PyCAMA report generated by tropl2-proc

tropl2-proc

2025-02-22 (04:30)

1 Short Introduction

1.1 The list of parameters

You may want to keep the list given in table 1 at hand when viewing the results.

2 Definitions

The averages shown here are unweighed averages:

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i \tag{1}$$

with N the number of observations in the dataset.

The spread of the measurements is indicated with the variance V(x), or rather the standard deviation $\sigma(x) = \sqrt{V(x)}$.

$$V(x) = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2$$
(2)

We also report the more robust statistics median, minimum, maximum, various percentiles and inter quartile range.

The median m is the value of parameter x for which half of the observations of x is smaller than m:

$$P(x \le m) = P(x \ge m) = \int_{-\infty}^{m} f(x) \, \mathrm{d}x = \frac{1}{2}$$
(3)

with f(x) the probability density function.

The median is a special case of a percentile. Instead of $\frac{1}{2}$ in equation 3, other threshold values can be used. We report results for 1%, 5%, 10%, 15.9%, 25%, 75%, 84.1%, 90%, 95% and 99%. The inter quartile range is the difference between the 75% and 25% percentiles. Similarly the minimum and maximum values correspond to the 0% and 100% percentiles respectively.

For normally distributed parameters the mean and median are the same, while the $\mu \pm \sigma$ values and the 15.9% and 84.1% percentiles coincide.

To get a measure for the relation of one variable $x_{(k)}$ with another $x_{(l)}$, we calculate the covariance matrix C_{kl} .

$$C_{kl} = C(x_{(k)}, x_{(l)}) = \frac{1}{N-1} \sum_{i=1}^{N} (x_{(k),i} - \overline{x_{(k)}}) (x_{(l),i} - \overline{x_{(l)}})$$
(4)

Rather than a dimensionally dependent covariance, it is often easier to interpret a correlation matrix R_{kl} , a matrix of Pearson's *r* coefficients:

$$R_{kl} = R(x_{(k)}, x_{(l)}) = \frac{C_{kl}}{\sqrt{C_{kk}C_{ll}}} = \frac{C_{kl}}{\sqrt{V(x_k)V(x_l)}}$$
(5)

The diagonal elements of the covariance matrix are the variances of the elements, $V(x_{(k)}) = C_{kk}$ and obviously $R_{kk} = 1$.

Table 1: Parameterlist and basic statistics for the	anal	ysi	
---	------	-----	--

	Table 1: Parameter	list and basic	statistics for the a	nalysis			
Variable	mean $\pm \sigma$	Count	Mode	IQR	Median	Minimum	Maximum
qa value [1]	0.922 ± 0.172	23330082	0.995	0.0	1.000	0.350	1.000
cloud pressure crb [hPa]	784 ± 194	23330082	1.015×10^{3}	286	841	130	1.069×10^{3}
cloud pressure crb precision [hPa]	2.48 ± 9.52	23330082	0.750	1.24	0.566	$1.221 imes 10^{-4}$	1.416×10^{3}
cloud fraction crb [1]	0.463 ± 0.383	23330082	0.996	0.806	0.376	0.0	1.000
cloud fraction crb precision [1]	$(2.180 \pm 17.191) \times 10^{-4}$	23330082	$2.500 imes 10^{-4}$	$5.946 imes 10^{-5}$	7.611×10^{-5}	2.458×10^{-9}	0.804
scene albedo [1]	0.456 ± 0.327	23330082	1.500×10^{-2}	0.589	0.432	$-4.426 imes 10^{-2}$	3.69
scene albedo precision [1]	$(8.428 \pm 9.831) \times 10^{-5}$	23330082	$2.500 imes 10^{-4}$	$6.523 imes10^{-5}$	$5.285 imes10^{-5}$	$1.030 imes 10^{-5}$	6.475×10^{-3}
apparent scene pressure [hPa]	815±173	23330082	1.008×10^3	259	869	130	1.068×10^3
apparent scene pressure precision [hPa]	0.942 ± 1.755	23330082	0.500	0.434	0.426	0.157	61.6
chi square [1]	$(0.214 \pm 1.354) \times 10^5$	23330082	0.150	2.374×10^4	$1.625 imes 10^4$	54.8	$2.128 imes 10^8$
number of iterations [1]	3.36 ± 1.07	23330082	3.23	1.000	3.00	1.000	14.0
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(7.925 \pm 63.284) \times 10^{-10}$	23330082	2.500×10^{-10}	$4.951 imes 10^{-9}$	9.442×10^{-10}	$-1.839 imes 10^{-6}$	1.761×10^{-6}
fluorescence precision [mol $s^{-1} m^{-2} nm^{-1} sr^{-1}$]	$(1.719 \pm 0.673) \times 10^{-9}$	23330082	8.500×10^{-10}	$9.731 imes 10^{-10}$	1.652×10^{-9}	$3.868 imes 10^{-10}$	5.622×10^{-9}
chi square fluorescence [1]	$(0.502 \pm 0.969) \times 10^5$	23330082	750	$4.390 imes 10^4$	$1.286 imes 10^4$	99.3	$2.224 imes 10^6$
degrees of freedom fluorescence [1]	6.00 ± 0.00	23330082	5.95	0.0	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	23330082	49.7	0.0	50.0	46.0	50.0
wavelength calibration offset [nm]	$(3.096 \pm 8.435) \times 10^{-3}$	23330082	2.800×10^{-3}	5.590×10^{-3}	$3.135 imes 10^{-3}$	-0.194	0.111

			Table 2:	Percentile rang	es					
Variable	1 %	5%	10 %	15.9 %	25 %	75 %	84.1 %	90 %	95 %	99 %
qa value [1]	0.500	0.500	0.500	0.900	1.000	1.000	1.000	1.000	1.000	1.000
cloud pressure crb [hPa]	248	399	495	577	656	942	973	993	1.009×10^{3}	1.019×10^3
cloud pressure crb precision [hPa]	0.181	0.240	0.265	0.288	0.327	1.57	2.72	4.61	9.17	32.1
cloud fraction crb [1]	0.0	$1.058 imes10^{-2}$	$2.372 imes 10^{-2}$	$4.302 imes 10^{-2}$	$8.569 imes 10^{-2}$	0.891	1.000	1.000	1.000	1.000
cloud fraction crb precision [1]	$1.966 imes 10^{-5}$	$2.256 imes10^{-5}$	$2.530 imes 10^{-5}$	$2.929 imes10^{-5}$	$4.054 imes 10^{-5}$	$1.000 imes 10^{-4}$	$1.280 imes10^{-4}$	$2.315 imes10^{-4}$	$6.322 imes 10^{-4}$	2.583×10^{-3}
scene albedo [1]	$7.875 imes 10^{-3}$	$2.039 imes10^{-2}$	$3.822 imes 10^{-2}$	$6.703 imes10^{-2}$	0.145	0.735	0.844	0.906	0.968	1.13
scene albedo precision [1]	1.286×10^{-5}	$1.487 imes 10^{-5}$	$1.804 imes10^{-5}$	$2.283 imes 10^{-5}$	3.100×10^{-5}	9.623×10^{-5}	$1.323 imes 10^{-4}$	$1.796 imes 10^{-4}$	$2.697 imes 10^{-4}$	5.162×10^{-4}
apparent scene pressure [hPa]	347	470	556	618	696	955	981	997	1.010×10^{3}	1.019×10^{3}
apparent scene pressure precision [hPa]	0.214	0.245	0.267	0.286	0.315	0.750	1.21	1.93	3.45	8.68
chi square [1]	281	689	1.446×10^{3}	2.822×10^{3}	5.627×10^{3}	2.937×10^{4}	3.653×10^{4}	4.304×10^{4}	5.235×10^{4}	$7.508 imes 10^4$
number of iterations [1]	2.00	2.00	2.00	3.00	3.00	4.00	4.00	5.00	5.00	7.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	-1.513×10^{-8}	-7.340×10^{-9}	-4.557×10^{-9}	$-2.916 imes 10^{-9}$	-1.460×10^{-9}	3.491×10^{-9}	4.839×10^{-9}	6.172×10^{-9}	$8.188 imes10^{-9}$	1.302×10^{-8}
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	7.342×10^{-10}	8.256×10^{-10}	9.025×10^{-10}	1.000×10^{-9}	1.175×10^{-9}	2.148×10^{-9}	2.398×10^{-9}	2.628×10^{-9}	2.944×10^{-9}	3.619×10^{-9}
chi square fluorescence [1]	388	870	1.430×10^{3}	2.306×10^{3}	4.053×10^{3}	4.795×10^{4}	8.698×10^{4}	1.391×10^{5}	2.428×10^{5}	4.916×10^{5}
degrees of freedom fluorescence [1]	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0
wavelength calibration offset [nm]	-2.432×10^{-2}	-9.265×10^{-3}	-4.298×10^{-3}	-1.732×10^{-3}	$3.093 imes 10^{-4}$	5.899×10^{-3}	7.901×10^{-3}	$1.046 imes 10^{-2}$	$1.542 imes 10^{-2}$	3.024×10^{-2}

Table 3	3: Parameterlist and basic	statistics for	the analysis for	observations in	the northern her	nisphere		
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.959 ± 0.125	10983335	0.0	1.000	0.350	1.000	1.000	1.000
cloud pressure crb [hPa]	781 ± 202	10983335	290	847	130	1.069×10^{3}	652	943
cloud pressure crb precision [hPa]	2.78 ± 9.75	10983335	1.60	0.804	$1.221 imes 10^{-4}$	1.416×10^{3}	0.390	1.99
cloud fraction crb [1]	0.416 ± 0.372	10983335	0.707	0.286	0.0	1.000	$7.300 imes 10^{-2}$	0.780
cloud fraction crb precision [1]	$(2.927 \pm 23.723) \times 10^{-4}$	10983335	$8.898 imes10^{-5}$	$9.592 imes 10^{-5}$	$2.458 imes10^{-9}$	0.804	$4.735 imes 10^{-5}$	$1.363 imes10^{-4}$
scene albedo [1]	0.456 ± 0.314	10983335	0.534	0.437	-4.426×10^{-2}	3.69	0.176	0.710
scene albedo precision [1]	$(9.400 \pm 11.068) \times 10^{-5}$	10983335	$7.142 imes 10^{-5}$	$5.716 imes 10^{-5}$	$1.091 imes10^{-5}$	3.919×10^{-3}	$3.320 imes 10^{-5}$	$1.046 imes10^{-4}$
apparent scene pressure [hPa]	825 ± 171	10983335	228	883	130	1.068×10^3	730	958
apparent scene pressure precision [hPa]	0.862 ± 1.475	10983335	0.398	0.456	0.157	61.6	0.337	0.734
chi square [1]	$(0.217 \pm 1.450) \times 10^5$	10983335	$2.276 imes 10^4$	1.566×10^4	60.7	$2.128 imes 10^8$	5.869×10^{3}	$2.863 imes 10^4$
number of iterations [1]	3.58 ± 1.17	10983335	1.000	3.00	1.000	14.0	3.00	4.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.101 \pm 5.393) \times 10^{-9}$	10983335	4.506×10^{-9}	$1.254 imes10^{-9}$	$-1.696 imes 10^{-6}$	$1.640 imes10^{-6}$	$-9.553 imes 10^{-10}$	3.551×10^{-9}
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.647 \pm 0.647) \times 10^{-9}$	10983335	$9.191 imes 10^{-10}$	$1.542 imes 10^{-9}$	$3.868 imes 10^{-10}$	5.555×10^{-9}	1.135×10^{-9}	$2.054 imes 10^{-9}$
chi square fluorescence [1]	$(0.390 \pm 0.789) \times 10^5$	10983335	3.114×10^4	$1.056 imes 10^4$	99.3	$1.737 imes 10^{6}$	4.173×10^{3}	$3.531 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	10983335	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	10983335	0.0	50.0	48.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(3.058 \pm 8.143) \times 10^{-3}$	10983335	$5.617 imes 10^{-3}$	3.022×10^{-3}	-8.107×10^{-2}	$9.014 imes 10^{-2}$	2.130×10^{-4}	$5.830 imes 10^{-3}$

Table	4: Parameterlist and basic s	statistics for	the analysis for	observations in	the southern hem	isphere		
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.889 ± 0.199	12346747	0.1000	1.000	0.350	1.000	0.900	1.000
cloud pressure crb [hPa]	787 ± 187	12346747	284	834	130	1.030×10^{3}	657	941
cloud pressure crb precision [hPa]	2.21 ± 9.30	12346747	0.819	0.437	$1.221 imes 10^{-4}$	829	0.302	1.12
cloud fraction crb [1]	0.504 ± 0.387	12346747	0.872	0.477	0.0	1.000	0.103	0.975
cloud fraction crb precision [1]	$(1.515 \pm 7.542) \times 10^{-4}$	12346747	6.362×10^{-5}	$6.672 imes 10^{-5}$	$2.044 imes 10^{-8}$	0.670	$3.638 imes 10^{-5}$	$1.000 imes 10^{-4}$
scene albedo [1]	0.457 ± 0.339	12346747	0.638	0.426	$-3.247 imes 10^{-2}$	3.49	0.123	0.761
scene albedo precision [1]	$(7.563 \pm 8.489) \times 10^{-5}$	12346747	6.060×10^{-5}	$5.006 imes 10^{-5}$	1.030×10^{-5}	$6.475 imes10^{-3}$	2.948×10^{-5}	$9.008 imes 10^{-5}$
apparent scene pressure [hPa]	805 ± 174	12346747	275	852	130	1.030×10^3	676	951
apparent scene pressure precision [hPa]	1.01 ± 1.97	12346747	0.466	0.397	0.162	61.6	0.302	0.769
chi square [1]	$(0.210 \pm 1.262) \times 10^5$	12346747	$2.450 imes 10^4$	$1.686 imes 10^4$	54.8	$1.548 imes 10^8$	5.405×10^3	$2.991 imes 10^4$
number of iterations [1]	3.16 ± 0.94	12346747	1.000	3.00	1.000	14.0	3.00	4.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(5.182 \pm 70.455) \times 10^{-10}$	12346747	$5.329 imes10^{-9}$	$6.088 imes10^{-10}$	$-1.839 imes10^{-6}$	$1.761 imes10^{-6}$	-1.903×10^{-9}	$3.426 imes 10^{-9}$
fluorescence precision [mol $s^{-1} m^{-2} nm^{-1} sr^{-1}$]	$(1.784 \pm 0.690) \times 10^{-9}$	12346747	$9.864 imes 10^{-10}$	$1.742 imes 10^{-9}$	$4.723 imes 10^{-10}$	$5.622 imes 10^{-9}$	1.215×10^{-9}	$2.202 imes 10^{-9}$
chi square fluorescence [1]	$(0.601 \pm 1.095) \times 10^5$	12346747	$5.752 imes 10^4$	$1.619 imes 10^4$	118	$2.224 imes 10^6$	3.876×10^{3}	$6.140 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	12346747	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	12346747	0.0	50.0	46.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(3.131 \pm 8.686) \times 10^{-3}$	12346747	5.555×10^{-3}	3.231×10^{-3}	-0.194	0.111	4.040×10^{-4}	5.959×10^{-3}

	Table 5: Parameterlist and	basic statisti	cs for the analy	sis for observat	ions over water			
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.981 ± 0.056	14666411	0.0	1.000	0.350	1.000	1.000	1.000
cloud pressure crb [hPa]	809 ± 191	14666411	259	874	130	1.069×10^{3}	698	956
cloud pressure crb precision [hPa]	2.54 ± 10.11	14666411	1.18	0.598	$1.221 imes 10^{-4}$	1.162×10^{3}	0.344	1.53
cloud fraction crb [1]	0.391 ± 0.342	14666411	0.619	0.296	0.0	1.000	$6.921 imes 10^{-2}$	0.688
cloud fraction crb precision [1]	$(1.099 \pm 7.850) imes 10^{-4}$	14666411	5.494×10^{-5}	$5.168 imes10^{-5}$	$1.381 imes 10^{-7}$	0.435	$2.922 imes 10^{-5}$	$8.416 imes 10^{-5}$
scene albedo [1]	0.338 ± 0.292	14666411	0.518	0.258	-4.426×10^{-2}	2.73	$6.649 imes10^{-2}$	0.584
scene albedo precision [1]	$(6.482\pm8.760) imes10^{-5}$	14666411	$4.366 imes 10^{-5}$	$4.267 imes10^{-5}$	$1.030 imes10^{-5}$	$6.475 imes10^{-3}$	$2.280 imes10^{-5}$	$6.646 imes10^{-5}$
apparent scene pressure [hPa]	827 ± 179	14666411	238	888	130	1.054×10^3	730	968
apparent scene pressure precision [hPa]	1.26 ± 2.14	14666411	0.878	0.547	0.162	61.6	0.338	1.22
chi square [1]	$(0.154 \pm 1.052) \times 10^5$	14666411	$2.063 imes 10^4$	9.940×10^{3}	54.8	$2.128 imes 10^8$	2.851×10^{3}	$2.348 imes 10^4$
number of iterations [1]	2.95 ± 0.79	14666411	0.0	3.00	1.000	14.0	3.00	3.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(-7.320\pm529.293)\times10^{-11}$	14666411	$4.297 imes10^{-9}$	$3.121 imes 10^{-11}$	$-1.346 imes 10^{-6}$	1.309×10^{-6}	$-2.024 imes10^{-9}$	$2.273 imes10^{-9}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.637 \pm 0.702) \times 10^{-9}$	14666411	1.069×10^{-9}	$1.513 imes 10^{-9}$	$3.868 imes 10^{-10}$	$5.622 imes 10^{-9}$	1.039×10^{-9}	2.109×10^{-9}
chi square fluorescence [1]	$(0.472 \pm 0.864) \times 10^5$	14666411	$4.415 imes 10^4$	$1.558 imes 10^4$	99.3	$2.224 imes 10^6$	4.960×10^{3}	$4.911 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	14666411	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	14666411	0.0	50.0	48.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(3.052\pm9.916) imes10^{-3}$	14666411	6.851×10^{-3}	3.122×10^{-3}	-0.194	0.111	-3.836×10^{-4}	$6.468 imes 10^{-3}$

Table 6: Parameterlist an	d basic stat	tistics for the ana	alysis for observ	vations over land			
mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
0.787 ± 0.251	6801402	0.500	1.000	0.350	1.000	0.500	1.000
733 ± 187	6801402	267	743	130	1.047×10^3	621	888
2.31 ± 8.34	6801402	1.25	0.465	$1.221 imes 10^{-4}$	1.416×10^{3}	0.301	1.55
0.616 ± 0.419	6801402	0.861	0.930	0.0	1.000	0.139	1.000
$(4.207 \pm 26.355) \times 10^{-4}$	6801402	$4.412 imes 10^{-5}$	$1.000 imes 10^{-4}$	$2.562 imes 10^{-9}$	0.804	$1.000 imes 10^{-4}$	$1.441 imes 10^{-4}$
0.683 ± 0.282	6801402	0.479	0.746	$7.699 imes10^{-4}$	3.49	0.429	0.908
$(1.250 \pm 1.103) \times 10^{-4}$	6801402	$1.026 imes10^{-4}$	$9.743 imes10^{-5}$	$1.417 imes10^{-5}$	$1.803 imes 10^{-3}$	$4.841 imes10^{-5}$	$1.510 imes10^{-4}$
779 ± 157	6801402	265	799	130	1.047×10^3	654	919
0.389 ± 0.152	6801402	0.150	0.358	0.157	60.6	0.297	0.447
$(0.311 \pm 1.644) \times 10^5$	6801402	$2.087 imes 10^4$	$2.405 imes 10^4$	184	$8.534 imes10^7$	$1.512 imes 10^4$	$3.599 imes 10^4$
4.09 ± 1.13	6801402	0.0	4.00	1.000	14.0	4.00	4.00
$(2.291 \pm 7.228) \times 10^{-9}$	6801402	4.143×10^{-9}	2.637×10^{-9}	$-1.766 imes 10^{-6}$	$1.640 imes 10^{-6}$	5.348×10^{-10}	$4.678 imes10^{-9}$
$(1.831 \pm 0.586) \times 10^{-9}$	6801402	7.572×10^{-10}	1.758×10^{-9}	4.321×10^{-10}	5.603×10^{-9}	$1.411 imes 10^{-9}$	2.169×10^{-9}
$(0.488 \pm 1.045) \times 10^5$	6801402	$3.443 imes 10^4$	7.413×10^{3}	144	$2.158 imes10^6$	2.277×10^3	3.671×10^4
6.00 ± 0.00	6801402	0.0	6.00	6.00	6.00	6.00	6.00
50.0 ± 0.1	6801402	0.0	50.0	48.0	50.0	50.0	50.0
$(3.148 \pm 4.390) \times 10^{-3}$	6801402	3.866×10^{-3}	3.143×10^{-3}	-7.746×10^{-2}	6.716×10^{-2}	1.216×10^{-3}	5.081×10^{-3}
	Table 6: Parameterlist an mean $\pm \sigma$ 0.787 \pm 0.251 733 \pm 187 2.31 \pm 8.34 0.616 \pm 0.419 (4.207 \pm 26.355) × 10 ⁻⁴ 0.683 \pm 0.282 (1.250 \pm 1.103) × 10 ⁻⁴ 779 \pm 157 0.389 \pm 0.152 (0.311 \pm 1.644) × 10 ⁵ 4.09 \pm 1.13 (2.291 \pm 7.228) × 10 ⁻⁹ (1.831 \pm 0.586) × 10 ⁻⁹ (0.488 \pm 1.045) × 10 ⁵ 6.00 \pm 0.00 50.0 \pm 0.1 (3.148 \pm 4.390) × 10 ⁻³	Table 6: Parameterlist and basic statemean $\pm \sigma$ Count 0.787 ± 0.251 6801402 733 ± 187 6801402 2.31 ± 8.34 6801402 0.616 ± 0.419 6801402 $(4.207 \pm 26.355) \times 10^{-4}$ 6801402 $(4.207 \pm 26.355) \times 10^{-4}$ 6801402 $(1.250 \pm 1.103) \times 10^{-4}$ 6801402 $(1.250 \pm 1.103) \times 10^{-4}$ 6801402 0.389 ± 0.152 6801402 $(0.311 \pm 1.644) \times 10^5$ 6801402 $(2.291 \pm 7.228) \times 10^{-9}$ 6801402 $(1.831 \pm 0.586) \times 10^{-9}$ 6801402 $(0.488 \pm 1.045) \times 10^5$ 6801402 6.00 ± 0.00 6801402 50.0 ± 0.1 6801402 $(3.148 \pm 4.390) \times 10^{-3}$ 6801402	Table 6: Parameterlist and basic statistics for the andmean $\pm \sigma$ CountIQR 0.787 ± 0.251 68014020.500 733 ± 187 6801402267 2.31 ± 8.34 68014021.25 0.616 ± 0.419 68014020.861 $(4.207 \pm 26.355) \times 10^{-4}$ 68014024.412 $\times 10^{-5}$ 0.683 ± 0.282 68014020.479 $(1.250 \pm 1.103) \times 10^{-4}$ 68014021.026 $\times 10^{-4}$ 779 ± 157 68014022.65 0.389 ± 0.152 68014022.087 $\times 10^{4}$ 4.09 ± 1.13 68014020.00 $(2.291 \pm 7.228) \times 10^{-9}$ 68014027.572 $\times 10^{-10}$ $(0.488 \pm 1.045) \times 10^{5}$ 68014023.443 $\times 10^{4}$ 6.00 ± 0.00 68014020.0 50.0 ± 0.1 68014020.0 $(3.148 \pm 4.390) \times 10^{-3}$ 68014023.866 $\times 10^{-3}$	Table 6: Parameterlist and basic statistics for the analysis for observ mean $\pm \sigma$ CountIQRMedian 0.787 ± 0.251 68014020.5001.000 733 ± 187 6801402267743 2.31 ± 8.34 68014021.250.465 0.616 ± 0.419 68014020.8610.930 $(4.207 \pm 26.355) \times 10^{-4}$ 68014020.4790.746 $(1.250 \pm 1.103) \times 10^{-4}$ 68014021.026 $\times 10^{-4}$ 9.743 $\times 10^{-5}$ 779 ± 157 68014022.65799 0.389 ± 0.152 68014020.1500.358 $(0.311 \pm 1.644) \times 10^5$ 68014022.087 $\times 10^4$ 2.405 $\times 10^4$ 4.09 ± 1.13 68014020.04.00 $(2.291 \pm 7.228) \times 10^{-9}$ 68014023.443 $\times 10^{-9}$ 2.637 $\times 10^{-9}$ $(0.488 \pm 1.045) \times 10^5$ 68014023.443 $\times 10^4$ 7.413 $\times 10^3$ 6.00 ± 0.00 68014020.050.0 50.0 ± 0.1 68014020.050.0 $(3.148 \pm 4.390) \times 10^{-3}$ 68014023.866 $\times 10^{-3}$ 3.143 $\times 10^{-3}$	Table 6: Parameterlist and basic statistics for the analysis for observations over land mean $\pm \sigma$ CountIQRMedianMinimum0.787 \pm 0.25168014020.5001.0000.350733 \pm 18768014022677431302.31 \pm 8.3468014021.250.4651.221 \times 10 ⁻⁴ 0.616 \pm 0.41968014020.8610.9300.0(4.207 \pm 26.355) \times 10 ⁻⁴ 68014024.412 \times 10 ⁻⁵ 1.000 \times 10 ⁻⁴ 2.562 \times 10 ⁻⁹ 0.683 \pm 0.28268014020.4790.7467.699 \times 10 ⁻⁴ (1.250 \pm 1.103) \times 10 ⁻⁴ 68014021.026 \times 10 ⁻⁴ 9.743 \times 10 ⁻⁵ 1.417 \times 10 ⁻⁵ 779 \pm 15768014022.657991300.389 \pm 0.15268014020.1500.3580.157(0.311 \pm 1.644) \times 10 ⁵ 68014022.087 \times 10 ⁴ 2.405 \times 10 ⁴ 1844.09 \pm 1.1368014020.04.001.000(2.291 \pm 7.228) \times 10 ⁻⁹ 68014027.572 \times 10 ⁻¹⁰ 1.758 \times 10 ⁻⁹ -1.766 \times 10 ⁻⁶ (1.831 \pm 0.586) \times 10 ⁻⁹ 68014023.443 \times 10 ⁴ 7.413 \times 10 ³ 1446.00 \pm 0.0068014020.06.006.0050.0 \pm 0.168014020.050.048.0(3.148 \pm 4.390) \times 10 ⁻³ 68014023.866 \times 10 ⁻³ 3.143 \times 10 ⁻³ -7.746 \times 10 ⁻²	Table 6: Parameterlist and basic statistics for the analysis for observations over land mean $\pm \sigma$ CountIQRMedianMinimumMaximum 0.787 ± 0.251 68014020.5001.0000.3501.000 733 ± 187 6801402267743130 1.047×10^3 2.31 ± 8.34 68014021.25 0.465 1.221×10^{-4} 1.416×10^3 0.616 ± 0.419 6801402 0.861 0.930 0.0 1.000 $(4.207 \pm 26.355) \times 10^{-4}$ 6801402 4.412×10^{-5} 1.000×10^{-4} 2.562×10^{-9} 0.804 0.683 ± 0.282 6801402 0.479 0.746 7.699×10^{-4} 3.49 $(1.250 \pm 1.103) \times 10^{-4}$ 6801402 1.026×10^{-4} 9.743×10^{-5} 1.417×10^{-5} 1.803×10^{-3} 779 ± 157 6801402 0.653 ± 799 130 1.047×10^3 0.389 ± 0.152 6801402 0.150 0.358 0.157 60.6 $(0.311 \pm 1.644) \times 10^5$ 6801402 2.087×10^4 2.405×10^4 184 8.534×10^7 4.09 ± 1.13 6801402 0.0 4.00 1.000 14.0 $(2.291 \pm 7.228) \times 10^{-9}$ 6801402 7.572×10^{-10} 1.758×10^{-9} 4.321×10^{-10} 5.603×10^{-9} $(0.488 \pm 1.045) \times 10^5$ 6801402 3.443×10^4 7.413×10^3 144 2.158×10^6 6.00 ± 0.00 6801402 0.0 6.00 6.00 6.00 50.0 ± 0.1 6801402 0.0 50.0 $48.$	Table 6: Parameterlist and basic statistics for the analysis for observations over landMaximum25 % percentile $nean \pm \sigma$ CountIQRMedianMinimumMaximum25 % percentile 0.787 ± 0.251 68014020.5001.0000.3501.0000.500 733 ± 187 68014022677431301.047 × 10 ³ 621 2.31 ± 8.34 68014021.250.4651.221 × 10 ⁻⁴ 1.416 × 10 ³ 0.301 0.616 ± 0.419 68014020.8610.9300.01.0000.139 $(4.207 \pm 26.355) \times 10^{-4}$ 68014024.412 × 10^{-5}1.000 × 10^{-4}2.562 × 10^{-9}0.8041.000 × 10^{-4} 0.683 ± 0.282 68014020.4790.7467.699 × 10^{-4}3.490.429 $(1.250 \pm 1.103) \times 10^{-4}$ 68014021.026 × 10^{-4}9.743 × 10^{-5}1.803 × 10^{-3}4.841 × 10^{-5} 779 ± 157 68014020.1500.3580.15760.60.297 $(0.311 \pm 1.644) \times 10^5$ 68014022.087 × 10^42.405 × 10^41848.534 × 10^71.512 × 10^4 4.09 ± 1.13 68014020.04.001.00014.04.00 $(2.291 \pm 7.228) \times 10^{-9}$ 68014027.572 × 10^{-10}1.758 × 10^{-9}4.321 × 10^{-10}5.603 × 10^{-9}1.411 × 10^{-9} $(0.488 \pm 1.045) \times 10^5$ 68014020.06.006.006.006.005.0.0 $(0.488 \pm 1.045) \times 10^5$ 68014023.443 × 10^47.413 × 10^31442.158 × 10^6

 \neg

Granule outlines

Figure 1: Outline of the granules.

4 Input data monitoring

Figure 2: Input data per granule

5 Warnings and errors

Figure 3: Fraction of pixels with specific warnings and errors during processing

6 World maps

Figure 4: Map of "Cloud pressure" for 2025-02-20 to 2025-02-21

Figure 5: Map of "Cloud fraction" for 2025-02-20 to 2025-02-21

Figure 6: Map of "Scene albedo" for 2025-02-20 to 2025-02-21

Figure 7: Map of "Apparent scene pressure" for 2025-02-20 to 2025-02-21

Figure 8: Map of "Fluorescence" for 2025-02-20 to 2025-02-21

Figure 9: Map of the number of observations for 2025-02-20 to 2025-02-21

7 Zonal average

Figure 10: Zonal average of "QA value" for 2025-02-20 to 2025-02-21.

Figure 11: Zonal average of "Cloud pressure" for 2025-02-20 to 2025-02-21.

Figure 12: Zonal average of "Cloud pressure precision" for 2025-02-20 to 2025-02-21.

Figure 13: Zonal average of "Cloud fraction" for 2025-02-20 to 2025-02-21.

Figure 14: Zonal average of "Cloud fraction precision" for 2025-02-20 to 2025-02-21.

Figure 15: Zonal average of "Scene albedo" for 2025-02-20 to 2025-02-21.

Figure 16: Zonal average of "Scene albedo precision" for 2025-02-20 to 2025-02-21.

Figure 17: Zonal average of "Apparent scene pressure" for 2025-02-20 to 2025-02-21.

Figure 18: Zonal average of "Apparent scene pressure precision" for 2025-02-20 to 2025-02-21.

Figure 19: Zonal average of " χ^2 " for 2025-02-20 to 2025-02-21.

Figure 20: Zonal average of "Number of iterations" for 2025-02-20 to 2025-02-21.

Figure 21: Zonal average of "Fluorescence" for 2025-02-20 to 2025-02-21.

Figure 22: Zonal average of "Fluorescence precision" for 2025-02-20 to 2025-02-21.

Figure 23: Zonal average of " χ^2 of fluorescence retrieval" for 2025-02-20 to 2025-02-21.

Figure 24: Zonal average of "Degrees of freedom for signal of fluorescence retrieval" for 2025-02-20 to 2025-02-21.

Figure 25: Zonal average of "Number of points in the spectrum" for 2025-02-20 to 2025-02-21.

Figure 26: Zonal average of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-02-20 to 2025-02-21.

8 Histograms

The definitions of the parameters given in this section can be found in section 2.

Figure 27: Histogram of "QA value" for 2025-02-20 to 2025-02-21

Figure 28: Histogram of "Cloud pressure" for 2025-02-20 to 2025-02-21

Figure 29: Histogram of "Cloud pressure precision" for 2025-02-20 to 2025-02-21

Figure 30: Histogram of "Cloud fraction" for 2025-02-20 to 2025-02-21

Figure 31: Histogram of "Cloud fraction precision" for 2025-02-20 to 2025-02-21

Figure 32: Histogram of "Scene albedo" for 2025-02-20 to 2025-02-21

Figure 33: Histogram of "Scene albedo precision" for 2025-02-20 to 2025-02-21

Figure 34: Histogram of "Apparent scene pressure" for 2025-02-20 to 2025-02-21

Figure 35: Histogram of "Apparent scene pressure precision" for 2025-02-20 to 2025-02-21

Figure 36: Histogram of " χ^2 " for 2025-02-20 to 2025-02-21

Figure 37: Histogram of "Number of iterations" for 2025-02-20 to 2025-02-21

Figure 38: Histogram of "Fluorescence" for 2025-02-20 to 2025-02-21

Figure 39: Histogram of "Fluorescence precision" for 2025-02-20 to 2025-02-21

Figure 40: Histogram of " χ^2 of fluorescence retrieval" for 2025-02-20 to 2025-02-21

Figure 41: Histogram of "Degrees of freedom for signal of fluorescence retrieval" for 2025-02-20 to 2025-02-21

Figure 42: Histogram of "Number of points in the spectrum" for 2025-02-20 to 2025-02-21

Figure 43: Histogram of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-02-20 to 2025-02-21

9 Along track statistics

The TROPOMI instrument uses different binned detector rows for different viewing directions. In this section statistics are presented for each of the binned rows in the instrument.

Figure 44: Along track statistics of "QA value" for 2025-02-20 to 2025-02-21

Figure 45: Along track statistics of "Cloud pressure" for 2025-02-20 to 2025-02-21

Figure 46: Along track statistics of "Cloud pressure precision" for 2025-02-20 to 2025-02-21

Figure 47: Along track statistics of "Cloud fraction" for 2025-02-20 to 2025-02-21

Figure 48: Along track statistics of "Cloud fraction precision" for 2025-02-20 to 2025-02-21

Figure 49: Along track statistics of "Scene albedo" for 2025-02-20 to 2025-02-21

Figure 50: Along track statistics of "Scene albedo precision" for 2025-02-20 to 2025-02-21

Figure 51: Along track statistics of "Apparent scene pressure" for 2025-02-20 to 2025-02-21

Figure 52: Along track statistics of "Apparent scene pressure precision" for 2025-02-20 to 2025-02-21

Figure 53: Along track statistics of " χ^2 " for 2025-02-20 to 2025-02-21

Figure 54: Along track statistics of "Number of iterations" for 2025-02-20 to 2025-02-21

Figure 55: Along track statistics of "Fluorescence" for 2025-02-20 to 2025-02-21

Figure 56: Along track statistics of "Fluorescence precision" for 2025-02-20 to 2025-02-21

Figure 57: Along track statistics of " χ^2 of fluorescence retrieval" for 2025-02-20 to 2025-02-21

Figure 58: Along track statistics of "Degrees of freedom for signal of fluorescence retrieval" for 2025-02-20 to 2025-02-21

Figure 59: Along track statistics of "Number of points in the spectrum" for 2025-02-20 to 2025-02-21

Figure 60: Along track statistics of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-02-20 to 2025-02-21

10 Coincidence density

To investigate the relation between parameters scatter density plots are produced. These include some 'hidden' parameters, latitude and the solar- and viewing geometries, in addition to all configured parameters. All combinations of pairs of parameters are included *once*, in one direction alone.

Contents

1	Short Introduction	1
	1.1 The list of parameters	1
2	Definitions	1
3	Granule outlines	8
4	Input data monitoring	9
5	Warnings and errors	10
6	World maps	11
7	Zonal average	17
8	Histograms	34
9	Along track statistics	51
10	Coincidence density	68
11	Copyright information of 'PyCAMA'	68

List of Figures

1	Outline of the granules.	8
2	Input data per granule	9
3	Fraction of pixels with specific warnings and errors during processing	10
4	Map of "Cloud pressure" for 2025-02-20 to 2025-02-21	11
5	Map of "Cloud fraction" for 2025-02-20 to 2025-02-21	12
6	Map of "Scene albedo" for 2025-02-20 to 2025-02-21	13
7	Map of "Apparent scene pressure" for 2025-02-20 to 2025-02-21	14
8	Map of "Fluorescence" for 2025-02-20 to 2025-02-21	15
9	Map of the number of observations for 2025-02-20 to 2025-02-21	16
10	Zonal average of "QA value" for 2025-02-20 to 2025-02-21	17
11	Zonal average of "Cloud pressure" for 2025-02-20 to 2025-02-21.	18
12	Zonal average of "Cloud pressure precision" for 2025-02-20 to 2025-02-21	19
13	Zonal average of "Cloud fraction" for 2025-02-20 to 2025-02-21.	20
14	Zonal average of "Cloud fraction precision" for 2025-02-20 to 2025-02-21.	21
15	Zonal average of "Scene albedo" for 2025-02-20 to 2025-02-21	22
16	Zonal average of "Scene albedo precision" for 2025-02-20 to 2025-02-21.	23
17	Zonal average of "Apparent scene pressure" for 2025-02-20 to 2025-02-21.	24
18	Zonal average of "Apparent scene pressure precision" for 2025-02-20 to 2025-02-21.	25
19	Zonal average of " χ^2 " for 2025-02-20 to 2025-02-21	26
20	Zonal average of "Number of iterations" for 2025-02-20 to 2025-02-21.	27
21	Zonal average of "Fluorescence" for 2025-02-20 to 2025-02-21.	28
22	Zonal average of "Fluorescence precision" for 2025-02-20 to 2025-02-21.	29
23	Zonal average of " χ^2 of fluorescence retrieval" for 2025-02-20 to 2025-02-21	30
24	Zonal average of "Degrees of freedom for signal of fluorescence retrieval" for 2025-02-20 to 2025-02-21.	31
25	Zonal average of "Number of points in the spectrum" for 2025-02-20 to 2025-02-21.	32
26	Zonal average of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-02-20 to 2025-02-21	33
27	Histogram of "QA value" for 2025-02-20 to 2025-02-21	34
28	Histogram of "Cloud pressure" for 2025-02-20 to 2025-02-21	35
29	Histogram of "Cloud pressure precision" for 2025-02-20 to 2025-02-21	36

30	Histogram of "Cloud fraction" for 2025-02-20 to 2025-02-21	37
31	Histogram of "Cloud fraction precision" for 2025-02-20 to 2025-02-21	38
32	Histogram of "Scene albedo" for 2025-02-20 to 2025-02-21	39
33	Histogram of "Scene albedo precision" for 2025-02-20 to 2025-02-21	40
34	Histogram of "Apparent scene pressure" for 2025-02-20 to 2025-02-21	41
35	Histogram of "Apparent scene pressure precision" for 2025-02-20 to 2025-02-21	42
36	Histogram of " χ^2 " for 2025-02-20 to 2025-02-21	43
37	Histogram of "Number of iterations" for 2025-02-20 to 2025-02-21	44
38	Histogram of "Fluorescence" for 2025-02-20 to 2025-02-21	45
39	Histogram of "Fluorescence precision" for 2025-02-20 to 2025-02-21	46
40	Histogram of " χ^2 of fluorescence retrieval" for 2025-02-20 to 2025-02-21	47
41	Histogram of "Degrees of freedom for signal of fluorescence retrieval" for 2025-02-20 to 2025-02-21	48
42	Histogram of "Number of points in the spectrum" for 2025-02-20 to 2025-02-21	49
43	Histogram of "Spectral offset $(\lambda_{true} - \lambda_{nominal})$ " for 2025-02-20 to 2025-02-21	50
44	Along track statistics of "QA value" for 2025-02-20 to 2025-02-21	51
45	Along track statistics of "Cloud pressure" for 2025-02-20 to 2025-02-21	52
46	Along track statistics of "Cloud pressure precision" for 2025-02-20 to 2025-02-21	53
47	Along track statistics of "Cloud fraction" for 2025-02-20 to 2025-02-21	54
48	Along track statistics of "Cloud fraction precision" for 2025-02-20 to 2025-02-21	55
49	Along track statistics of "Scene albedo" for 2025-02-20 to 2025-02-21	56
50	Along track statistics of "Scene albedo precision" for 2025-02-20 to 2025-02-21	57
51	Along track statistics of "Apparent scene pressure" for 2025-02-20 to 2025-02-21	58
52	Along track statistics of "Apparent scene pressure precision" for 2025-02-20 to 2025-02-21	59
53	Along track statistics of " χ^2 " for 2025-02-20 to 2025-02-21	60
54	Along track statistics of "Number of iterations" for 2025-02-20 to 2025-02-21	61
55	Along track statistics of "Fluorescence" for 2025-02-20 to 2025-02-21	62
56	Along track statistics of "Fluorescence precision" for 2025-02-20 to 2025-02-21	63
57	Along track statistics of " χ^2 of fluorescence retrieval" for 2025-02-20 to 2025-02-21	64
58	Along track statistics of "Degrees of freedom for signal of fluorescence retrieval" for 2025-02-20 to 2025-02-21	65
59	Along track statistics of "Number of points in the spectrum" for 2025-02-20 to 2025-02-21	66
60	Along track statistics of "Spectral offset $(\lambda_{true} - \lambda_{nominal})$ " for 2025-02-20 to 2025-02-21	67

List of Tables

1	Parameterlist and basic statistics for the analysis
2	Percentile ranges
3	Parameterlist and basic statistics for the analysis for observations in the northern hemisphere
4	Parameterlist and basic statistics for the analysis for observations in the southern hemisphere
5	Parameterlist and basic statistics for the analysis for observations over water
6	Parameterlist and basic statistics for the analysis for observations over land

11 Copyright information of 'PyCAMA'

Copyright © 2005-2023, Maarten Sneep (KNMI).

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
- 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

This software is provided by the copyright holders and contributors "as is" and any express or implied warranties, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose are disclaimed. In no event shall the copyright holder or contributors be liable for any direct, indirect, incidental, special, exemplary, or consequential damages (including, but not limited to, procurement of substitute goods or services; loss of use, data, or profits; or business interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence or otherwise) arising in any way out of the use of this software, even if advised of the possibility of such damage.

Maarten Sneep (maarten.sneep@knmi.nl).