438 \times 10^{3}$   | $2.904 \times 10^{4}$  | $3.602 \times 10^{4}$  | $4.230 \times 10^{4}$  | $5.123 \times 10^{4}$  | $7.604 \times 10^4$    |
| number of iterations [1]                                                                                                                            | 2.00                    | 2.00                    | 2.00                    | 2.00                    | 3.00                    | 4.00                   | 4.00                   | 5.00                   | 5.00                   | 7.00                   |
| fluorescence [mol s <sup><math>-1</math></sup> m <sup><math>-2</math></sup> nm <sup><math>-1</math></sup> sr <sup><math>-1</math></sup> ]           | $-1.515 	imes 10^{-8}$  | $-7.182 \times 10^{-9}$ | $-4.380 \times 10^{-9}$ | $-2.770 \times 10^{-9}$ | $-1.355 \times 10^{-9}$ | $3.589 	imes 10^{-9}$  | $4.960 \times 10^{-9}$ | $6.311 \times 10^{-9}$ | $8.335 \times 10^{-9}$ | $1.320 \times 10^{-8}$ |
| fluorescence precision [mol s <sup><math>-1</math></sup> m <sup><math>-2</math></sup> nm <sup><math>-1</math></sup> sr <sup><math>-1</math></sup> ] | $7.287 	imes 10^{-10}$  | $8.195 	imes 10^{-10}$  | $8.914 	imes 10^{-10}$  | $9.839 	imes 10^{-10}$  | $1.159 \times 10^{-9}$  | $2.151 \times 10^{-9}$ | $2.400 \times 10^{-9}$ | $2.627 \times 10^{-9}$ | $2.950 \times 10^{-9}$ | $3.613 \times 10^{-9}$ |
| chi square fluorescence [1]                                                                                                                         | 418                     | 845                     | $1.392 \times 10^{3}$   | $2.282 \times 10^{3}$   | $4.046 \times 10^{3}$   | $4.517 \times 10^{4}$  | $8.104 \times 10^4$    | $1.295 \times 10^{5}$  | $2.279 \times 10^{5}$  | $5.138 \times 10^{5}$  |
| degrees of freedom fluorescence [1]                                                                                                                 | 6.00                    | 6.00                    | 6.00                    | 6.00                    | 6.00                    | 6.00                   | 6.00                   | 6.00                   | 6.00                   | 6.00                   |
| number of spectral points in retrieval [1]                                                                                                          | 50.0                    | 50.0                    | 50.0                    | 50.0                    | 50.0                    | 50.0                   | 50.0                   | 50.0                   | 50.0                   | 50.0                   |
| wavelength calibration offset [nm]                                                                                                                  | $-2.428 \times 10^{-2}$ | $-9.240 \times 10^{-3}$ | $-4.275 \times 10^{-3}$ | $-1.701 \times 10^{-3}$ | $3.590 	imes 10^{-4}$   | $5.943 \times 10^{-3}$ | $7.941 \times 10^{-3}$ | $1.052 	imes 10^{-2}$  | $1.552 	imes 10^{-2}$  | $3.028 \times 10^{-2}$ |

| Table 3                                                                                                                                   | 3: Parameterlist and basic          | statistics for | the analysis for       | observations in        | the northern hen        | nisphere              |                         |                        |
|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|----------------|------------------------|------------------------|-------------------------|-----------------------|-------------------------|------------------------|
| Variable                                                                                                                                  | mean $\pm \sigma$                   | Count          | IQR                    | Median                 | Minimum                 | Maximum               | 25 % percentile         | 75% percentile         |
| qa value [1]                                                                                                                              | $0.962 \pm 0.121$                   | 11631434       | 0.0                    | 1.000                  | 0.350                   | 1.000                 | 1.000                   | 1.000                  |
| cloud pressure crb [hPa]                                                                                                                  | $785 \pm 196$                       | 11631434       | 278                    | 844                    | 130                     | $1.069 \times 10^{3}$ | 663                     | 941                    |
| cloud pressure crb precision [hPa]                                                                                                        | $3.17 \pm 10.95$                    | 11631434       | 1.79                   | 0.874                  | $3.662 	imes 10^{-4}$   | $1.484 \times 10^3$   | 0.404                   | 2.20                   |
| cloud fraction crb [1]                                                                                                                    | $0.401 \pm 0.372$                   | 11631434       | 0.690                  | 0.257                  | 0.0                     | 1.000                 | $6.451 \times 10^{-2}$  | 0.755                  |
| cloud fraction crb precision [1]                                                                                                          | $(2.557 \pm 19.678) \times 10^{-4}$ | 11631434       | $8.495	imes10^{-5}$    | $9.119	imes10^{-5}$    | $6.878	imes10^{-9}$     | 0.734                 | $4.310\times10^{-5}$    | $1.280	imes10^{-4}$    |
| scene albedo [1]                                                                                                                          | $0.438 \pm 0.322$                   | 11631434       | 0.559                  | 0.406                  | $-2.076 	imes 10^{-3}$  | 4.40                  | 0.138                   | 0.697                  |
| scene albedo precision [1]                                                                                                                | $(9.586 \pm 11.608) \times 10^{-5}$ | 11631434       | $7.254	imes10^{-5}$    | $5.727 	imes 10^{-5}$  | $1.066	imes10^{-5}$     | $1.802 	imes 10^{-3}$ | $3.182 	imes 10^{-5}$   | $1.044 	imes 10^{-4}$  |
| apparent scene pressure [hPa]                                                                                                             | $834\pm159$                         | 11631434       | 208                    | 885                    | 130                     | $1.062 \times 10^3$   | 749                     | 957                    |
| apparent scene pressure precision [hPa]                                                                                                   | $0.987 \pm 1.613$                   | 11631434       | 0.500                  | 0.482                  | $8.481	imes10^{-2}$     | 59.0                  | 0.347                   | 0.846                  |
| chi square [1]                                                                                                                            | $(0.208 \pm 2.130) \times 10^5$     | 11631434       | $2.178 	imes 10^4$     | $1.421 	imes 10^4$     | 66.4                    | $2.355 	imes 10^8$    | $4.959 \times 10^{3}$   | $2.674 	imes 10^4$     |
| number of iterations [1]                                                                                                                  | $3.56 \pm 1.16$                     | 11631434       | 1.000                  | 3.00                   | 1.000                   | 14.0                  | 3.00                    | 4.00                   |
| fluorescence [mol s <sup><math>-1</math></sup> m <sup><math>-2</math></sup> nm <sup><math>-1</math></sup> sr <sup><math>-1</math></sup> ] | $(1.141 \pm 4.751) \times 10^{-9}$  | 11631434       | $4.359	imes10^{-9}$    | $1.270	imes10^{-9}$    | $-1.120	imes10^{-6}$    | $1.065	imes10^{-6}$   | $-8.248 	imes 10^{-10}$ | $3.534	imes10^{-9}$    |
| fluorescence precision [mol s <sup>-1</sup> m <sup>-2</sup> nm <sup>-1</sup> sr <sup>-1</sup> ]                                           | $(1.588\pm0.633)\times10^{-9}$      | 11631434       | $9.185 	imes 10^{-10}$ | $1.482 	imes 10^{-9}$  | $4.373\times10^{-10}$   | $5.474 	imes 10^{-9}$ | $1.071	imes10^{-9}$     | $1.989 \times 10^{-9}$ |
| chi square fluorescence [1]                                                                                                               | $(0.373 \pm 0.783) \times 10^5$     | 11631434       | $3.072 \times 10^4$    | $1.038 	imes 10^4$     | 107                     | $1.891 	imes 10^6$    | $3.965 \times 10^{3}$   | $3.469 \times 10^{4}$  |
| degrees of freedom fluorescence [1]                                                                                                       | $6.00\pm0.00$                       | 11631434       | 0.0                    | 6.00                   | 6.00                    | 6.00                  | 6.00                    | 6.00                   |
| number of spectral points in retrieval [1]                                                                                                | $50.0 \pm 0.1$                      | 11631434       | 0.0                    | 50.0                   | 48.0                    | 50.0                  | 50.0                    | 50.0                   |
| wavelength calibration offset [nm]                                                                                                        | $(3.141 \pm 8.413) \times 10^{-3}$  | 11631434       | $5.798 \times 10^{-3}$ | $3.127 \times 10^{-3}$ | $-8.525 \times 10^{-2}$ | 0.154                 | $2.034 	imes 10^{-4}$   | $6.002 \times 10^{-3}$ |

| Table                                                                                                                                               | 4: Parameterlist and basic s         | statistics for | the analysis for       | observations in        | the southern hem        | isphere                |                         |                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------|------------------------|------------------------|-------------------------|------------------------|-------------------------|------------------------|
| Variable                                                                                                                                            | mean $\pm \sigma$                    | Count          | IQR                    | Median                 | Minimum                 | Maximum                | 25 % percentile         | 75 % percentile        |
| qa value [1]                                                                                                                                        | $0.886 \pm 0.202$                    | 13356228       | 0.1000                 | 1.000                  | 0.350                   | 1.000                  | 0.900                   | 1.000                  |
| cloud pressure crb [hPa]                                                                                                                            | $780 \pm 191$                        | 13356228       | 292                    | 829                    | 130                     | $1.035 \times 10^{3}$  | 644                     | 936                    |
| cloud pressure crb precision [hPa]                                                                                                                  | $1.97 \pm 8.14$                      | 13356228       | 0.713                  | 0.413                  | $1.221 \times 10^{-3}$  | 595                    | 0.294                   | 1.01                   |
| cloud fraction crb [1]                                                                                                                              | $0.523 \pm 0.386$                    | 13356228       | 0.881                  | 0.519                  | 0.0                     | 1.000                  | 0.119                   | 1.000                  |
| cloud fraction crb precision [1]                                                                                                                    | $(1.577 \pm 7.355) \times 10^{-4}$   | 13356228       | $6.160 \times 10^{-5}$ | $6.784 	imes 10^{-5}$  | $9.409 \times 10^{-10}$ | 0.198                  | $3.840 \times 10^{-5}$  | $1.000 	imes 10^{-4}$  |
| scene albedo [1]                                                                                                                                    | $0.470 \pm 0.337$                    | 13356228       | 0.634                  | 0.450                  | $-3.321 \times 10^{-3}$ | 3.56                   | 0.141                   | 0.775                  |
| scene albedo precision [1]                                                                                                                          | $(7.473 \pm 8.278) \times 10^{-5}$   | 13356228       | $5.872 	imes 10^{-5}$  | $5.056 	imes 10^{-5}$  | $1.042 \times 10^{-5}$  | $7.819 	imes 10^{-3}$  | $3.009 \times 10^{-5}$  | $8.880	imes10^{-5}$    |
| apparent scene pressure [hPa]                                                                                                                       | $796 \pm 181$                        | 13356228       | 287                    | 847                    | 130                     | $1.035 \times 10^{3}$  | 658                     | 946                    |
| apparent scene pressure precision [hPa]                                                                                                             | $0.924 \pm 1.719$                    | 13356228       | 0.410                  | 0.385                  | 0.122                   | 61.8                   | 0.296                   | 0.706                  |
| chi square [1]                                                                                                                                      | $(0.220 \pm 1.644) \times 10^5$      | 13356228       | $2.474 \times 10^4$    | $1.757 \times 10^{4}$  | 80.4                    | $1.942 \times 10^{8}$  | $5.946 \times 10^{3}$   | $3.068 \times 10^{4}$  |
| number of iterations [1]                                                                                                                            | $3.16 \pm 0.96$                      | 13356228       | 1.000                  | 3.00                   | 1.000                   | 14.0                   | 3.00                    | 4.00                   |
| fluorescence [mol s <sup><math>-1</math></sup> m <sup><math>-2</math></sup> nm <sup><math>-1</math></sup> sr <sup><math>-1</math></sup> ]           | $(6.978 \pm 68.097) \times 10^{-10}$ | 13356228       | $5.480 \times 10^{-9}$ | $7.719 	imes 10^{-10}$ | $-2.052 \times 10^{-6}$ | $1.814	imes10^{-6}$    | $-1.832 \times 10^{-9}$ | $3.648 \times 10^{-9}$ |
| fluorescence precision [mol s <sup><math>-1</math></sup> m <sup><math>-2</math></sup> nm <sup><math>-1</math></sup> sr <sup><math>-1</math></sup> ] | $(1.825 \pm 0.696) \times 10^{-9}$   | 13356228       | $9.728 	imes 10^{-10}$ | $1.783 	imes 10^{-9}$  | $5.255 	imes 10^{-10}$  | $5.758 \times 10^{-9}$ | $1.256 \times 10^{-9}$  | $2.228 	imes 10^{-9}$  |
| chi square fluorescence [1]                                                                                                                         | $(0.590 \pm 1.126) \times 10^5$      | 13356228       | $5.214 	imes 10^4$     | $1.619 	imes 10^4$     | 111                     | $2.909 	imes 10^6$     | $4.161 \times 10^{3}$   | $5.630 	imes 10^4$     |
| degrees of freedom fluorescence [1]                                                                                                                 | $6.00 \pm 0.00$                      | 13356228       | 0.0                    | 6.00                   | 6.00                    | 6.00                   | 6.00                    | 6.00                   |
| number of spectral points in retrieval [1]                                                                                                          | $50.0 \pm 0.1$                       | 13356228       | 0.0                    | 50.0                   | 47.0                    | 50.0                   | 50.0                    | 50.0                   |
| wavelength calibration offset [nm]                                                                                                                  | $(3.148 \pm 8.475) \times 10^{-3}$   | 13356228       | $5.397 \times 10^{-3}$ | $3.236 \times 10^{-3}$ | $-9.586 	imes 10^{-2}$  | 0.176                  | $4.960 	imes 10^{-4}$   | $5.894 \times 10^{-3}$ |

S

|                                                                                                                                                     | Table 5: Parameterlist and         | basic statis | tics for the anal      | ysis for observa       | tions over water        |                      |                       |                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------|------------------------|------------------------|-------------------------|----------------------|-----------------------|------------------------|
| Variable                                                                                                                                            | mean $\pm \sigma$                  | Count        | IQR                    | Median                 | Minimum                 | Maximum              | 25 % percentile       | 75 % percentile        |
| qa value [1]                                                                                                                                        | $0.981 \pm 0.055$                  | 16014104     | 0.0                    | 1.000                  | 0.350                   | 1.000                | 1.000                 | 1.000                  |
| cloud pressure crb [hPa]                                                                                                                            | $813\pm186$                        | 16014104     | 239                    | 877                    | 130                     | $1.042 \times 10^3$  | 714                   | 953                    |
| cloud pressure crb precision [hPa]                                                                                                                  | $2.65 \pm 10.38$                   | 16014104     | 1.25                   | 0.600                  | $3.662 	imes 10^{-4}$   | 874                  | 0.340                 | 1.59                   |
| cloud fraction crb [1]                                                                                                                              | $0.390 \pm 0.343$                  | 16014104     | 0.622                  | 0.293                  | 0.0                     | 1.000                | $6.806	imes10^{-2}$   | 0.690                  |
| cloud fraction crb precision [1]                                                                                                                    | $(1.030\pm5.831)\times10^{-4}$     | 16014104     | $5.465 	imes 10^{-5}$  | $5.190	imes10^{-5}$    | $4.076	imes10^{-8}$     | 0.365                | $2.949 	imes 10^{-5}$ | $8.414	imes10^{-5}$    |
| scene albedo [1]                                                                                                                                    | $0.337 \pm 0.292$                  | 16014104     | 0.515                  | 0.257                  | $-3.321\times10^{-3}$   | 3.29                 | $6.551	imes10^{-2}$   | 0.581                  |
| scene albedo precision [1]                                                                                                                          | $(6.477 \pm 8.871) \times 10^{-5}$ | 16014104     | $4.279\times10^{-5}$   | $4.304	imes10^{-5}$    | $1.042 	imes 10^{-5}$   | $7.819\times10^{-3}$ | $2.319\times10^{-5}$  | $6.598	imes10^{-5}$    |
| apparent scene pressure [hPa]                                                                                                                       | $832 \pm 174$                      | 16014104     | 217                    | 891                    | 130                     | $1.035 \times 10^3$  | 748                   | 966                    |
| apparent scene pressure precision [hPa]                                                                                                             | $1.26 \pm 2.02$                    | 16014104     | 0.912                  | 0.553                  | 0.163                   | 61.8                 | 0.336                 | 1.25                   |
| chi square [1]                                                                                                                                      | $(0.158 \pm 1.251) \times 10^5$    | 16014104     | $2.108 	imes 10^4$     | $1.004 	imes 10^4$     | 66.4                    | $1.612 	imes 10^8$   | $2.837 \times 10^3$   | $2.391	imes10^4$       |
| number of iterations [1]                                                                                                                            | $2.94 \pm 0.79$                    | 16014104     | 0.0                    | 3.00                   | 1.000                   | 14.0                 | 3.00                  | 3.00                   |
| fluorescence [mol s <sup><math>-1</math></sup> m <sup><math>-2</math></sup> nm <sup><math>-1</math></sup> sr <sup><math>-1</math></sup> ]           | $(5.065\pm540.131)\times10^{-11}$  | 16014104     | $4.319\times10^{-9}$   | $1.141	imes10^{-10}$   | $-1.819\times10^{-6}$   | $1.551	imes10^{-6}$  | $-1.928\times10^{-9}$ | $2.391 \times 10^{-9}$ |
| fluorescence precision [mol s <sup><math>-1</math></sup> m <sup><math>-2</math></sup> nm <sup><math>-1</math></sup> sr <sup><math>-1</math></sup> ] | $(1.644 \pm 0.710) \times 10^{-9}$ | 16014104     | $1.098 \times 10^{-9}$ | $1.524	imes10^{-9}$    | $4.373 	imes 10^{-10}$  | $5.758	imes10^{-9}$  | $1.030 	imes 10^{-9}$ | $2.128\times10^{-9}$   |
| chi square fluorescence [1]                                                                                                                         | $(0.474 \pm 0.933) \times 10^5$    | 16014104     | $4.190 	imes 10^4$     | $1.571 	imes 10^4$     | 107                     | $2.419 	imes 10^6$   | $5.069 \times 10^{3}$ | $4.697 	imes 10^4$     |
| degrees of freedom fluorescence [1]                                                                                                                 | $6.00 \pm 0.00$                    | 16014104     | 0.0                    | 6.00                   | 6.00                    | 6.00                 | 6.00                  | 6.00                   |
| number of spectral points in retrieval [1]                                                                                                          | $50.0 \pm 0.1$                     | 16014104     | 0.0                    | 50.0                   | 48.0                    | 50.0                 | 50.0                  | 50.0                   |
| wavelength calibration offset [nm]                                                                                                                  | $(3.100 \pm 9.874) \times 10^{-3}$ | 16014104     | $6.865 \times 10^{-3}$ | $3.160 \times 10^{-3}$ | $-9.586 \times 10^{-2}$ | 0.176                | $-3.509\times10^{-4}$ | $6.514 \times 10^{-3}$ |

|                                                                                                                                                     | Table 6: Parameterlist an           | d basic stat | istics for the an     | alysis for observ     | vations over land       |                       |                        |                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--------------|-----------------------|-----------------------|-------------------------|-----------------------|------------------------|------------------------|
| Variable                                                                                                                                            | mean $\pm \sigma$                   | Count        | IQR                   | Median                | Minimum                 | Maximum               | 25 % percentile        | 75 % percentile        |
| qa value [1]                                                                                                                                        | $0.777 \pm 0.253$                   | 7105465      | 0.500                 | 1.000                 | 0.350                   | 1.000                 | 0.500                  | 1.000                  |
| cloud pressure crb [hPa]                                                                                                                            | $719\pm186$                         | 7105465      | 270                   | 720                   | 130                     | $1.046 \times 10^3$   | 605                    | 874                    |
| cloud pressure crb precision [hPa]                                                                                                                  | $2.13 \pm 7.21$                     | 7105465      | 1.17                  | 0.441                 | $1.221 \times 10^{-3}$  | $1.099 \times 10^{3}$ | 0.295                  | 1.46                   |
| cloud fraction crb [1]                                                                                                                              | $0.637 \pm 0.415$                   | 7105465      | 0.845                 | 1.000                 | 0.0                     | 1.000                 | 0.155                  | 1.000                  |
| cloud fraction crb precision [1]                                                                                                                    | $(4.047 \pm 22.809) \times 10^{-4}$ | 7105465      | $4.015 	imes 10^{-5}$ | $1.000 	imes 10^{-4}$ | $9.409 	imes 10^{-10}$  | 0.385                 | $1.000 	imes 10^{-4}$  | $1.401 	imes 10^{-4}$  |
| scene albedo [1]                                                                                                                                    | $0.695 \pm 0.282$                   | 7105465      | 0.466                 | 0.770                 | $8.176	imes10^{-4}$     | 4.40                  | 0.444                  | 0.911                  |
| scene albedo precision [1]                                                                                                                          | $(1.279 \pm 1.131) \times 10^{-4}$  | 7105465      | $1.037	imes10^{-4}$   | $9.979	imes10^{-5}$   | $1.225 	imes 10^{-5}$   | $1.704 	imes 10^{-3}$ | $5.004 	imes 10^{-5}$  | $1.538	imes10^{-4}$    |
| apparent scene pressure [hPa]                                                                                                                       | $767 \pm 160$                       | 7105465      | 274                   | 784                   | 130                     | $1.041 \times 10^3$   | 637                    | 911                    |
| apparent scene pressure precision [hPa]                                                                                                             | $0.387 \pm 0.143$                   | 7105465      | 0.153                 | 0.354                 | $8.481	imes10^{-2}$     | 60.2                  | 0.295                  | 0.448                  |
| chi square [1]                                                                                                                                      | $(0.313 \pm 2.517) \times 10^5$     | 7105465      | $2.034 	imes 10^4$    | $2.347 	imes 10^4$    | 203                     | $2.355 	imes 10^8$    | $1.463 	imes 10^4$     | $3.497 	imes 10^4$     |
| number of iterations [1]                                                                                                                            | $4.10 \pm 1.12$                     | 7105465      | 0.0                   | 4.00                  | 1.000                   | 14.0                  | 4.00                   | 4.00                   |
| fluorescence [mol s <sup><math>-1</math></sup> m <sup><math>-2</math></sup> nm <sup><math>-1</math></sup> sr <sup><math>-1</math></sup> ]           | $(2.454\pm 6.145) \times 10^{-9}$   | 7105465      | $4.058 	imes 10^{-9}$ | $2.763 	imes 10^{-9}$ | $-2.052	imes10^{-6}$    | $1.345	imes10^{-6}$   | $7.441 	imes 10^{-10}$ | $4.802 \times 10^{-9}$ |
| fluorescence precision [mol s <sup><math>-1</math></sup> m <sup><math>-2</math></sup> nm <sup><math>-1</math></sup> sr <sup><math>-1</math></sup> ] | $(1.823\pm0.587)\times10^{-9}$      | 7105465      | $7.681	imes10^{-10}$  | $1.758	imes10^{-9}$   | $5.229 \times 10^{-10}$ | $5.612\times10^{-9}$  | $1.398 \times 10^{-9}$ | $2.166\times10^{-9}$   |
| chi square fluorescence [1]                                                                                                                         | $(0.466 \pm 1.010) \times 10^5$     | 7105465      | $3.264 \times 10^4$   | $7.485 	imes 10^3$    | 140                     | $2.909 	imes 10^6$    | $2.260 \times 10^{3}$  | $3.490 \times 10^4$    |
| degrees of freedom fluorescence [1]                                                                                                                 | $6.00\pm0.00$                       | 7105465      | 0.0                   | 6.00                  | 6.00                    | 6.00                  | 6.00                   | 6.00                   |
| number of spectral points in retrieval [1]                                                                                                          | $50.0 \pm 0.1$                      | 7105465      | 0.0                   | 50.0                  | 47.0                    | 50.0                  | 50.0                   | 50.0                   |
| wavelength calibration offset [nm]                                                                                                                  | $(3.210 \pm 4.382) \times 10^{-3}$  | 7105465      | $3.810 	imes 10^{-3}$ | $3.222\times10^{-3}$  | $-7.575\times10^{-2}$   | $7.364\times10^{-2}$  | $1.320\times10^{-3}$   | $5.130\times10^{-3}$   |

# Granule outlines



Figure 1: Outline of the granules.

## 4 Input data monitoring



Figure 2: Input data per granule

# 5 Warnings and errors



Figure 3: Fraction of pixels with specific warnings and errors during processing

# 6 World maps



Figure 4: Map of "Cloud pressure" for 2025-02-17 to 2025-02-18





Figure 5: Map of "Cloud fraction" for 2025-02-17 to 2025-02-18





Figure 6: Map of "Scene albedo" for 2025-02-17 to 2025-02-18





Figure 7: Map of "Apparent scene pressure" for 2025-02-17 to 2025-02-18

2025-02-17



Figure 8: Map of "Fluorescence" for 2025-02-17 to 2025-02-18



Figure 9: Map of the number of observations for 2025-02-17 to 2025-02-18

# 7 Zonal average



Figure 10: Zonal average of "QA value" for 2025-02-17 to 2025-02-18.



Figure 11: Zonal average of "Cloud pressure" for 2025-02-17 to 2025-02-18.



Figure 12: Zonal average of "Cloud pressure precision" for 2025-02-17 to 2025-02-18.



Figure 13: Zonal average of "Cloud fraction" for 2025-02-17 to 2025-02-18.



Figure 14: Zonal average of "Cloud fraction precision" for 2025-02-17 to 2025-02-18.



Figure 15: Zonal average of "Scene albedo" for 2025-02-17 to 2025-02-18.



Figure 16: Zonal average of "Scene albedo precision" for 2025-02-17 to 2025-02-18.



Figure 17: Zonal average of "Apparent scene pressure" for 2025-02-17 to 2025-02-18.



Figure 18: Zonal average of "Apparent scene pressure precision" for 2025-02-17 to 2025-02-18.



Figure 19: Zonal average of " $\chi^2$ " for 2025-02-17 to 2025-02-18.



Figure 20: Zonal average of "Number of iterations" for 2025-02-17 to 2025-02-18.



Figure 21: Zonal average of "Fluorescence" for 2025-02-17 to 2025-02-18.



Figure 22: Zonal average of "Fluorescence precision" for 2025-02-17 to 2025-02-18.



Figure 23: Zonal average of " $\chi^2$  of fluorescence retrieval" for 2025-02-17 to 2025-02-18.



Figure 24: Zonal average of "Degrees of freedom for signal of fluorescence retrieval" for 2025-02-17 to 2025-02-18.



Figure 25: Zonal average of "Number of points in the spectrum" for 2025-02-17 to 2025-02-18.



Figure 26: Zonal average of "Spectral offset ( $\lambda_{true} - \lambda_{nominal}$ )" for 2025-02-17 to 2025-02-18.

# 8 Histograms

The definitions of the parameters given in this section can be found in section 2.



Figure 27: Histogram of "QA value" for 2025-02-17 to 2025-02-18



Figure 28: Histogram of "Cloud pressure" for 2025-02-17 to 2025-02-18



Figure 29: Histogram of "Cloud pressure precision" for 2025-02-17 to 2025-02-18



Figure 30: Histogram of "Cloud fraction" for 2025-02-17 to 2025-02-18



Figure 31: Histogram of "Cloud fraction precision" for 2025-02-17 to 2025-02-18



Figure 32: Histogram of "Scene albedo" for 2025-02-17 to 2025-02-18



Figure 33: Histogram of "Scene albedo precision" for 2025-02-17 to 2025-02-18



Figure 34: Histogram of "Apparent scene pressure" for 2025-02-17 to 2025-02-18



Figure 35: Histogram of "Apparent scene pressure precision" for 2025-02-17 to 2025-02-18



Figure 36: Histogram of " $\chi^2$ " for 2025-02-17 to 2025-02-18



Figure 37: Histogram of "Number of iterations" for 2025-02-17 to 2025-02-18



Figure 38: Histogram of "Fluorescence" for 2025-02-17 to 2025-02-18



Figure 39: Histogram of "Fluorescence precision" for 2025-02-17 to 2025-02-18



Figure 40: Histogram of " $\chi^2$  of fluorescence retrieval" for 2025-02-17 to 2025-02-18



Figure 41: Histogram of "Degrees of freedom for signal of fluorescence retrieval" for 2025-02-17 to 2025-02-18



Figure 42: Histogram of "Number of points in the spectrum" for 2025-02-17 to 2025-02-18



Figure 43: Histogram of "Spectral offset ( $\lambda_{true} - \lambda_{nominal}$ )" for 2025-02-17 to 2025-02-18

## 9 Along track statistics

The TROPOMI instrument uses different binned detector rows for different viewing directions. In this section statistics are presented for each of the binned rows in the instrument.



Figure 44: Along track statistics of "QA value" for 2025-02-17 to 2025-02-18



Figure 45: Along track statistics of "Cloud pressure" for 2025-02-17 to 2025-02-18



Figure 46: Along track statistics of "Cloud pressure precision" for 2025-02-17 to 2025-02-18



Figure 47: Along track statistics of "Cloud fraction" for 2025-02-17 to 2025-02-18



Figure 48: Along track statistics of "Cloud fraction precision" for 2025-02-17 to 2025-02-18



Figure 49: Along track statistics of "Scene albedo" for 2025-02-17 to 2025-02-18



Figure 50: Along track statistics of "Scene albedo precision" for 2025-02-17 to 2025-02-18



Figure 51: Along track statistics of "Apparent scene pressure" for 2025-02-17 to 2025-02-18



Figure 52: Along track statistics of "Apparent scene pressure precision" for 2025-02-17 to 2025-02-18



Figure 53: Along track statistics of " $\chi^2$ " for 2025-02-17 to 2025-02-18



Figure 54: Along track statistics of "Number of iterations" for 2025-02-17 to 2025-02-18



Figure 55: Along track statistics of "Fluorescence" for 2025-02-17 to 2025-02-18



Figure 56: Along track statistics of "Fluorescence precision" for 2025-02-17 to 2025-02-18



Figure 57: Along track statistics of " $\chi^2$  of fluorescence retrieval" for 2025-02-17 to 2025-02-18



Figure 58: Along track statistics of "Degrees of freedom for signal of fluorescence retrieval" for 2025-02-17 to 2025-02-18



Figure 59: Along track statistics of "Number of points in the spectrum" for 2025-02-17 to 2025-02-18



Figure 60: Along track statistics of "Spectral offset ( $\lambda_{true} - \lambda_{nominal}$ )" for 2025-02-17 to 2025-02-18

## 10 Coincidence density

To investigate the relation between parameters scatter density plots are produced. These include some 'hidden' parameters, latitude and the solar- and viewing geometries, in addition to all configured parameters. All combinations of pairs of parameters are included *once*, in one direction alone.

### Contents

| 1  | Short Introduction                | 1  |
|----|-----------------------------------|----|
|    | 1.1 The list of parameters        | 1  |
| 2  | Definitions                       | 1  |
| 3  | Granule outlines                  | 8  |
| 4  | Input data monitoring             | 9  |
| 5  | Warnings and errors               | 10 |
| 6  | World maps                        | 11 |
| 7  | Zonal average                     | 17 |
| 8  | Histograms                        | 34 |
| 9  | Along track statistics            | 51 |
| 10 | Coincidence density               | 68 |
| 11 | Copyright information of 'PyCAMA' | 68 |

## **List of Figures**

| 1  | Outline of the granules.                                                                                 | 8  |
|----|----------------------------------------------------------------------------------------------------------|----|
| 2  | Input data per granule                                                                                   | 9  |
| 3  | Fraction of pixels with specific warnings and errors during processing                                   | 10 |
| 4  | Map of "Cloud pressure" for 2025-02-17 to 2025-02-18                                                     | 11 |
| 5  | Map of "Cloud fraction" for 2025-02-17 to 2025-02-18                                                     | 12 |
| 6  | Map of "Scene albedo" for 2025-02-17 to 2025-02-18                                                       | 13 |
| 7  | Map of "Apparent scene pressure" for 2025-02-17 to 2025-02-18                                            | 14 |
| 8  | Map of "Fluorescence" for 2025-02-17 to 2025-02-18                                                       | 15 |
| 9  | Map of the number of observations for 2025-02-17 to 2025-02-18                                           | 16 |
| 10 | Zonal average of "QA value" for 2025-02-17 to 2025-02-18.                                                | 17 |
| 11 | Zonal average of "Cloud pressure" for 2025-02-17 to 2025-02-18.                                          | 18 |
| 12 | Zonal average of "Cloud pressure precision" for 2025-02-17 to 2025-02-18                                 | 19 |
| 13 | Zonal average of "Cloud fraction" for 2025-02-17 to 2025-02-18.                                          | 20 |
| 14 | Zonal average of "Cloud fraction precision" for 2025-02-17 to 2025-02-18.                                | 21 |
| 15 | Zonal average of "Scene albedo" for 2025-02-17 to 2025-02-18                                             | 22 |
| 16 | Zonal average of "Scene albedo precision" for 2025-02-17 to 2025-02-18.                                  | 23 |
| 17 | Zonal average of "Apparent scene pressure" for 2025-02-17 to 2025-02-18.                                 | 24 |
| 18 | Zonal average of "Apparent scene pressure precision" for 2025-02-17 to 2025-02-18.                       | 25 |
| 19 | Zonal average of " $\chi^2$ " for 2025-02-17 to 2025-02-18                                               | 26 |
| 20 | Zonal average of "Number of iterations" for 2025-02-17 to 2025-02-18.                                    | 27 |
| 21 | Zonal average of "Fluorescence" for 2025-02-17 to 2025-02-18                                             | 28 |
| 22 | Zonal average of "Fluorescence precision" for 2025-02-17 to 2025-02-18                                   | 29 |
| 23 | Zonal average of " $\chi^2$ of fluorescence retrieval" for 2025-02-17 to 2025-02-18                      | 30 |
| 24 | Zonal average of "Degrees of freedom for signal of fluorescence retrieval" for 2025-02-17 to 2025-02-18. | 31 |
| 25 | Zonal average of "Number of points in the spectrum" for 2025-02-17 to 2025-02-18                         | 32 |
| 26 | Zonal average of "Spectral offset ( $\lambda_{true} - \lambda_{nominal}$ )" for 2025-02-17 to 2025-02-18 | 33 |
| 27 | Histogram of "QA value" for 2025-02-17 to 2025-02-18                                                     | 34 |
| 28 | Histogram of "Cloud pressure" for 2025-02-17 to 2025-02-18                                               | 35 |
| 29 | Histogram of "Cloud pressure precision" for 2025-02-17 to 2025-02-18                                     | 36 |

| 30 | Histogram of "Cloud fraction" for 2025-02-17 to 2025-02-18                                                        | 37 |
|----|-------------------------------------------------------------------------------------------------------------------|----|
| 31 | Histogram of "Cloud fraction precision" for 2025-02-17 to 2025-02-18                                              | 38 |
| 32 | Histogram of "Scene albedo" for 2025-02-17 to 2025-02-18                                                          | 39 |
| 33 | Histogram of "Scene albedo precision" for 2025-02-17 to 2025-02-18                                                | 40 |
| 34 | Histogram of "Apparent scene pressure" for 2025-02-17 to 2025-02-18                                               | 41 |
| 35 | Histogram of "Apparent scene pressure precision" for 2025-02-17 to 2025-02-18                                     | 42 |
| 36 | Histogram of " $\chi^2$ " for 2025-02-17 to 2025-02-18                                                            | 43 |
| 37 | Histogram of "Number of iterations" for 2025-02-17 to 2025-02-18                                                  | 44 |
| 38 | Histogram of "Fluorescence" for 2025-02-17 to 2025-02-18                                                          | 45 |
| 39 | Histogram of "Fluorescence precision" for 2025-02-17 to 2025-02-18                                                | 46 |
| 40 | Histogram of " $\chi^2$ of fluorescence retrieval" for 2025-02-17 to 2025-02-18                                   | 47 |
| 41 | Histogram of "Degrees of freedom for signal of fluorescence retrieval" for 2025-02-17 to 2025-02-18               | 48 |
| 42 | Histogram of "Number of points in the spectrum" for 2025-02-17 to 2025-02-18                                      | 49 |
| 43 | Histogram of "Spectral offset $(\lambda_{true} - \lambda_{nominal})$ " for 2025-02-17 to 2025-02-18               | 50 |
| 44 | Along track statistics of "QA value" for 2025-02-17 to 2025-02-18                                                 | 51 |
| 45 | Along track statistics of "Cloud pressure" for 2025-02-17 to 2025-02-18                                           | 52 |
| 46 | Along track statistics of "Cloud pressure precision" for 2025-02-17 to 2025-02-18                                 | 53 |
| 47 | Along track statistics of "Cloud fraction" for 2025-02-17 to 2025-02-18                                           | 54 |
| 48 | Along track statistics of "Cloud fraction precision" for 2025-02-17 to 2025-02-18                                 | 55 |
| 49 | Along track statistics of "Scene albedo" for 2025-02-17 to 2025-02-18                                             | 56 |
| 50 | Along track statistics of "Scene albedo precision" for 2025-02-17 to 2025-02-18                                   | 57 |
| 51 | Along track statistics of "Apparent scene pressure" for 2025-02-17 to 2025-02-18                                  | 58 |
| 52 | Along track statistics of "Apparent scene pressure precision" for 2025-02-17 to 2025-02-18                        | 59 |
| 53 | Along track statistics of " $\chi^2$ " for 2025-02-17 to 2025-02-18                                               | 60 |
| 54 | Along track statistics of "Number of iterations" for 2025-02-17 to 2025-02-18                                     | 61 |
| 55 | Along track statistics of "Fluorescence" for 2025-02-17 to 2025-02-18                                             | 62 |
| 56 | Along track statistics of "Fluorescence precision" for 2025-02-17 to 2025-02-18                                   | 63 |
| 57 | Along track statistics of " $\chi^2$ of fluorescence retrieval" for 2025-02-17 to 2025-02-18                      | 64 |
| 58 | Along track statistics of "Degrees of freedom for signal of fluorescence retrieval" for 2025-02-17 to 2025-02-18  | 65 |
| 59 | Along track statistics of "Number of points in the spectrum" for 2025-02-17 to 2025-02-18                         | 66 |
| 60 | Along track statistics of "Spectral offset ( $\lambda_{true} - \lambda_{nominal}$ )" for 2025-02-17 to 2025-02-18 | 67 |

### **List of Tables**

| 1 | Parameterlist and basic statistics for the analysis                                             |
|---|-------------------------------------------------------------------------------------------------|
| 2 | Percentile ranges                                                                               |
| 3 | Parameterlist and basic statistics for the analysis for observations in the northern hemisphere |
| 4 | Parameterlist and basic statistics for the analysis for observations in the southern hemisphere |
| 5 | Parameterlist and basic statistics for the analysis for observations over water                 |
| 6 | Parameterlist and basic statistics for the analysis for observations over land                  |

### 11 Copyright information of 'PyCAMA'

Copyright © 2005-2023, Maarten Sneep (KNMI).

#### All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
- 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

This software is provided by the copyright holders and contributors "as is" and any express or implied warranties, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose are disclaimed. In no event shall the copyright holder or contributors be liable for any direct, indirect, incidental, special, exemplary, or consequential damages (including, but not limited to, procurement of substitute goods or services; loss of use, data, or profits; or business interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence or otherwise) arising in any way out of the use of this software, even if advised of the possibility of such damage.

Maarten Sneep (maarten.sneep@knmi.nl).