PyCAMA report generated by tropl2-proc

tropl2-proc

2025-02-25 (04:30)

1 Short Introduction

1.1 The list of parameters

You may want to keep the list given in table 1 at hand when viewing the results.

2 Definitions

The averages shown here are unweighed averages:

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i \tag{1}$$

with N the number of observations in the dataset.

The spread of the measurements is indicated with the variance V(x), or rather the standard deviation $\sigma(x) = \sqrt{V(x)}$.

$$V(x) = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2$$
(2)

We also report the more robust statistics median, minimum, maximum, various percentiles and inter quartile range.

The median m is the value of parameter x for which half of the observations of x is smaller than m:

$$P(x \le m) = P(x \ge m) = \int_{-\infty}^{m} f(x) \, \mathrm{d}x = \frac{1}{2}$$
(3)

with f(x) the probability density function.

The median is a special case of a percentile. Instead of $\frac{1}{2}$ in equation 3, other threshold values can be used. We report results for 1%, 5%, 10%, 15.9%, 25%, 75%, 84.1%, 90%, 95% and 99%. The inter quartile range is the difference between the 75% and 25% percentiles. Similarly the minimum and maximum values correspond to the 0% and 100% percentiles respectively.

For normally distributed parameters the mean and median are the same, while the $\mu \pm \sigma$ values and the 15.9% and 84.1% percentiles coincide.

To get a measure for the relation of one variable $x_{(k)}$ with another $x_{(l)}$, we calculate the covariance matrix C_{kl} .

$$C_{kl} = C(x_{(k)}, x_{(l)}) = \frac{1}{N-1} \sum_{i=1}^{N} (x_{(k),i} - \overline{x_{(k)}}) (x_{(l),i} - \overline{x_{(l)}})$$
(4)

Rather than a dimensionally dependent covariance, it is often easier to interpret a correlation matrix R_{kl} , a matrix of Pearson's *r* coefficients:

$$R_{kl} = R(x_{(k)}, x_{(l)}) = \frac{C_{kl}}{\sqrt{C_{kk}C_{ll}}} = \frac{C_{kl}}{\sqrt{V(x_k)V(x_l)}}$$
(5)

The diagonal elements of the covariance matrix are the variances of the elements, $V(x_{(k)}) = C_{kk}$ and obviously $R_{kk} = 1$.

Table 1: Parameterlist and basic statistics for the	e analysi	S
---	-----------	---

Variable	mean $\pm \sigma$	Count	Mode	IOR	Median	Minimum	Maximum
ga value [1]	0.924 ± 0.170	24856740	0.995	0.0	1.000	0.350	1.000
cloud pressure crb [hPa]	784 ± 193	24856740	1.015×10^3	281	839	130	1.041×10^{3}
cloud pressure crb precision [hPa]	2.71 ± 10.62	24856740	0.750	1.22	0.568	$3.662 imes 10^{-4}$	1.543×10^3
cloud fraction crb [1]	0.460 ± 0.383	24856740	0.996	0.803	0.370	0.0	1.000
cloud fraction crb precision [1]	$(2.066 \pm 16.382) \times 10^{-4}$	24856740	$2.500 imes 10^{-4}$	$6.094 imes10^{-5}$	7.295×10^{-5}	6.167×10^{-9}	0.763
scene albedo [1]	0.448 ± 0.330	24856740	1.500×10^{-2}	0.599	0.415	$-3.173 imes10^{-3}$	4.43
scene albedo precision [1]	$(8.500 \pm 10.293) \times 10^{-5}$	24856740	$2.500 imes10^{-4}$	$6.586 imes10^{-5}$	$5.187 imes10^{-5}$	1.064×10^{-5}	1.259×10^{-2}
apparent scene pressure [hPa]	815 ± 171	24856740	1.016×10^3	253	864	130	1.041×10^3
apparent scene pressure precision [hPa]	1.01 ± 1.92	24856740	0.500	0.467	0.435	0.148	61.2
chi square [1]	$(0.222 \pm 3.188) \times 10^5$	24856740	0.150	$2.373 imes 10^4$	$1.566 imes 10^4$	58.4	$2.667 imes 10^8$
number of iterations [1]	3.36 ± 1.07	24856740	3.23	1.000	3.00	1.000	14.0
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(6.788 \pm 62.731) \times 10^{-10}$	24856740	$2.500 imes 10^{-10}$	4.852×10^{-9}	8.578×10^{-10}	-1.981×10^{-6}	1.870×10^{-6}
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.698 \pm 0.672) \times 10^{-9}$	24856740	$8.500 imes 10^{-10}$	$9.670 imes 10^{-10}$	1.625×10^{-9}	$4.325 imes 10^{-10}$	5.610×10^{-9}
chi square fluorescence [1]	$(0.494 \pm 0.961) \times 10^5$	24856740	750	$4.379 imes 10^4$	$1.291 imes 10^4$	95.0	$5.915 imes10^6$
degrees of freedom fluorescence [1]	6.00 ± 0.00	24856740	5.95	0.0	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	24856740	49.7	0.0	50.0	44.0	50.0
wavelength calibration offset [nm]	$(3.070 \pm 8.795) \times 10^{-3}$	24856740	$2.800 imes 10^{-3}$	$5.703 imes 10^{-3}$	3.133×10^{-3}	-0.119	0.233

			Table 2:	Percentile rang	jes					
Variable	1 %	5%	10 %	15.9 %	25 %	75 %	84.1 %	90 %	95 %	99 %
qa value [1]	0.500	0.500	0.500	0.900	1.000	1.000	1.000	1.000	1.000	1.000
cloud pressure crb [hPa]	248	394	497	582	659	940	974	994	1.010×10^3	1.020×10^3
cloud pressure crb precision [hPa]	0.170	0.239	0.267	0.292	0.333	1.55	2.77	4.87	10.2	37.1
cloud fraction crb [1]	0.0	$9.184 imes10^{-3}$	$2.143 imes 10^{-2}$	$4.077 imes 10^{-2}$	$8.319 imes10^{-2}$	0.887	1.000	1.000	1.000	1.000
cloud fraction crb precision [1]	$1.964 imes 10^{-5}$	$2.247 imes10^{-5}$	$2.525 imes 10^{-5}$	$2.898 imes10^{-5}$	$3.906 imes 10^{-5}$	$1.000 imes 10^{-4}$	$1.179 imes10^{-4}$	$2.056 imes 10^{-4}$	$5.769 imes10^{-4}$	2.559×10^{-3}
scene albedo [1]	$6.989 imes 10^{-3}$	$1.813 imes10^{-2}$	$3.475 imes 10^{-2}$	$6.218 imes10^{-2}$	0.131	0.731	0.844	0.904	0.965	1.13
scene albedo precision [1]	$1.288 imes10^{-5}$	$1.509 imes 10^{-5}$	$1.814 imes10^{-5}$	$2.265 imes 10^{-5}$	3.044×10^{-5}	9.630×10^{-5}	$1.337 imes 10^{-4}$	$1.812 imes 10^{-4}$	$2.783 imes 10^{-4}$	5.377×10^{-4}
apparent scene pressure [hPa]	341	472	566	625	700	953	982	998	1.011×10^{3}	1.020×10^{3}
apparent scene pressure precision [hPa]	0.215	0.246	0.269	0.290	0.321	0.788	1.29	2.12	3.85	9.68
chi square [1]	254	609	1.307×10^{3}	2.631×10^{3}	5.329×10^{3}	2.906×10^{4}	3.644×10^{4}	4.319×10^{4}	5.276×10^{4}	7.525×10^{4}
number of iterations [1]	2.00	2.00	2.00	3.00	3.00	4.00	4.00	5.00	5.00	7.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	-1.552×10^{-8}	-7.602×10^{-9}	-4.694×10^{-9}	-2.981×10^{-9}	-1.484×10^{-9}	3.368×10^{-9}	4.711×10^{-9}	$6.026 imes 10^{-9}$	$8.008 imes 10^{-9}$	$1.285 imes 10^{-8}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$7.335 imes 10^{-10}$	$8.143 imes 10^{-10}$	$8.870 imes 10^{-10}$	$9.799 imes 10^{-10}$	$1.155 imes 10^{-9}$	$2.123 imes 10^{-9}$	$2.372 imes 10^{-9}$	2.616×10^{-9}	$2.948 imes 10^{-9}$	3.577×10^{-9}
chi square fluorescence [1]	367	821	1.320×10^{3}	2.074×10^{3}	3.604×10^{3}	4.740×10^{4}	8.499×10^{4}	1.380×10^{5}	2.365×10^{5}	4.839×10^{5}
degrees of freedom fluorescence [1]	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0
wavelength calibration offset [nm]	-2.575×10^{-2}	-9.903×10^{-3}	-4.611×10^{-3}	-1.904×10^{-3}	$2.319 imes10^{-4}$	$5.935 imes 10^{-3}$	$7.993 imes 10^{-3}$	1.069×10^{-2}	$1.596 imes 10^{-2}$	3.144×10^{-2}

Table	3: Parameterlist and basic	statistics for	the analysis for	observations in	the northern her	nisphere		
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.957 ± 0.128	11759389	0.0	1.000	0.350	1.000	1.000	1.000
cloud pressure crb [hPa]	776 ± 205	11759389	291	839	130	1.041×10^{3}	649	939
cloud pressure crb precision [hPa]	3.03 ± 11.34	11759389	1.51	0.778	$3.662 imes 10^{-4}$	1.543×10^{3}	0.391	1.90
cloud fraction crb [1]	0.418 ± 0.376	11759389	0.724	0.286	0.0	1.000	$7.124 imes 10^{-2}$	0.795
cloud fraction crb precision [1]	$(2.660 \pm 22.286) \times 10^{-4}$	11759389	$7.687 imes10^{-5}$	$8.822 imes 10^{-5}$	$6.167 imes10^{-9}$	0.763	$4.262 imes 10^{-5}$	$1.195 imes10^{-4}$
scene albedo [1]	0.447 ± 0.325	11759389	0.572	0.419	$-2.588 imes10^{-3}$	4.43	0.143	0.715
scene albedo precision [1]	$(9.298 \pm 11.213) \times 10^{-5}$	11759389	$7.251 imes 10^{-5}$	$5.468 imes10^{-5}$	$1.081 imes10^{-5}$	$1.905 imes 10^{-3}$	$3.119 imes10^{-5}$	$1.037 imes10^{-4}$
apparent scene pressure [hPa]	821 ± 171	11759389	230	872	130	1.041×10^3	725	955
apparent scene pressure precision [hPa]	0.926 ± 1.575	11759389	0.459	0.465	0.162	60.0	0.339	0.798
chi square [1]	$(0.242 \pm 4.168) \times 10^5$	11759389	2.415×10^4	$1.493 imes 10^4$	59.6	$1.857 imes 10^8$	5.189×10^{3}	$2.934 imes 10^4$
number of iterations [1]	3.57 ± 1.16	11759389	1.000	3.00	1.000	14.0	3.00	4.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.055 \pm 4.972) \times 10^{-9}$	11759389	$4.396 imes 10^{-9}$	$1.148 imes 10^{-9}$	$-1.723 imes10^{-6}$	$1.394 imes10^{-6}$	$-9.368 imes 10^{-10}$	3.459×10^{-9}
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.631 \pm 0.657) \times 10^{-9}$	11759389	$9.288 imes 10^{-10}$	1.515×10^{-9}	$4.325 imes 10^{-10}$	5.418×10^{-9}	$1.105 imes10^{-9}$	$2.034 imes 10^{-9}$
chi square fluorescence [1]	$(0.370 \pm 0.764) \times 10^5$	11759389	3.260×10^4	$9.688 imes 10^3$	95.0	$1.695 imes 10^6$	3.251×10^{3}	$3.586 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	11759389	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	11759389	0.0	50.0	48.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(3.006 \pm 8.489) \times 10^{-3}$	11759389	5.706×10^{-3}	2.995×10^{-3}	-8.452×10^{-2}	9.176×10^{-2}	1.174×10^{-4}	5.824×10^{-3}

Table	4: Parameterlist and basic s	statistics for	the analysis for	observations in	the southern hem	isphere		
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.895 ± 0.195	13097351	0.1000	1.000	0.350	1.000	0.900	1.000
cloud pressure crb [hPa]	792 ± 182	13097351	275	839	130	1.032×10^3	665	940
cloud pressure crb precision [hPa]	2.42 ± 9.92	13097351	0.847	0.450	1.343×10^{-3}	982	0.308	1.15
cloud fraction crb [1]	0.497 ± 0.386	13097351	0.854	0.461	0.0	1.000	0.101	0.956
cloud fraction crb precision [1]	$(1.532 \pm 7.927) \times 10^{-4}$	13097351	$6.322 imes 10^{-5}$	$6.594 imes 10^{-5}$	$6.824 imes 10^{-9}$	0.284	$3.678 imes 10^{-5}$	$1.000 imes 10^{-4}$
scene albedo [1]	0.448 ± 0.335	13097351	0.625	0.410	$-3.173 imes 10^{-3}$	4.06	0.123	0.748
scene albedo precision [1]	$(7.784 \pm 9.334) \times 10^{-5}$	13097351	6.093×10^{-5}	4.994×10^{-5}	1.064×10^{-5}	1.259×10^{-2}	2.982×10^{-5}	9.075×10^{-5}
apparent scene pressure [hPa]	809 ± 171	13097351	268	856	130	1.032×10^3	684	951
apparent scene pressure precision [hPa]	1.09 ± 2.18	13097351	0.468	0.407	0.148	61.2	0.309	0.777
chi square [1]	$(0.204 \pm 1.921) \times 10^5$	13097351	$2.339 imes 10^4$	1.634×10^4	58.4	$2.667 imes 10^8$	5.470×10^{3}	$2.886 imes 10^4$
number of iterations [1]	3.16 ± 0.93	13097351	1.000	3.00	1.000	14.0	3.00	4.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(3.412 \pm 72.285) \times 10^{-10}$	13097351	$5.272 imes 10^{-9}$	$5.351 imes 10^{-10}$	$-1.981 imes 10^{-6}$	$1.870 imes10^{-6}$	-2.001×10^{-9}	$3.271 imes 10^{-9}$
fluorescence precision [mol $s^{-1} m^{-2} nm^{-1} sr^{-1}$]	$(1.759 \pm 0.679) \times 10^{-9}$	13097351	$9.686 imes 10^{-10}$	$1.716 imes10^{-9}$	$5.463 imes 10^{-10}$	$5.610 imes 10^{-9}$	$1.206 imes 10^{-9}$	$2.174 imes10^{-9}$
chi square fluorescence [1]	$(0.605 \pm 1.097) \times 10^5$	13097351	$5.737 imes 10^4$	$1.649 imes 10^4$	109	$5.915 imes10^6$	4.201×10^3	$6.157 imes10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	13097351	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	13097351	0.0	50.0	44.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(3.127 \pm 9.061) \times 10^{-3}$	13097351	$5.686 imes 10^{-3}$	3.254×10^{-3}	-0.119	0.233	$3.474 imes 10^{-4}$	6.033×10^{-3}

	Table 5: Parameterlist and	basic statist	tics for the anal	ysis for observa	tions over water			
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.981 ± 0.058	16124066	0.0	1.000	0.350	1.000	1.000	1.000
cloud pressure crb [hPa]	807 ± 190	16124066	257	869	130	1.040×10^3	697	954
cloud pressure crb precision [hPa]	2.81 ± 11.17	16124066	1.22	0.616	$4.883 imes10^{-4}$	$1.318 imes 10^3$	0.353	1.57
cloud fraction crb [1]	0.383 ± 0.341	16124066	0.606	0.283	0.0	1.000	6.676×10^{-2}	0.672
cloud fraction crb precision [1]	$(1.040\pm 6.367) imes 10^{-4}$	16124066	$5.494 imes10^{-5}$	$5.095 imes 10^{-5}$	$8.805 imes10^{-8}$	0.257	2.926×10^{-5}	$8.421 imes 10^{-5}$
scene albedo [1]	0.332 ± 0.294	16124066	0.506	0.246	$-3.173 imes 10^{-3}$	4.43	$6.439 imes10^{-2}$	0.570
scene albedo precision [1]	$(6.584 \pm 9.046) \times 10^{-5}$	16124066	$4.411 imes 10^{-5}$	$4.253 imes 10^{-5}$	1.064×10^{-5}	1.259×10^{-2}	2.306×10^{-5}	6.716×10^{-5}
apparent scene pressure [hPa]	826 ± 179	16124066	237	883	130	1.037×10^3	730	967
apparent scene pressure precision [hPa]	1.35 ± 2.31	16124066	0.905	0.562	0.156	61.2	0.347	1.25
chi square [1]	$(0.153 \pm 1.553) \times 10^5$	16124066	$2.024 imes 10^4$	9.636×10^{3}	58.4	$2.667 imes 10^8$	$2.768 imes 10^3$	$2.301 imes 10^4$
number of iterations [1]	2.97 ± 0.80	16124066	0.0	3.00	1.000	14.0	3.00	3.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(-1.391 \pm 58.844) \times 10^{-10}$	16124066	4.183×10^{-9}	$5.190 imes 10^{-11}$	-1.981×10^{-6}	$1.870 imes10^{-6}$	-2.003×10^{-9}	2.180×10^{-9}
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.614 \pm 0.697) \times 10^{-9}$	16124066	$1.042 imes 10^{-9}$	$1.480 imes10^{-9}$	4.325×10^{-10}	$5.581 imes10^{-9}$	1.029×10^{-9}	2.070×10^{-9}
chi square fluorescence [1]	$(0.460 \pm 0.889) \times 10^5$	16124066	$4.246 imes 10^4$	$1.452 imes 10^4$	95.0	$5.915 imes10^6$	4.269×10^{3}	$4.673 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	16124066	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	16124066	0.0	50.0	47.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(3.013 \pm 10.288) \times 10^{-3}$	16124066	7.069×10^{-3}	3.102×10^{-3}	-0.119	0.233	-5.297×10^{-4}	6.539×10^{-3}

	Table 6: Parameterlist an	nd basic stat	tistics for the ana	alysis for observ	ations over land			
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.785 ± 0.250	6881375	0.500	1.000	0.350	1.000	0.500	1.000
cloud pressure crb [hPa]	735 ± 186	6881375	255	748	130	1.041×10^3	629	884
cloud pressure crb precision [hPa]	2.41 ± 9.21	6881375	1.11	0.459	$6.714 imes10^{-4}$	1.379×10^{3}	0.304	1.41
cloud fraction crb [1]	0.632 ± 0.416	6881375	0.847	1.000	0.0	1.000	0.153	1.000
cloud fraction crb precision [1]	$(4.257 \pm 27.602) \times 10^{-4}$	6881375	$3.435 imes 10^{-5}$	$1.000 imes 10^{-4}$	$6.167 imes 10^{-9}$	0.763	$1.000 imes 10^{-4}$	$1.343 imes10^{-4}$
scene albedo [1]	0.688 ± 0.281	6881375	0.471	0.759	2.021×10^{-3}	4.06	0.436	0.908
scene albedo precision [1]	$(1.297 \pm 1.197) \times 10^{-4}$	6881375	$1.065 imes10^{-4}$	$1.001 imes 10^{-4}$	$1.226 imes 10^{-5}$	$1.740 imes 10^{-3}$	4.777×10^{-5}	$1.543 imes 10^{-4}$
apparent scene pressure [hPa]	783 ± 148	6881375	249	796	130	1.041×10^{3}	662	911
apparent scene pressure precision [hPa]	0.389 ± 0.129	6881375	0.146	0.359	0.165	25.8	0.300	0.446
chi square [1]	$(0.330 \pm 3.931) \times 10^5$	6881375	$2.172 imes 10^4$	$2.448 imes 10^4$	467	$1.764 imes 10^8$	1.522×10^4	$3.694 imes 10^4$
number of iterations [1]	4.12 ± 1.11	6881375	0.0	4.00	1.000	14.0	4.00	4.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(2.270\pm6.219)\times10^{-9}$	6881375	4.137×10^{-9}	$2.673 imes 10^{-9}$	$-1.931 imes 10^{-6}$	$1.453 imes10^{-6}$	$5.580 imes 10^{-10}$	$4.695 imes 10^{-9}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.821 \pm 0.581) \times 10^{-9}$	6881375	$7.450 imes 10^{-10}$	1.749×10^{-9}	$5.662 imes 10^{-10}$	$5.602 imes 10^{-9}$	$1.414 imes10^{-9}$	2.159×10^{-9}
chi square fluorescence [1]	$(0.492 \pm 0.999) \times 10^5$	6881375	$3.809 imes 10^4$	$7.278 imes 10^3$	137	$1.702 imes 10^6$	2.193×10^{3}	$4.028 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	6881375	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	6881375	0.0	50.0	48.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(3.162 \pm 4.335) \times 10^{-3}$	6881375	$3.780 imes 10^{-3}$	3.175×10^{-3}	-7.453×10^{-2}	7.776×10^{-2}	1.282×10^{-3}	5.062×10^{-3}

Granule outlines

Figure 1: Outline of the granules.

4 Input data monitoring

Figure 2: Input data per granule

5 Warnings and errors

Figure 3: Fraction of pixels with specific warnings and errors during processing

6 World maps

Figure 4: Map of "Cloud pressure" for 2025-02-23 to 2025-02-24

Figure 5: Map of "Cloud fraction" for 2025-02-23 to 2025-02-24

Figure 6: Map of "Scene albedo" for 2025-02-23 to 2025-02-24

Figure 7: Map of "Apparent scene pressure" for 2025-02-23 to 2025-02-24

2025-02-23

Figure 8: Map of "Fluorescence" for 2025-02-23 to 2025-02-24

Figure 9: Map of the number of observations for 2025-02-23 to 2025-02-24

7 Zonal average

Figure 10: Zonal average of "QA value" for 2025-02-23 to 2025-02-24.

Figure 11: Zonal average of "Cloud pressure" for 2025-02-23 to 2025-02-24.

Figure 12: Zonal average of "Cloud pressure precision" for 2025-02-23 to 2025-02-24.

Figure 13: Zonal average of "Cloud fraction" for 2025-02-23 to 2025-02-24.

Figure 14: Zonal average of "Cloud fraction precision" for 2025-02-23 to 2025-02-24.

Figure 15: Zonal average of "Scene albedo" for 2025-02-23 to 2025-02-24.

Figure 16: Zonal average of "Scene albedo precision" for 2025-02-23 to 2025-02-24.

Figure 17: Zonal average of "Apparent scene pressure" for 2025-02-23 to 2025-02-24.

Figure 18: Zonal average of "Apparent scene pressure precision" for 2025-02-23 to 2025-02-24.

Figure 19: Zonal average of " χ^2 " for 2025-02-23 to 2025-02-24.

Figure 20: Zonal average of "Number of iterations" for 2025-02-23 to 2025-02-24.

Figure 21: Zonal average of "Fluorescence" for 2025-02-23 to 2025-02-24.

Figure 22: Zonal average of "Fluorescence precision" for 2025-02-23 to 2025-02-24.

Figure 23: Zonal average of " χ^2 of fluorescence retrieval" for 2025-02-23 to 2025-02-24.

Figure 24: Zonal average of "Degrees of freedom for signal of fluorescence retrieval" for 2025-02-23 to 2025-02-24.

Figure 25: Zonal average of "Number of points in the spectrum" for 2025-02-23 to 2025-02-24.

Figure 26: Zonal average of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-02-23 to 2025-02-24.

8 Histograms

The definitions of the parameters given in this section can be found in section 2.

Figure 27: Histogram of "QA value" for 2025-02-23 to 2025-02-24

Figure 28: Histogram of "Cloud pressure" for 2025-02-23 to 2025-02-24

Figure 29: Histogram of "Cloud pressure precision" for 2025-02-23 to 2025-02-24

Figure 30: Histogram of "Cloud fraction" for 2025-02-23 to 2025-02-24

Figure 31: Histogram of "Cloud fraction precision" for 2025-02-23 to 2025-02-24

Figure 32: Histogram of "Scene albedo" for 2025-02-23 to 2025-02-24

Figure 33: Histogram of "Scene albedo precision" for 2025-02-23 to 2025-02-24

Figure 34: Histogram of "Apparent scene pressure" for 2025-02-23 to 2025-02-24

Figure 35: Histogram of "Apparent scene pressure precision" for 2025-02-23 to 2025-02-24

Figure 36: Histogram of " χ^2 " for 2025-02-23 to 2025-02-24

Figure 37: Histogram of "Number of iterations" for 2025-02-23 to 2025-02-24

Figure 38: Histogram of "Fluorescence" for 2025-02-23 to 2025-02-24

Figure 39: Histogram of "Fluorescence precision" for 2025-02-23 to 2025-02-24

Figure 40: Histogram of " χ^2 of fluorescence retrieval" for 2025-02-23 to 2025-02-24

Figure 41: Histogram of "Degrees of freedom for signal of fluorescence retrieval" for 2025-02-23 to 2025-02-24

Figure 42: Histogram of "Number of points in the spectrum" for 2025-02-23 to 2025-02-24

Figure 43: Histogram of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-02-23 to 2025-02-24

9 Along track statistics

The TROPOMI instrument uses different binned detector rows for different viewing directions. In this section statistics are presented for each of the binned rows in the instrument.

Figure 44: Along track statistics of "QA value" for 2025-02-23 to 2025-02-24

Figure 45: Along track statistics of "Cloud pressure" for 2025-02-23 to 2025-02-24

Figure 46: Along track statistics of "Cloud pressure precision" for 2025-02-23 to 2025-02-24

Figure 47: Along track statistics of "Cloud fraction" for 2025-02-23 to 2025-02-24

Figure 48: Along track statistics of "Cloud fraction precision" for 2025-02-23 to 2025-02-24

Figure 49: Along track statistics of "Scene albedo" for 2025-02-23 to 2025-02-24

Figure 50: Along track statistics of "Scene albedo precision" for 2025-02-23 to 2025-02-24

Figure 51: Along track statistics of "Apparent scene pressure" for 2025-02-23 to 2025-02-24

Figure 52: Along track statistics of "Apparent scene pressure precision" for 2025-02-23 to 2025-02-24

Figure 53: Along track statistics of " χ^2 " for 2025-02-23 to 2025-02-24

Figure 54: Along track statistics of "Number of iterations" for 2025-02-23 to 2025-02-24

Figure 55: Along track statistics of "Fluorescence" for 2025-02-23 to 2025-02-24

Figure 56: Along track statistics of "Fluorescence precision" for 2025-02-23 to 2025-02-24

Figure 57: Along track statistics of " χ^2 of fluorescence retrieval" for 2025-02-23 to 2025-02-24

Figure 58: Along track statistics of "Degrees of freedom for signal of fluorescence retrieval" for 2025-02-23 to 2025-02-24

Figure 59: Along track statistics of "Number of points in the spectrum" for 2025-02-23 to 2025-02-24

Figure 60: Along track statistics of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-02-23 to 2025-02-24

10 Coincidence density

To investigate the relation between parameters scatter density plots are produced. These include some 'hidden' parameters, latitude and the solar- and viewing geometries, in addition to all configured parameters. All combinations of pairs of parameters are included *once*, in one direction alone.

Contents

1	Short Introduction	1
	1.1 The list of parameters	1
2	Definitions	1
3	Granule outlines	8
4	Input data monitoring	9
5	Warnings and errors	10
6	World maps	11
7	Zonal average	17
8	Histograms	34
9	Along track statistics	51
10	Coincidence density	68
11	Copyright information of 'PyCAMA'	68

List of Figures

1	Outline of the granules.	8
2	Input data per granule	9
3	Fraction of pixels with specific warnings and errors during processing	10
4	Map of "Cloud pressure" for 2025-02-23 to 2025-02-24	11
5	Map of "Cloud fraction" for 2025-02-23 to 2025-02-24	12
6	Map of "Scene albedo" for 2025-02-23 to 2025-02-24	13
7	Map of "Apparent scene pressure" for 2025-02-23 to 2025-02-24	14
8	Map of "Fluorescence" for 2025-02-23 to 2025-02-24	15
9	Map of the number of observations for 2025-02-23 to 2025-02-24	16
10	Zonal average of "QA value" for 2025-02-23 to 2025-02-24.	17
11	Zonal average of "Cloud pressure" for 2025-02-23 to 2025-02-24.	18
12	Zonal average of "Cloud pressure precision" for 2025-02-23 to 2025-02-24	19
13	Zonal average of "Cloud fraction" for 2025-02-23 to 2025-02-24.	20
14	Zonal average of "Cloud fraction precision" for 2025-02-23 to 2025-02-24.	21
15	Zonal average of "Scene albedo" for 2025-02-23 to 2025-02-24.	22
16	Zonal average of "Scene albedo precision" for 2025-02-23 to 2025-02-24.	23
17	Zonal average of "Apparent scene pressure" for 2025-02-23 to 2025-02-24.	24
18	Zonal average of "Apparent scene pressure precision" for 2025-02-23 to 2025-02-24	25
19	Zonal average of " χ^2 " for 2025-02-23 to 2025-02-24	26
20	Zonal average of "Number of iterations" for 2025-02-23 to 2025-02-24.	27
21	Zonal average of "Fluorescence" for 2025-02-23 to 2025-02-24.	28
22	Zonal average of "Fluorescence precision" for 2025-02-23 to 2025-02-24.	29
23	Zonal average of " χ^2 of fluorescence retrieval" for 2025-02-23 to 2025-02-24	30
24	Zonal average of "Degrees of freedom for signal of fluorescence retrieval" for 2025-02-23 to 2025-02-24.	31
25	Zonal average of "Number of points in the spectrum" for 2025-02-23 to 2025-02-24.	32
26	Zonal average of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-02-23 to 2025-02-24	33
27	Histogram of "QA value" for 2025-02-23 to 2025-02-24	34
28	Histogram of "Cloud pressure" for 2025-02-23 to 2025-02-24	35
29	Histogram of "Cloud pressure precision" for 2025-02-23 to 2025-02-24	36

30	Histogram of "Cloud fraction" for 2025-02-23 to 2025-02-24	37
31	Histogram of "Cloud fraction precision" for 2025-02-23 to 2025-02-24	38
32	Histogram of "Scene albedo" for 2025-02-23 to 2025-02-24	39
33	Histogram of "Scene albedo precision" for 2025-02-23 to 2025-02-24	40
34	Histogram of "Apparent scene pressure" for 2025-02-23 to 2025-02-24	41
35	Histogram of "Apparent scene pressure precision" for 2025-02-23 to 2025-02-24	42
36	Histogram of " χ^2 " for 2025-02-23 to 2025-02-24	43
37	Histogram of "Number of iterations" for 2025-02-23 to 2025-02-24	44
38	Histogram of "Fluorescence" for 2025-02-23 to 2025-02-24	45
39	Histogram of "Fluorescence precision" for 2025-02-23 to 2025-02-24	46
40	Histogram of " χ^2 of fluorescence retrieval" for 2025-02-23 to 2025-02-24	47
41	Histogram of "Degrees of freedom for signal of fluorescence retrieval" for 2025-02-23 to 2025-02-24	48
42	Histogram of "Number of points in the spectrum" for 2025-02-23 to 2025-02-24	49
43	Histogram of "Spectral offset $(\lambda_{true} - \lambda_{nominal})$ " for 2025-02-23 to 2025-02-24	50
44	Along track statistics of "QA value" for 2025-02-23 to 2025-02-24	51
45	Along track statistics of "Cloud pressure" for 2025-02-23 to 2025-02-24	52
46	Along track statistics of "Cloud pressure precision" for 2025-02-23 to 2025-02-24	53
47	Along track statistics of "Cloud fraction" for 2025-02-23 to 2025-02-24	54
48	Along track statistics of "Cloud fraction precision" for 2025-02-23 to 2025-02-24	55
49	Along track statistics of "Scene albedo" for 2025-02-23 to 2025-02-24	56
50	Along track statistics of "Scene albedo precision" for 2025-02-23 to 2025-02-24	57
51	Along track statistics of "Apparent scene pressure" for 2025-02-23 to 2025-02-24	58
52	Along track statistics of "Apparent scene pressure precision" for 2025-02-23 to 2025-02-24	59
53	Along track statistics of " χ^2 " for 2025-02-23 to 2025-02-24	60
54	Along track statistics of "Number of iterations" for 2025-02-23 to 2025-02-24	61
55	Along track statistics of "Fluorescence" for 2025-02-23 to 2025-02-24	62
56	Along track statistics of "Fluorescence precision" for 2025-02-23 to 2025-02-24	63
57	Along track statistics of " χ^2 of fluorescence retrieval" for 2025-02-23 to 2025-02-24	64
58	Along track statistics of "Degrees of freedom for signal of fluorescence retrieval" for 2025-02-23 to 2025-02-24	65
59	Along track statistics of "Number of points in the spectrum" for 2025-02-23 to 2025-02-24	66
60	Along track statistics of "Spectral offset $(\lambda_{true} - \lambda_{nominal})$ " for 2025-02-23 to 2025-02-24	67

List of Tables

1	Parameterlist and basic statistics for the analysis
2	Percentile ranges
3	Parameterlist and basic statistics for the analysis for observations in the northern hemisphere
4	Parameterlist and basic statistics for the analysis for observations in the southern hemisphere
5	Parameterlist and basic statistics for the analysis for observations over water
6	Parameterlist and basic statistics for the analysis for observations over land

11 Copyright information of 'PyCAMA'

Copyright © 2005-2023, Maarten Sneep (KNMI).

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
- 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

This software is provided by the copyright holders and contributors "as is" and any express or implied warranties, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose are disclaimed. In no event shall the copyright holder or contributors be liable for any direct, indirect, incidental, special, exemplary, or consequential damages (including, but not limited to, procurement of substitute goods or services; loss of use, data, or profits; or business interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence or otherwise) arising in any way out of the use of this software, even if advised of the possibility of such damage.

Maarten Sneep (maarten.sneep@knmi.nl).