PyCAMA report generated by tropl2-proc

tropl2-proc

2025-02-28 (02:15)

1 Short Introduction

1.1 The list of parameters

You may want to keep the list given in table 1 at hand when viewing the results.

2 Definitions

The averages shown here are unweighed averages:

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i \tag{1}$$

with N the number of observations in the dataset.

The spread of the measurements is indicated with the variance V(x), or rather the standard deviation $\sigma(x) = \sqrt{V(x)}$.

$$V(x) = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2$$
(2)

We also report the more robust statistics median, minimum, maximum, various percentiles and inter quartile range.

The median m is the value of parameter x for which half of the observations of x is smaller than m:

$$P(x \le m) = P(x \ge m) = \int_{-\infty}^{m} f(x) \, \mathrm{d}x = \frac{1}{2}$$
(3)

with f(x) the probability density function.

The median is a special case of a percentile. Instead of $\frac{1}{2}$ in equation 3, other threshold values can be used. We report results for 1%, 5%, 10%, 15.9%, 25%, 75%, 84.1%, 90%, 95% and 99%. The inter quartile range is the difference between the 75% and 25% percentiles. Similarly the minimum and maximum values correspond to the 0% and 100% percentiles respectively.

For normally distributed parameters the mean and median are the same, while the $\mu \pm \sigma$ values and the 15.9% and 84.1% percentiles coincide.

To get a measure for the relation of one variable $x_{(k)}$ with another $x_{(l)}$, we calculate the covariance matrix C_{kl} .

$$C_{kl} = C(x_{(k)}, x_{(l)}) = \frac{1}{N-1} \sum_{i=1}^{N} (x_{(k),i} - \overline{x_{(k)}}) (x_{(l),i} - \overline{x_{(l)}})$$
(4)

Rather than a dimensionally dependent covariance, it is often easier to interpret a correlation matrix R_{kl} , a matrix of Pearson's *r* coefficients:

$$R_{kl} = R(x_{(k)}, x_{(l)}) = \frac{C_{kl}}{\sqrt{C_{kk}C_{ll}}} = \frac{C_{kl}}{\sqrt{V(x_k)V(x_l)}}$$
(5)

The diagonal elements of the covariance matrix are the variances of the elements, $V(x_{(k)}) = C_{kk}$ and obviously $R_{kk} = 1$.

Table 1: Parameterlist and basic statistics for the ana	lysi	is
---	------	----

V7			M. J.			N.C	M
variable	mean $\pm \sigma$	Count	Mode	IQK	Median	Minimum	Maximum
qa value [1]	0.925 ± 0.169	23336707	0.995	0.0	1.000	0.350	1.000
cloud pressure crb [hPa]	783 ± 194	23336707	1.015×10^{3}	290	837	130	1.075×10^{3}
cloud pressure crb precision [hPa]	2.54 ± 9.99	23336707	0.750	1.23	0.570	3.662×10^{-4}	1.411×10^{3}
cloud fraction crb [1]	0.463 ± 0.385	23336707	0.996	0.820	0.370	0.0	1.000
cloud fraction crb precision [1]	$(2.063 \pm 15.407) \times 10^{-4}$	23336707	$2.500 imes10^{-4}$	$6.070 imes10^{-5}$	$7.590 imes 10^{-5}$	$5.334 imes10^{-9}$	0.552
scene albedo [1]	0.454 ± 0.332	23336707	$1.500 imes10^{-2}$	0.606	0.424	$-1.963 imes 10^{-2}$	3.91
scene albedo precision [1]	$(8.400 \pm 9.888) \times 10^{-5}$	23336707	$2.500 imes 10^{-4}$	$6.535 imes10^{-5}$	$5.215 imes 10^{-5}$	1.035×10^{-5}	6.371×10^{-3}
apparent scene pressure [hPa]	816 ± 171	23336707	1.008×10^3	255	866	130	1.074×10^3
apparent scene pressure precision [hPa]	0.953 ± 1.642	23336707	0.500	0.458	0.428	$9.373 imes10^{-2}$	63.0
chi square [1]	$(0.213 \pm 1.857) \times 10^5$	23336707	0.150	$2.368 imes 10^4$	$1.581 imes 10^4$	63.8	$2.383 imes 10^8$
number of iterations [1]	3.37 ± 1.07	23336707	3.23	1.000	3.00	1.000	14.0
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(9.516 \pm 65.304) \times 10^{-10}$	23336707	$2.500 imes 10^{-10}$	4.925×10^{-9}	$1.059 imes10^{-9}$	$-1.735 imes10^{-6}$	1.841×10^{-6}
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.706 \pm 0.665) \times 10^{-9}$	23336707	$8.500 imes 10^{-10}$	$9.576 imes 10^{-10}$	$1.642 imes 10^{-9}$	$4.336 imes 10^{-10}$	5.601×10^{-9}
chi square fluorescence [1]	$(0.478 \pm 0.945) \times 10^5$	23336707	1.250×10^{3}	4.130×10^{4}	$1.268 imes 10^4$	110	$5.721 imes 10^6$
degrees of freedom fluorescence [1]	6.00 ± 0.00	23336707	5.95	0.0	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	23336707	49.7	0.0	50.0	45.0	50.0
wavelength calibration offset [nm]	$(3.038 \pm 8.497) \times 10^{-3}$	23336707	$2.800 imes 10^{-3}$	5.562×10^{-3}	3.072×10^{-3}	-0.123	0.151

			Table 2:	Percentile rang	es					
Variable	1 %	5%	10 %	15.9 %	25 %	75 %	84.1 %	90 %	95 %	99 %
qa value [1]	0.500	0.500	0.500	0.900	1.000	1.000	1.000	1.000	1.000	1.000
cloud pressure crb [hPa]	249	403	497	572	652	941	973	994	1.010×10^3	1.021×10^3
cloud pressure crb precision [hPa]	0.183	0.241	0.267	0.292	0.333	1.56	2.70	4.64	9.29	33.1
cloud fraction crb [1]	$5.469 imes 10^{-4}$	$1.038 imes10^{-2}$	$2.290 imes10^{-2}$	$4.195 imes10^{-2}$	$8.296 imes10^{-2}$	0.903	1.000	1.000	1.000	1.000
cloud fraction crb precision [1]	$1.971 imes10^{-5}$	$2.260 imes10^{-5}$	$2.530 imes 10^{-5}$	$2.897 imes10^{-5}$	$3.930 imes 10^{-5}$	$1.000 imes 10^{-4}$	$1.201 imes 10^{-4}$	$2.015 imes 10^{-4}$	$5.357 imes10^{-4}$	2.587×10^{-3}
scene albedo [1]	$7.953 imes 10^{-3}$	$1.918 imes10^{-2}$	$3.618 imes10^{-2}$	$6.314 imes 10^{-2}$	0.135	0.741	0.847	0.906	0.971	1.15
scene albedo precision [1]	$1.285 imes 10^{-5}$	1.492×10^{-5}	$1.787 imes 10^{-5}$	2.240×10^{-5}	3.044×10^{-5}	9.579×10^{-5}	$1.323 imes 10^{-4}$	$1.790 imes 10^{-4}$	$2.695 imes 10^{-4}$	5.230×10^{-4}
apparent scene pressure [hPa]	350	481	561	620	699	954	981	999	1.012×10^{3}	1.021×10^{3}
apparent scene pressure precision [hPa]	0.214	0.247	0.269	0.289	0.319	0.777	1.26	2.02	3.65	8.43
chi square [1]	281	658	1.404×10^{3}	2.776×10^{3}	5.473×10^{3}	2.915×10^{4}	3.641×10^{4}	4.304×10^{4}	5.275×10^{4}	8.240×10^{4}
number of iterations [1]	2.00	2.00	2.00	3.00	3.00	4.00	4.00	5.00	5.00	7.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	-1.484×10^{-8}	-7.017×10^{-9}	-4.300×10^{-9}	-2.710×10^{-9}	-1.292×10^{-9}	3.633×10^{-9}	5.006×10^{-9}	6.324×10^{-9}	$8.288 imes 10^{-9}$	1.306×10^{-8}
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$7.388 imes 10^{-10}$	$8.230 imes 10^{-10}$	$8.967 imes 10^{-10}$	$9.924 imes 10^{-10}$	$1.170 imes10^{-9}$	$2.128 imes 10^{-9}$	2.369×10^{-9}	2.607×10^{-9}	$2.902 imes 10^{-9}$	3.600×10^{-9}
chi square fluorescence [1]	453	897	1.396×10^{3}	2.098×10^{3}	3.576×10^{3}	4.488×10^{4}	8.200×10^4	1.323×10^{5}	2.253×10^{5}	4.851×10^{5}
degrees of freedom fluorescence [1]	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0
wavelength calibration offset [nm]	-2.471×10^{-2}	-9.341×10^{-3}	-4.306×10^{-3}	-1.755×10^{-3}	$2.604 imes 10^{-4}$	5.823×10^{-3}	7.797×10^{-3}	$1.036 imes10^{-2}$	$1.540 imes10^{-2}$	3.052×10^{-2}

Table 3	3: Parameterlist and basic	statistics for	the analysis for	observations in	the northern her	nisphere		
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.952 ± 0.137	11271743	0.0	1.000	0.350	1.000	1.000	1.000
cloud pressure crb [hPa]	780 ± 202	11271743	301	842	130	1.075×10^{3}	646	946
cloud pressure crb precision [hPa]	3.00 ± 10.98	11271743	1.59	0.796	3.662×10^{-4}	1.411×10^{3}	0.391	1.98
cloud fraction crb [1]	0.419 ± 0.382	11271743	0.762	0.270	0.0	1.000	$6.838 imes10^{-2}$	0.830
cloud fraction crb precision [1]	$(2.502 \pm 20.182) \times 10^{-4}$	11271743	7.202×10^{-5}	9.150×10^{-5}	5.334×10^{-9}	0.437	4.360×10^{-5}	$1.156 imes 10^{-4}$
scene albedo [1]	0.453 ± 0.329	11271743	0.587	0.419	$-2.265 imes 10^{-3}$	3.91	0.147	0.734
scene albedo precision [1]	$(9.274 \pm 11.147) \times 10^{-5}$	11271743	$7.309 imes 10^{-5}$	5.476×10^{-5}	1.069×10^{-5}	2.134×10^{-3}	3.123×10^{-5}	$1.043 imes 10^{-4}$
apparent scene pressure [hPa]	829 ± 166	11271743	225	880	130	1.074×10^{3}	736	961
apparent scene pressure precision [hPa]	0.913 ± 1.453	11271743	0.453	0.457	$9.373 imes 10^{-2}$	57.9	0.336	0.789
chi square [1]	$(0.225 \pm 2.307) \times 10^5$	11271743	2.489×10^{4}	1.532×10^{4}	63.8	2.383×10^{8}	5.481×10^{3}	3.037×10^{4}
number of iterations [1]	3.63 ± 1.15	11271743	1.000	3.00	1.000	14.0	3.00	4.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.335\pm5.233) imes10^{-9}$	11271743	4.600×10^{-9}	$1.381 imes 10^{-9}$	$-1.627 imes 10^{-6}$	$1.630 imes10^{-6}$	$-7.617 imes 10^{-10}$	3.839×10^{-9}
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.641 \pm 0.641) \times 10^{-9}$	11271743	$9.198 imes 10^{-10}$	1.550×10^{-9}	4.336×10^{-10}	5.601×10^{-9}	1.126×10^{-9}	2.046×10^{-9}
chi square fluorescence [1]	$(0.362 \pm 0.763) \times 10^5$	11271743	2.956×10^{4}	9.030×10^{3}	110	1.851×10^{6}	3.161×10^{3}	3.272×10^4
degrees of freedom fluorescence [1]	6.00 ± 0.00	11271743	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	11271743	0.0	50.0	48.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(2.976 \pm 8.111) \times 10^{-3}$	11271743	5.416×10^{-3}	2.952×10^{-3}	$-7.943 imes 10^{-2}$	$8.797 imes 10^{-2}$	$2.291 imes 10^{-4}$	5.645×10^{-3}

Table	4: Parameterlist and basic s	statistics for	the analysis for	observations in	the southern hem	isphere		
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.900 ± 0.191	12064964	0.1000	1.000	0.350	1.000	0.900	1.000
cloud pressure crb [hPa]	785 ± 186	12064964	282	831	130	1.028×10^3	655	937
cloud pressure crb precision [hPa]	2.11 ± 8.95	12064964	0.799	0.442	$1.343 imes 10^{-3}$	1.043×10^{3}	0.308	1.11
cloud fraction crb [1]	0.503 ± 0.384	12064964	0.841	0.479	0.0	1.000	0.106	0.947
cloud fraction crb precision [1]	$(1.652 \pm 8.846) \times 10^{-4}$	12064964	6.347×10^{-5}	$6.820 imes10^{-5}$	$5.888 imes 10^{-9}$	0.552	3.653×10^{-5}	$1.000 imes 10^{-4}$
scene albedo [1]	0.454 ± 0.334	12064964	0.622	0.429	$-1.963 imes 10^{-2}$	3.75	0.126	0.747
scene albedo precision [1]	$(7.584 \pm 8.465) \times 10^{-5}$	12064964	5.940×10^{-5}	5.041×10^{-5}	1.035×10^{-5}	6.371×10^{-3}	2.968×10^{-5}	8.908×10^{-5}
apparent scene pressure [hPa]	803 ± 174	12064964	273	850	130	1.028×10^3	674	947
apparent scene pressure precision [hPa]	0.990 ± 1.799	12064964	0.455	0.402	0.161	63.0	0.308	0.763
chi square [1]	$(0.201 \pm 1.303) \times 10^5$	12064964	$2.286 imes 10^4$	1.626×10^4	72.3	$1.325 imes 10^8$	5.464×10^{3}	$2.832 imes 10^4$
number of iterations [1]	3.14 ± 0.92	12064964	1.000	3.00	1.000	14.0	3.00	4.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(5.934 \pm 75.261) \times 10^{-10}$	12064964	$5.203 imes 10^{-9}$	$7.056 imes 10^{-10}$	$-1.735 imes 10^{-6}$	$1.841 imes 10^{-6}$	$-1.787 imes 10^{-9}$	3.416×10^{-9}
fluorescence precision [mol $s^{-1} m^{-2} nm^{-1} sr^{-1}$]	$(1.768 \pm 0.681) \times 10^{-9}$	12064964	$9.684 imes 10^{-10}$	$1.721 imes 10^{-9}$	$5.341 imes 10^{-10}$	$5.480 imes 10^{-9}$	1.214×10^{-9}	$2.182 imes10^{-9}$
chi square fluorescence [1]	$(0.587 \pm 1.076) \times 10^5$	12064964	$5.561 imes 10^4$	$1.710 imes 10^4$	130	$5.721 imes 10^6$	4.371×10^{3}	$5.998 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	12064964	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	12064964	0.0	50.0	45.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(3.096 \pm 8.842) \times 10^{-3}$	12064964	5.695×10^{-3}	$3.186 imes 10^{-3}$	-0.123	0.151	2.931×10^{-4}	$5.988 imes 10^{-3}$

	Table 5: Parameterlist and	d basic statis	stics for the ana	lysis for observa	tions over water			
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.979 ± 0.063	14935708	0.0	1.000	0.350	1.000	1.000	1.000
cloud pressure crb [hPa]	814 ± 186	14935708	249	875	130	$1.075 imes 10^3$	708	957
cloud pressure crb precision [hPa]	2.63 ± 10.79	14935708	1.21	0.615	$8.545 imes10^{-4}$	922	0.351	1.56
cloud fraction crb [1]	0.394 ± 0.349	14935708	0.635	0.287	0.0	1.000	$6.740 imes 10^{-2}$	0.702
cloud fraction crb precision [1]	$(1.097 \pm 7.913) \times 10^{-4}$	14935708	$6.002 imes 10^{-5}$	$5.157 imes10^{-5}$	$1.180 imes10^{-7}$	0.354	2.910×10^{-5}	$8.912 imes 10^{-5}$
scene albedo [1]	0.343 ± 0.304	14935708	0.530	0.253	$-1.963 imes 10^{-2}$	3.91	$6.422 imes 10^{-2}$	0.594
scene albedo precision [1]	$(6.695 \pm 8.855) \times 10^{-5}$	14935708	$4.694 imes10^{-5}$	$4.303 imes10^{-5}$	1.035×10^{-5}	$6.371 imes10^{-3}$	2.264×10^{-5}	6.958×10^{-5}
apparent scene pressure [hPa]	832 ± 174	14935708	229	888	130	1.034×10^3	740	969
apparent scene pressure precision [hPa]	1.27 ± 1.98	14935708	0.896	0.560	0.166	63.0	0.346	1.24
chi square [1]	$(0.156 \pm 0.957) \times 10^5$	14935708	$2.072 imes 10^4$	$9.921 imes 10^3$	63.8	$1.325 imes 10^8$	$2.868 imes 10^3$	$2.359 imes 10^4$
number of iterations [1]	2.99 ± 0.82	14935708	0.0	3.00	1.000	14.0	3.00	3.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.539 \pm 58.369) \times 10^{-10}$	14935708	4.313×10^{-9}	$2.282 imes10^{-10}$	$-1.735 imes 10^{-6}$	$1.807 imes10^{-6}$	$-1.810 imes 10^{-9}$	$2.502 imes 10^{-9}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.609 \pm 0.688) \times 10^{-9}$	14935708	$1.030 imes 10^{-9}$	$1.474 imes10^{-9}$	$4.336 imes 10^{-10}$	$5.601 imes 10^{-9}$	$1.033 imes 10^{-9}$	$2.063 imes 10^{-9}$
chi square fluorescence [1]	$(0.439 \pm 0.836) \times 10^5$	14935708	$4.079 imes 10^4$	$1.418 imes 10^4$	110	$5.721 imes 10^{6}$	4.348×10^3	$4.514 imes10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	14935708	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	14935708	0.0	50.0	45.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(3.013 \pm 9.964) \times 10^{-3}$	14935708	$6.784 imes10^{-3}$	$3.054 imes 10^{-3}$	-0.123	0.151	-3.947×10^{-4}	6.389×10^{-3}

	Table 6: Parameterlist an	d basic stat	istics for the ana	alysis for observ	vations over land			
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.795 ± 0.250	6548232	0.500	1.000	0.350	1.000	0.500	1.000
cloud pressure crb [hPa]	719 ± 191	6548232	271	725	130	1.066×10^{3}	605	875
cloud pressure crb precision [hPa]	2.17 ± 7.47	6548232	1.14	0.455	$3.662 imes 10^{-4}$	1.411×10^{3}	0.306	1.45
cloud fraction crb [1]	0.619 ± 0.416	6548232	0.858	0.904	0.0	1.000	0.142	1.000
cloud fraction crb precision [1]	$(4.157 \pm 24.785) \times 10^{-4}$	6548232	$3.548 imes 10^{-5}$	$1.000 imes 10^{-4}$	$5.334 imes10^{-9}$	0.552	$1.000 imes 10^{-4}$	$1.355 imes 10^{-4}$
scene albedo [1]	0.680 ± 0.281	6548232	0.476	0.743	$1.993 imes 10^{-3}$	3.75	0.426	0.903
scene albedo precision [1]	$(1.227 \pm 1.123) \times 10^{-4}$	6548232	$1.026 imes 10^{-4}$	9.462×10^{-5}	$1.280 imes10^{-5}$	1.916×10^{-3}	$4.612 imes 10^{-5}$	$1.487 imes10^{-4}$
apparent scene pressure [hPa]	773 ± 157	6548232	263	792	130	1.053×10^{3}	648	911
apparent scene pressure precision [hPa]	0.383 ± 0.124	6548232	0.137	0.354	$9.373 imes10^{-2}$	26.9	0.299	0.435
chi square [1]	$(0.308 \pm 2.204) \times 10^5$	6548232	$2.163 imes 10^4$	$2.390 imes 10^4$	511	$2.383 imes 10^8$	$1.474 imes 10^4$	$3.637 imes 10^4$
number of iterations [1]	4.10 ± 1.09	6548232	0.0	4.00	1.000	14.0	4.00	4.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(2.395\pm7.199) imes10^{-9}$	6548232	$4.257 imes 10^{-9}$	$2.721 imes 10^{-9}$	$-1.656 imes 10^{-6}$	$1.841 imes10^{-6}$	$5.805 imes 10^{-10}$	$4.837 imes10^{-9}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.854\pm0.576) imes10^{-9}$	6548232	$7.235 imes 10^{-10}$	$1.776 imes 10^{-9}$	$5.341 imes 10^{-10}$	5.509×10^{-9}	$1.453 imes 10^{-9}$	2.176×10^{-9}
chi square fluorescence [1]	$(0.492 \pm 1.042) \times 10^5$	6548232	3.468×10^4	$7.255 imes 10^3$	146	$2.071 imes 10^6$	2.055×10^3	$3.673 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	6548232	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	6548232	0.0	50.0	48.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(3.070 \pm 4.261) \times 10^{-3}$	6548232	3.833×10^{-3}	3.096×10^{-3}	-8.133×10^{-2}	7.152×10^{-2}	1.171×10^{-3}	$5.004 imes 10^{-3}$

Granule outlines

Figure 1: Outline of the granules.

4 Input data monitoring

Figure 2: Input data per granule

5 Warnings and errors

Figure 3: Fraction of pixels with specific warnings and errors during processing

6 World maps

Figure 4: Map of "Cloud pressure" for 2025-02-26 to 2025-02-27

Figure 5: Map of "Cloud fraction" for 2025-02-26 to 2025-02-27

Figure 6: Map of "Scene albedo" for 2025-02-26 to 2025-02-27

Figure 7: Map of "Apparent scene pressure" for 2025-02-26 to 2025-02-27

Figure 8: Map of "Fluorescence" for 2025-02-26 to 2025-02-27

Figure 9: Map of the number of observations for 2025-02-26 to 2025-02-27

7 Zonal average

Figure 10: Zonal average of "QA value" for 2025-02-26 to 2025-02-27.

Figure 11: Zonal average of "Cloud pressure" for 2025-02-26 to 2025-02-27.

Figure 12: Zonal average of "Cloud pressure precision" for 2025-02-26 to 2025-02-27.

Figure 13: Zonal average of "Cloud fraction" for 2025-02-26 to 2025-02-27.

Figure 14: Zonal average of "Cloud fraction precision" for 2025-02-26 to 2025-02-27.

Figure 15: Zonal average of "Scene albedo" for 2025-02-26 to 2025-02-27.

Figure 16: Zonal average of "Scene albedo precision" for 2025-02-26 to 2025-02-27.

Figure 17: Zonal average of "Apparent scene pressure" for 2025-02-26 to 2025-02-27.

Figure 18: Zonal average of "Apparent scene pressure precision" for 2025-02-26 to 2025-02-27.

Figure 19: Zonal average of " χ^2 " for 2025-02-26 to 2025-02-27.

Figure 20: Zonal average of "Number of iterations" for 2025-02-26 to 2025-02-27.

Figure 21: Zonal average of "Fluorescence" for 2025-02-26 to 2025-02-27.

Figure 22: Zonal average of "Fluorescence precision" for 2025-02-26 to 2025-02-27.

Figure 23: Zonal average of " χ^2 of fluorescence retrieval" for 2025-02-26 to 2025-02-27.

Figure 24: Zonal average of "Degrees of freedom for signal of fluorescence retrieval" for 2025-02-26 to 2025-02-27.

Figure 25: Zonal average of "Number of points in the spectrum" for 2025-02-26 to 2025-02-27.

Figure 26: Zonal average of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-02-26 to 2025-02-27.

8 Histograms

The definitions of the parameters given in this section can be found in section 2.

Figure 27: Histogram of "QA value" for 2025-02-26 to 2025-02-27

Figure 28: Histogram of "Cloud pressure" for 2025-02-26 to 2025-02-27

Figure 29: Histogram of "Cloud pressure precision" for 2025-02-26 to 2025-02-27

Figure 30: Histogram of "Cloud fraction" for 2025-02-26 to 2025-02-27

Figure 31: Histogram of "Cloud fraction precision" for 2025-02-26 to 2025-02-27

Figure 32: Histogram of "Scene albedo" for 2025-02-26 to 2025-02-27

Figure 33: Histogram of "Scene albedo precision" for 2025-02-26 to 2025-02-27

Figure 34: Histogram of "Apparent scene pressure" for 2025-02-26 to 2025-02-27

Figure 35: Histogram of "Apparent scene pressure precision" for 2025-02-26 to 2025-02-27

Figure 36: Histogram of " χ^2 " for 2025-02-26 to 2025-02-27

Figure 37: Histogram of "Number of iterations" for 2025-02-26 to 2025-02-27

Figure 38: Histogram of "Fluorescence" for 2025-02-26 to 2025-02-27

Figure 39: Histogram of "Fluorescence precision" for 2025-02-26 to 2025-02-27

Figure 40: Histogram of " χ^2 of fluorescence retrieval" for 2025-02-26 to 2025-02-27

Figure 41: Histogram of "Degrees of freedom for signal of fluorescence retrieval" for 2025-02-26 to 2025-02-27

Figure 42: Histogram of "Number of points in the spectrum" for 2025-02-26 to 2025-02-27

Figure 43: Histogram of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-02-26 to 2025-02-27

9 Along track statistics

The TROPOMI instrument uses different binned detector rows for different viewing directions. In this section statistics are presented for each of the binned rows in the instrument.

Figure 44: Along track statistics of "QA value" for 2025-02-26 to 2025-02-27

Figure 45: Along track statistics of "Cloud pressure" for 2025-02-26 to 2025-02-27

Figure 46: Along track statistics of "Cloud pressure precision" for 2025-02-26 to 2025-02-27

Figure 47: Along track statistics of "Cloud fraction" for 2025-02-26 to 2025-02-27

Figure 48: Along track statistics of "Cloud fraction precision" for 2025-02-26 to 2025-02-27

Figure 49: Along track statistics of "Scene albedo" for 2025-02-26 to 2025-02-27

Figure 50: Along track statistics of "Scene albedo precision" for 2025-02-26 to 2025-02-27

Figure 51: Along track statistics of "Apparent scene pressure" for 2025-02-26 to 2025-02-27

Figure 52: Along track statistics of "Apparent scene pressure precision" for 2025-02-26 to 2025-02-27

Figure 53: Along track statistics of " χ^2 " for 2025-02-26 to 2025-02-27

Figure 54: Along track statistics of "Number of iterations" for 2025-02-26 to 2025-02-27

Figure 55: Along track statistics of "Fluorescence" for 2025-02-26 to 2025-02-27

Figure 56: Along track statistics of "Fluorescence precision" for 2025-02-26 to 2025-02-27

Figure 57: Along track statistics of " χ^2 of fluorescence retrieval" for 2025-02-26 to 2025-02-27

Figure 58: Along track statistics of "Degrees of freedom for signal of fluorescence retrieval" for 2025-02-26 to 2025-02-27

Figure 59: Along track statistics of "Number of points in the spectrum" for 2025-02-26 to 2025-02-27

Figure 60: Along track statistics of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-02-26 to 2025-02-27

10 Coincidence density

To investigate the relation between parameters scatter density plots are produced. These include some 'hidden' parameters, latitude and the solar- and viewing geometries, in addition to all configured parameters. All combinations of pairs of parameters are included *once*, in one direction alone.

Contents

1	Short Introduction	1
	1.1 The list of parameters	1
2	Definitions	1
3	Granule outlines	8
4	Input data monitoring	9
5	Warnings and errors	10
6	World maps	11
7	Zonal average	17
8	Histograms	34
9	Along track statistics	51
10	Coincidence density	68
11	Copyright information of 'PyCAMA'	68

List of Figures

1	Outline of the granules.	8
2	Input data per granule	9
3	Fraction of pixels with specific warnings and errors during processing	10
4	Map of "Cloud pressure" for 2025-02-26 to 2025-02-27	11
5	Map of "Cloud fraction" for 2025-02-26 to 2025-02-27	12
6	Map of "Scene albedo" for 2025-02-26 to 2025-02-27	13
7	Map of "Apparent scene pressure" for 2025-02-26 to 2025-02-27	14
8	Map of "Fluorescence" for 2025-02-26 to 2025-02-27	15
9	Map of the number of observations for 2025-02-26 to 2025-02-27	16
10	Zonal average of "QA value" for 2025-02-26 to 2025-02-27.	17
11	Zonal average of "Cloud pressure" for 2025-02-26 to 2025-02-27.	18
12	Zonal average of "Cloud pressure precision" for 2025-02-26 to 2025-02-27	19
13	Zonal average of "Cloud fraction" for 2025-02-26 to 2025-02-27.	20
14	Zonal average of "Cloud fraction precision" for 2025-02-26 to 2025-02-27.	21
15	Zonal average of "Scene albedo" for 2025-02-26 to 2025-02-27	22
16	Zonal average of "Scene albedo precision" for 2025-02-26 to 2025-02-27.	23
17	Zonal average of "Apparent scene pressure" for 2025-02-26 to 2025-02-27.	24
18	Zonal average of "Apparent scene pressure precision" for 2025-02-26 to 2025-02-27	25
19	Zonal average of " χ^2 " for 2025-02-26 to 2025-02-27	26
20	Zonal average of "Number of iterations" for 2025-02-26 to 2025-02-27.	27
21	Zonal average of "Fluorescence" for 2025-02-26 to 2025-02-27.	28
22	Zonal average of "Fluorescence precision" for 2025-02-26 to 2025-02-27.	29
23	Zonal average of " χ^2 of fluorescence retrieval" for 2025-02-26 to 2025-02-27	30
24	Zonal average of "Degrees of freedom for signal of fluorescence retrieval" for 2025-02-26 to 2025-02-27.	31
25	Zonal average of "Number of points in the spectrum" for 2025-02-26 to 2025-02-27.	32
26	Zonal average of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-02-26 to 2025-02-27	33
27	Histogram of "QA value" for 2025-02-26 to 2025-02-27	34
28	Histogram of "Cloud pressure" for 2025-02-26 to 2025-02-27	35
29	Histogram of "Cloud pressure precision" for 2025-02-26 to 2025-02-27	36

30	Histogram of "Cloud fraction" for 2025-02-26 to 2025-02-27	37
31	Histogram of "Cloud fraction precision" for 2025-02-26 to 2025-02-27	38
32	Histogram of "Scene albedo" for 2025-02-26 to 2025-02-27	39
33	Histogram of "Scene albedo precision" for 2025-02-26 to 2025-02-27	40
34	Histogram of "Apparent scene pressure" for 2025-02-26 to 2025-02-27	41
35	Histogram of "Apparent scene pressure precision" for 2025-02-26 to 2025-02-27	42
36	Histogram of " χ^2 " for 2025-02-26 to 2025-02-27	43
37	Histogram of "Number of iterations" for 2025-02-26 to 2025-02-27	44
38	Histogram of "Fluorescence" for 2025-02-26 to 2025-02-27	45
39	Histogram of "Fluorescence precision" for 2025-02-26 to 2025-02-27	46
40	Histogram of " χ^2 of fluorescence retrieval" for 2025-02-26 to 2025-02-27	47
41	Histogram of "Degrees of freedom for signal of fluorescence retrieval" for 2025-02-26 to 2025-02-27	48
42	Histogram of "Number of points in the spectrum" for 2025-02-26 to 2025-02-27	49
43	Histogram of "Spectral offset $(\lambda_{true} - \lambda_{nominal})$ " for 2025-02-26 to 2025-02-27	50
44	Along track statistics of "QA value" for 2025-02-26 to 2025-02-27	51
45	Along track statistics of "Cloud pressure" for 2025-02-26 to 2025-02-27	52
46	Along track statistics of "Cloud pressure precision" for 2025-02-26 to 2025-02-27	53
47	Along track statistics of "Cloud fraction" for 2025-02-26 to 2025-02-27	54
48	Along track statistics of "Cloud fraction precision" for 2025-02-26 to 2025-02-27	55
49	Along track statistics of "Scene albedo" for 2025-02-26 to 2025-02-27	56
50	Along track statistics of "Scene albedo precision" for 2025-02-26 to 2025-02-27	57
51	Along track statistics of "Apparent scene pressure" for 2025-02-26 to 2025-02-27	58
52	Along track statistics of "Apparent scene pressure precision" for 2025-02-26 to 2025-02-27	59
53	Along track statistics of " χ^2 " for 2025-02-26 to 2025-02-27	60
54	Along track statistics of "Number of iterations" for 2025-02-26 to 2025-02-27	61
55	Along track statistics of "Fluorescence" for 2025-02-26 to 2025-02-27	62
56	Along track statistics of "Fluorescence precision" for 2025-02-26 to 2025-02-27	63
57	Along track statistics of " χ^2 of fluorescence retrieval" for 2025-02-26 to 2025-02-27	64
58	Along track statistics of "Degrees of freedom for signal of fluorescence retrieval" for 2025-02-26 to 2025-02-27	65
59	Along track statistics of "Number of points in the spectrum" for 2025-02-26 to 2025-02-27	66
60	Along track statistics of "Spectral offset $(\lambda_{true} - \lambda_{nominal})$ " for 2025-02-26 to 2025-02-27	67

List of Tables

1	Parameterlist and basic statistics for the analysis
2	Percentile ranges
3	Parameterlist and basic statistics for the analysis for observations in the northern hemisphere
4	Parameterlist and basic statistics for the analysis for observations in the southern hemisphere
5	Parameterlist and basic statistics for the analysis for observations over water
6	Parameterlist and basic statistics for the analysis for observations over land

11 Copyright information of 'PyCAMA'

Copyright © 2005-2023, Maarten Sneep (KNMI).

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
- 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

This software is provided by the copyright holders and contributors "as is" and any express or implied warranties, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose are disclaimed. In no event shall the copyright holder or contributors be liable for any direct, indirect, incidental, special, exemplary, or consequential damages (including, but not limited to, procurement of substitute goods or services; loss of use, data, or profits; or business interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence or otherwise) arising in any way out of the use of this software, even if advised of the possibility of such damage.

Maarten Sneep (maarten.sneep@knmi.nl).