PyCAMA report generated by tropl2-proc

tropl2-proc

2025-03-03 (08:45)

1 Short Introduction

1.1 The list of parameters

You may want to keep the list given in table 1 at hand when viewing the results.

2 Definitions

The averages shown here are unweighed averages:

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i \tag{1}$$

with N the number of observations in the dataset.

The spread of the measurements is indicated with the variance V(x), or rather the standard deviation $\sigma(x) = \sqrt{V(x)}$.

$$V(x) = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2$$
(2)

We also report the more robust statistics median, minimum, maximum, various percentiles and inter quartile range.

The median m is the value of parameter x for which half of the observations of x is smaller than m:

$$P(x \le m) = P(x \ge m) = \int_{-\infty}^{m} f(x) \, \mathrm{d}x = \frac{1}{2}$$
(3)

with f(x) the probability density function.

The median is a special case of a percentile. Instead of $\frac{1}{2}$ in equation 3, other threshold values can be used. We report results for 1%, 5%, 10%, 15.9%, 25%, 75%, 84.1%, 90%, 95% and 99%. The inter quartile range is the difference between the 75% and 25% percentiles. Similarly the minimum and maximum values correspond to the 0% and 100% percentiles respectively.

For normally distributed parameters the mean and median are the same, while the $\mu \pm \sigma$ values and the 15.9% and 84.1% percentiles coincide.

To get a measure for the relation of one variable $x_{(k)}$ with another $x_{(l)}$, we calculate the covariance matrix C_{kl} .

$$C_{kl} = C(x_{(k)}, x_{(l)}) = \frac{1}{N-1} \sum_{i=1}^{N} (x_{(k),i} - \overline{x_{(k)}}) (x_{(l),i} - \overline{x_{(l)}})$$
(4)

Rather than a dimensionally dependent covariance, it is often easier to interpret a correlation matrix R_{kl} , a matrix of Pearson's *r* coefficients:

$$R_{kl} = R(x_{(k)}, x_{(l)}) = \frac{C_{kl}}{\sqrt{C_{kk}C_{ll}}} = \frac{C_{kl}}{\sqrt{V(x_k)V(x_l)}}$$
(5)

The diagonal elements of the covariance matrix are the variances of the elements, $V(x_{(k)}) = C_{kk}$ and obviously $R_{kk} = 1$.

Table 1: Parameterlist and basic statistics for the analysi

	Table 1: Parameter	list and basic	statistics for the a	nalysis			
Variable	mean $\pm \sigma$	Count	Mode	IQR	Median	Minimum	Maximum
qa value [1]	0.926 ± 0.169	23335015	0.995	0.0	1.000	0.350	1.000
cloud pressure crb [hPa]	787 ± 194	23335015	1.005×10^{3}	286	843	130	1.073×10^3
cloud pressure crb precision [hPa]	2.70 ± 10.24	23335015	0.750	1.32	0.586	$2.441 imes10^{-4}$	1.427×10^3
cloud fraction crb [1]	0.455 ± 0.385	23335015	0.996	0.807	0.354	0.0	1.000
cloud fraction crb precision [1]	$(2.240 \pm 16.602) \times 10^{-4}$	23335015	$2.500 imes 10^{-4}$	6.110×10^{-5}	$7.454 imes 10^{-5}$	1.800×10^{-9}	0.701
scene albedo [1]	0.449 ± 0.332	23335015	1.500×10^{-2}	0.599	0.415	-2.649×10^{-3}	4.77
scene albedo precision [1]	$(8.611 \pm 10.394) \times 10^{-5}$	23335015	$2.500 imes 10^{-4}$	$6.705 imes10^{-5}$	$5.218 imes10^{-5}$	$1.054 imes10^{-5}$	9.261×10^{-3}
apparent scene pressure [hPa]	820 ± 171	23335015	1.008×10^3	247	873	130	1.073×10^3
apparent scene pressure precision [hPa]	0.993 ± 1.795	23335015	0.500	0.471	0.434	0.117	58.7
chi square [1]	$(0.217 \pm 2.319) \times 10^5$	23335015	0.150	2.346×10^4	$1.534 imes 10^4$	60.3	$2.183 imes 10^8$
number of iterations [1]	3.38 ± 1.09	23335015	3.23	1.000	3.00	1.000	14.0
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(8.497 \pm 60.650) \times 10^{-10}$	23335015	2.500×10^{-10}	$4.843 imes 10^{-9}$	$9.785 imes 10^{-10}$	-1.763×10^{-6}	$1.971 imes 10^{-6}$
fluorescence precision [mol $s^{-1} m^{-2} nm^{-1} sr^{-1}$]	$(1.692 \pm 0.662) \times 10^{-9}$	23335015	$8.500 imes 10^{-10}$	$9.451 imes 10^{-10}$	$1.632 imes 10^{-9}$	$4.734 imes 10^{-10}$	5.620×10^{-9}
chi square fluorescence [1]	$(0.477 \pm 0.921) \times 10^5$	23335015	750	$4.181 imes 10^4$	$1.295 imes 10^4$	104	$1.279 imes 10^7$
degrees of freedom fluorescence [1]	6.00 ± 0.00	23335015	5.95	0.0	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	23335015	49.7	0.0	50.0	44.0	50.0
wavelength calibration offset [nm]	$(3.040 \pm 8.489) \times 10^{-3}$	23335015	$2.800 imes 10^{-3}$	$5.527 imes10^{-3}$	3.093×10^{-3}	-0.477	0.123

			Table 2:	Percentile rang	es					
Variable	1 %	5 %	10 %	15.9 %	25 %	75 %	84.1 %	90 %	95 %	99 %
qa value [1]	0.500	0.500	0.500	0.900	1.000	1.000	1.000	1.000	1.000	1.000
cloud pressure crb [hPa]	250	399	495	578	659	945	974	994	1.009×10^{3}	1.021×10^3
cloud pressure crb precision [hPa]	0.172	0.242	0.271	0.296	0.339	1.66	2.94	5.06	10.2	35.9
cloud fraction crb [1]	0.0	$9.065 imes 10^{-3}$	$2.054 imes10^{-2}$	$3.828 imes 10^{-2}$	$7.879 imes10^{-2}$	0.885	1.000	1.000	1.000	1.000
cloud fraction crb precision [1]	1.961×10^{-5}	$2.248 imes10^{-5}$	$2.527 imes10^{-5}$	$2.908 imes10^{-5}$	$3.890 imes 10^{-5}$	$1.000 imes 10^{-4}$	$1.221 imes 10^{-4}$	$2.102 imes 10^{-4}$	$6.110 imes10^{-4}$	$2.856 imes 10^{-3}$
scene albedo [1]	$7.664 imes 10^{-3}$	$1.851 imes 10^{-2}$	$3.362 imes 10^{-2}$	$6.045 imes10^{-2}$	0.132	0.731	0.841	0.904	0.968	1.15
scene albedo precision [1]	$1.288 imes10^{-5}$	$1.514 imes10^{-5}$	$1.820 imes10^{-5}$	$2.275 imes 10^{-5}$	$3.017 imes 10^{-5}$	$9.722 imes 10^{-5}$	$1.351 imes 10^{-4}$	$1.857 imes10^{-4}$	$2.834 imes10^{-4}$	$5.555 imes 10^{-4}$
apparent scene pressure [hPa]	347	470	563	626	710	957	982	998	1.010×10^{3}	1.021×10^{3}
apparent scene pressure precision [hPa]	0.216	0.249	0.272	0.293	0.324	0.795	1.33	2.17	3.79	8.80
chi square [1]	275	624	1.275×10^{3}	2.585×10^{3}	5.272×10^{3}	2.873×10^{4}	3.619×10^{4}	4.289×10^{4}	5.346×10^{4}	8.455×10^{4}
number of iterations [1]	2.00	2.00	2.00	3.00	3.00	4.00	4.00	5.00	5.00	7.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	-1.478×10^{-8}	-7.187×10^{-9}	-4.400×10^{-9}	-2.752×10^{-9}	-1.340×10^{-9}	$3.503 imes 10^{-9}$	4.843×10^{-9}	$6.145 imes 10^{-9}$	$8.115 imes 10^{-9}$	$1.290 imes 10^{-8}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$7.400 imes 10^{-10}$	$8.201 imes 10^{-10}$	8.885×10^{-10}	9.769×10^{-10}	1.158×10^{-9}	2.103×10^{-9}	2.320×10^{-9}	2.595×10^{-9}	2.905×10^{-9}	3.586×10^{-9}
chi square fluorescence [1]	413	854	1.356×10^{3}	2.120×10^{3}	3.774×10^{3}	4.559×10^{4}	8.210×10^{4}	1.323×10^{5}	2.265×10^{5}	4.584×10^{5}
degrees of freedom fluorescence [1]	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0
wavelength calibration offset [nm]	-2.473×10^{-2}	-9.362×10^{-3}	-4.321×10^{-3}	-1.747×10^{-3}	2.886×10^{-4}	5.815×10^{-3}	7.779×10^{-3}	1.034×10^{-2}	1.539×10^{-2}	3.043×10^{-2}

Table	3: Parameterlist and basic	statistics for	the analysis for	observations in	the northern her	nisphere		
Variable	$ $ mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.948 ± 0.143	11447085	0.0	1.000	0.350	1.000	1.000	1.000
cloud pressure crb [hPa]	784 ± 202	11447085	285	846	130	1.073×10^{3}	661	946
cloud pressure crb precision [hPa]	2.88 ± 10.21	11447085	1.55	0.743	$2.441 imes 10^{-4}$	1.427×10^{3}	0.375	1.93
cloud fraction crb [1]	0.432 ± 0.382	11447085	0.778	0.303	0.0	1.000	7.386×10^{-2}	0.852
cloud fraction crb precision [1]	$(3.027 \pm 21.925) \times 10^{-4}$	11447085	$7.403 imes 10^{-5}$	$9.309 imes 10^{-5}$	$1.800 imes10^{-9}$	0.701	$4.465 imes10^{-5}$	$1.187 imes10^{-4}$
scene albedo [1]	0.465 ± 0.326	11447085	0.567	0.445	-1.812×10^{-3}	4.19	0.169	0.735
scene albedo precision [1]	$(9.617 \pm 11.718) \times 10^{-5}$	11447085	$7.463 imes10^{-5}$	$5.541 imes 10^{-5}$	$1.105 imes10^{-5}$	$5.753 imes 10^{-3}$	$3.183 imes 10^{-5}$	$1.065 imes10^{-4}$
apparent scene pressure [hPa]	831 ± 168	11447085	207	885	130	1.073×10^3	751	958
apparent scene pressure precision [hPa]	0.871 ± 1.391	11447085	0.407	0.444	0.143	58.1	0.332	0.739
chi square [1]	$(0.246 \pm 3.126) \times 10^5$	11447085	2.577×10^4	$1.595 imes 10^4$	64.5	$2.183 imes 10^8$	5.954×10^{3}	$3.173 imes 10^4$
number of iterations [1]	3.63 ± 1.20	11447085	1.000	3.00	1.000	14.0	3.00	4.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.314 \pm 4.966) \times 10^{-9}$	11447085	$4.696 imes 10^{-9}$	$1.395 imes 10^{-9}$	$-1.591 imes 10^{-6}$	1.319×10^{-6}	$-8.705 imes 10^{-10}$	$3.826 imes 10^{-9}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.666 \pm 0.646) \times 10^{-9}$	11447085	$9.227 imes 10^{-10}$	$1.588 imes10^{-9}$	$4.734 imes 10^{-10}$	$5.590 imes 10^{-9}$	$1.149 imes 10^{-9}$	$2.071 imes 10^{-9}$
chi square fluorescence [1]	$(0.367 \pm 0.715) \times 10^5$	11447085	$3.138 imes 10^4$	$1.051 imes 10^4$	112	$1.753 imes10^{6}$	3.638×10^3	$3.502 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	11447085	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	11447085	0.0	50.0	48.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(2.965 \pm 7.719) \times 10^{-3}$	11447085	5.320×10^{-3}	2.971×10^{-3}	-8.132×10^{-2}	8.604×10^{-2}	2.807×10^{-4}	5.601×10^{-3}

Table	4: Parameterlist and basic s	statistics for	the analysis for	observations in	the southern hem	isphere		
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.906 ± 0.187	11887930	0.1000	1.000	0.350	1.000	0.900	1.000
cloud pressure crb [hPa]	789 ± 187	11887930	287	840	130	1.028×10^3	657	944
cloud pressure crb precision [hPa]	2.53 ± 10.27	11887930	1.01	0.485	1.160×10^{-3}	1.342×10^3	0.319	1.33
cloud fraction crb [1]	0.476 ± 0.386	11887930	0.824	0.413	0.0	1.000	$8.528 imes10^{-2}$	0.909
cloud fraction crb precision [1]	$(1.481 \pm 8.771) \times 10^{-4}$	11887930	$6.486 imes10^{-5}$	6.586×10^{-5}	2.467×10^{-9}	0.619	3.514×10^{-5}	$1.000 imes 10^{-4}$
scene albedo [1]	0.433 ± 0.336	11887930	0.621	0.383	-2.649×10^{-3}	4.77	0.105	0.726
scene albedo precision [1]	$(7.642 \pm 8.828) \times 10^{-5}$	11887930	$6.051 imes 10^{-5}$	$4.947 imes10^{-5}$	$1.054 imes 10^{-5}$	$9.261 imes 10^{-3}$	$2.873 imes10^{-5}$	$8.924 imes 10^{-5}$
apparent scene pressure [hPa]	809 ± 174	11887930	278	859	130	1.028×10^3	677	956
apparent scene pressure precision [hPa]	1.11 ± 2.11	11887930	0.550	0.424	0.117	58.7	0.317	0.867
chi square [1]	$(0.189 \pm 1.070) \times 10^5$	11887930	$2.192 imes 10^4$	$1.482 imes 10^4$	60.3	$7.795 imes 10^7$	4.683×10^{3}	$2.660 imes 10^4$
number of iterations [1]	3.14 ± 0.91	11887930	1.000	3.00	1.000	14.0	3.00	4.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(4.029 \pm 69.317) \times 10^{-10}$	11887930	4.919×10^{-9}	$5.642 imes 10^{-10}$	-1.763×10^{-6}	$1.971 imes10^{-6}$	$-1.776 imes 10^{-9}$	$3.143 imes 10^{-9}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.718 \pm 0.675) \times 10^{-9}$	11887930	$9.618 imes10^{-10}$	1.666×10^{-9}	$5.281 imes10^{-10}$	$5.620 imes 10^{-9}$	1.167×10^{-9}	2.129×10^{-9}
chi square fluorescence [1]	$(0.583 \pm 1.072) \times 10^5$	11887930	$5.438 imes 10^4$	$1.605 imes 10^4$	104	$1.279 imes 10^7$	3.979×10^{3}	$5.836 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	11887930	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	11887930	0.0	50.0	44.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(3.111 \pm 9.169) \times 10^{-3}$	11887930	$5.733 imes 10^{-3}$	3.215×10^{-3}	-0.477	0.123	2.975×10^{-4}	6.031×10^{-3}

S

Table 5. I arameternist and	i Dasie statis	sucs for the allal	ysis ioi observa	uons over water			
mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
0.979 ± 0.066	15053053	0.0	1.000	0.350	1.000	1.000	1.000
810 ± 190	15053053	257	875	130	1.036×10^{3}	701	958
2.73 ± 10.65	15053053	1.30	0.630	$2.197 imes10^{-3}$	1.427×10^3	0.358	1.66
0.387 ± 0.347	15053053	0.627	0.276	0.0	1.000	$6.459 imes10^{-2}$	0.691
$(1.315 \pm 10.405) \times 10^{-4}$	15053053	6.133×10^{-5}	5.091×10^{-5}	1.434×10^{-8}	0.325	2.931×10^{-5}	$9.063 imes10^{-5}$
0.339 ± 0.301	15053053	0.530	0.248	-2.649×10^{-3}	4.19	6.232×10^{-2}	0.592
$(6.959 \pm 9.420) \times 10^{-5}$	15053053	$4.796 imes 10^{-5}$	$4.303 imes10^{-5}$	$1.054 imes10^{-5}$	9.261×10^{-3}	2.310×10^{-5}	$7.106 imes10^{-5}$
831 ± 177	15053053	230	889	135	1.036×10^3	740	970
1.32 ± 2.16	15053053	0.937	0.568	0.127	58.7	0.353	1.29
$(0.152 \pm 0.719) \times 10^5$	15053053	$1.993 imes 10^4$	$9.519 imes 10^3$	60.3	$7.795 imes 10^7$	$2.710 imes 10^3$	$2.264 imes 10^4$
3.01 ± 0.86	15053053	0.0	3.00	1.000	14.0	3.00	3.00
$(1.336 \pm 55.829) \times 10^{-10}$	15053053	$4.181 imes 10^{-9}$	$2.199 imes 10^{-10}$	$-1.591 imes 10^{-6}$	$1.747 imes10^{-6}$	-1.733×10^{-9}	2.448×10^{-9}
$(1.588 \pm 0.681) \times 10^{-9}$	15053053	9.995×10^{-10}	1.456×10^{-9}	$4.734 imes 10^{-10}$	5.590×10^{-9}	$1.017 imes10^{-9}$	$2.017 imes10^{-9}$
$(0.421 \pm 0.821) \times 10^5$	15053053	3.864×10^4	$1.313 imes 10^4$	104	1.279×10^7	4.270×10^3	$4.291 imes 10^4$
6.00 ± 0.00	15053053	0.0	6.00	6.00	6.00	6.00	6.00
50.0 ± 0.1	15053053	0.0	50.0	45.0	50.0	50.0	50.0
$(2.994 \pm 9.905) \times 10^{-3}$	15053053	6.689×10^{-3}	3.074×10^{-3}	-0.477	0.123	-3.529×10^{-4}	6.336×10^{-3}
)))	$\begin{array}{c} \mbox{mean}\pm \sigma \\ 0.979 \pm 0.066 \\ 810 \pm 190 \\ 2.73 \pm 10.65 \\ 0.387 \pm 0.347 \\ 1.315 \pm 10.405) \times 10^{-4} \\ 0.339 \pm 0.301 \\ (6.959 \pm 9.420) \times 10^{-5} \\ 831 \pm 177 \\ 1.32 \pm 2.16 \\ (0.152 \pm 0.719) \times 10^{5} \\ 3.01 \pm 0.86 \\ 1.336 \pm 55.829) \times 10^{-10} \\ (1.588 \pm 0.681) \times 10^{-9} \\ (0.421 \pm 0.821) \times 10^{5} \\ 6.00 \pm 0.00 \\ 50.0 \pm 0.1 \\ (2.994 \pm 9.905) \times 10^{-3} \end{array}$	$\begin{array}{c c} \mbox{mean}\pm \sigma & \mbox{Count}\\ \mbox{0.979} \pm 0.066 & 15053053\\ \mbox{810} \pm 190 & 15053053\\ \mbox{2.73} \pm 10.65 & 15053053\\ \mbox{2.73} \pm 10.405) \times 10^{-4} & 15053053\\ \mbox{0.387} \pm 0.347 & 15053053\\ \mbox{0.339} \pm 0.301 & 15053053\\ \mbox{0.339} \pm 0.301 & 15053053\\ \mbox{0.339} \pm 0.301 & 15053053\\ \mbox{0.339} \pm 0.400) \times 10^{-5} & 15053053\\ \mbox{0.32} \pm 2.16 & 15053053\\ \mbox{0.152} \pm 0.719) \times 10^{5} & 15053053\\ \mbox{1.336} \pm 55.829) \times 10^{-10} & 15053053\\ \mbox{(0.421} \pm 0.821) \times 10^{5} & 15053053\\ \mbox{(0.421} \pm 0.821) \times 10^{5} & 15053053\\ \mbox{50.0} \pm 0.1 & 15053053\\ \mbox{(2.994} \pm 9.905) \times 10^{-3} & 15053053\\ \end{tabular}$	$\begin{array}{c ccccc} \text{mean} \pm \sigma & \text{Count} & \text{IQR} \\ 0.979 \pm 0.066 & 15053053 & 0.0 \\ 810 \pm 190 & 15053053 & 257 \\ 2.73 \pm 10.65 & 15053053 & 1.30 \\ 0.387 \pm 0.347 & 15053053 & 0.627 \\ 1.315 \pm 10.405) \times 10^{-4} & 15053053 & 6.133 \times 10^{-5} \\ 0.339 \pm 0.301 & 15053053 & 0.530 \\ (6.959 \pm 9.420) \times 10^{-5} & 15053053 & 4.796 \times 10^{-5} \\ 831 \pm 177 & 15053053 & 230 \\ 1.32 \pm 2.16 & 15053053 & 0.937 \\ (0.152 \pm 0.719) \times 10^5 & 15053053 & 1.993 \times 10^4 \\ 3.01 \pm 0.86 & 15053053 & 0.0 \\ 1.336 \pm 55.829) \times 10^{-10} & 15053053 & 4.181 \times 10^{-9} \\ (1.588 \pm 0.681) \times 10^{-9} & 15053053 & 3.864 \times 10^4 \\ 6.00 \pm 0.00 & 15053053 & 0.0 \\ 50.0 \pm 0.1 & 15053053 & 0.0 \\ (2.994 \pm 9.905) \times 10^{-3} & 15053053 & 6.689 \times 10^{-3} \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

	Table 6: Parameterlist an	d basic stat	tistics for the ana	alysis for observ	vations over land			
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.797 ± 0.250	6416135	0.500	1.000	0.350	1.000	0.500	1.000
cloud pressure crb [hPa]	733 ± 190	6416135	274	745	130	1.046×10^3	618	892
cloud pressure crb precision [hPa]	2.49 ± 8.79	6416135	1.25	0.470	$2.441 imes 10^{-4}$	1.342×10^3	0.309	1.56
cloud fraction crb [1]	0.610 ± 0.420	6416135	0.871	0.874	0.0	1.000	0.129	1.000
cloud fraction crb precision [1]	$(4.146 \pm 24.620) \times 10^{-4}$	6416135	$3.248 imes 10^{-5}$	$1.000 imes 10^{-4}$	$1.800 imes 10^{-9}$	0.619	$9.820 imes10^{-5}$	$1.307 imes10^{-4}$
scene albedo [1]	0.676 ± 0.288	6416135	0.495	0.734	$1.701 imes 10^{-2}$	4.77	0.410	0.905
scene albedo precision [1]	$(1.251 \pm 1.185) \times 10^{-4}$	6416135	$1.042 imes 10^{-4}$	$9.337 imes 10^{-5}$	$1.241 imes 10^{-5}$	1.910×10^{-3}	$4.553 imes10^{-5}$	$1.497 imes10^{-4}$
apparent scene pressure [hPa]	785 ± 156	6416135	264	813	130	1.048×10^3	658	922
apparent scene pressure precision [hPa]	0.386 ± 0.123	6416135	0.138	0.358	0.117	9.49	0.301	0.438
chi square [1]	$(0.326 \pm 3.027) \times 10^5$	6416135	2.162×10^4	2.381×10^4	331	$2.183 imes 10^8$	$1.480 imes 10^4$	3.642×10^{4}
number of iterations [1]	4.09 ± 1.14	6416135	0.0	4.00	1.000	14.0	4.00	4.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(2.184 \pm 6.161) \times 10^{-9}$	6416135	4.404×10^{-9}	2.620×10^{-9}	$-1.670 imes 10^{-6}$	$1.527 imes 10^{-6}$	$3.263 imes 10^{-10}$	$4.730 imes 10^{-9}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.858 \pm 0.576) \times 10^{-9}$	6416135	$7.089 imes10^{-10}$	$1.780 imes10^{-9}$	$5.281 imes 10^{-10}$	$5.587 imes 10^{-9}$	$1.465 imes10^{-9}$	$2.174 imes10^{-9}$
chi square fluorescence [1]	$(0.523 \pm 1.009) \times 10^5$	6416135	$4.284 imes 10^4$	9.723×10^{3}	172	$2.437 imes 10^6$	2.314×10^3	$4.515 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	6416135	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	6416135	0.0	50.0	44.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(3.096 \pm 4.310) \times 10^{-3}$	6416135	$3.846 imes 10^{-3}$	3.110×10^{-3}	-7.819×10^{-2}	6.503×10^{-2}	1.182×10^{-3}	$5.028 imes 10^{-3}$

Granule outlines

Figure 1: Outline of the granules.

4 Input data monitoring

Figure 2: Input data per granule

5 Warnings and errors

Figure 3: Fraction of pixels with specific warnings and errors during processing

6 World maps

Figure 4: Map of "Cloud pressure" for 2025-03-01 to 2025-03-02

Figure 5: Map of "Cloud fraction" for 2025-03-01 to 2025-03-02

Figure 6: Map of "Scene albedo" for 2025-03-01 to 2025-03-02

Figure 7: Map of "Apparent scene pressure" for 2025-03-01 to 2025-03-02

Figure 8: Map of "Fluorescence" for 2025-03-01 to 2025-03-02

Figure 9: Map of the number of observations for 2025-03-01 to 2025-03-02

7 Zonal average

Figure 10: Zonal average of "QA value" for 2025-03-01 to 2025-03-02.

Figure 11: Zonal average of "Cloud pressure" for 2025-03-01 to 2025-03-02.

Figure 12: Zonal average of "Cloud pressure precision" for 2025-03-01 to 2025-03-02.

Figure 13: Zonal average of "Cloud fraction" for 2025-03-01 to 2025-03-02.

Figure 14: Zonal average of "Cloud fraction precision" for 2025-03-01 to 2025-03-02.

Figure 15: Zonal average of "Scene albedo" for 2025-03-01 to 2025-03-02.

Figure 16: Zonal average of "Scene albedo precision" for 2025-03-01 to 2025-03-02.

Figure 17: Zonal average of "Apparent scene pressure" for 2025-03-01 to 2025-03-02.

Figure 18: Zonal average of "Apparent scene pressure precision" for 2025-03-01 to 2025-03-02.

Figure 19: Zonal average of " χ^2 " for 2025-03-01 to 2025-03-02.

Figure 20: Zonal average of "Number of iterations" for 2025-03-01 to 2025-03-02.

Figure 21: Zonal average of "Fluorescence" for 2025-03-01 to 2025-03-02.

Figure 22: Zonal average of "Fluorescence precision" for 2025-03-01 to 2025-03-02.

Figure 23: Zonal average of " χ^2 of fluorescence retrieval" for 2025-03-01 to 2025-03-02.

Figure 24: Zonal average of "Degrees of freedom for signal of fluorescence retrieval" for 2025-03-01 to 2025-03-02.

Figure 25: Zonal average of "Number of points in the spectrum" for 2025-03-01 to 2025-03-02.

Figure 26: Zonal average of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-03-01 to 2025-03-02.

8 Histograms

The definitions of the parameters given in this section can be found in section 2.

Figure 27: Histogram of "QA value" for 2025-03-01 to 2025-03-02

Figure 28: Histogram of "Cloud pressure" for 2025-03-01 to 2025-03-02

Figure 29: Histogram of "Cloud pressure precision" for 2025-03-01 to 2025-03-02

Figure 30: Histogram of "Cloud fraction" for 2025-03-01 to 2025-03-02

Figure 31: Histogram of "Cloud fraction precision" for 2025-03-01 to 2025-03-02

Figure 32: Histogram of "Scene albedo" for 2025-03-01 to 2025-03-02

Figure 33: Histogram of "Scene albedo precision" for 2025-03-01 to 2025-03-02

Figure 34: Histogram of "Apparent scene pressure" for 2025-03-01 to 2025-03-02

Figure 35: Histogram of "Apparent scene pressure precision" for 2025-03-01 to 2025-03-02

Figure 36: Histogram of " χ^2 " for 2025-03-01 to 2025-03-02

Figure 37: Histogram of "Number of iterations" for 2025-03-01 to 2025-03-02

Figure 38: Histogram of "Fluorescence" for 2025-03-01 to 2025-03-02

Figure 39: Histogram of "Fluorescence precision" for 2025-03-01 to 2025-03-02

Figure 40: Histogram of " χ^2 of fluorescence retrieval" for 2025-03-01 to 2025-03-02

Figure 41: Histogram of "Degrees of freedom for signal of fluorescence retrieval" for 2025-03-01 to 2025-03-02

Figure 42: Histogram of "Number of points in the spectrum" for 2025-03-01 to 2025-03-02

Figure 43: Histogram of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-03-01 to 2025-03-02

9 Along track statistics

The TROPOMI instrument uses different binned detector rows for different viewing directions. In this section statistics are presented for each of the binned rows in the instrument.

Figure 44: Along track statistics of "QA value" for 2025-03-01 to 2025-03-02

Figure 45: Along track statistics of "Cloud pressure" for 2025-03-01 to 2025-03-02

Figure 46: Along track statistics of "Cloud pressure precision" for 2025-03-01 to 2025-03-02

Figure 47: Along track statistics of "Cloud fraction" for 2025-03-01 to 2025-03-02

Figure 48: Along track statistics of "Cloud fraction precision" for 2025-03-01 to 2025-03-02

Figure 49: Along track statistics of "Scene albedo" for 2025-03-01 to 2025-03-02

Figure 50: Along track statistics of "Scene albedo precision" for 2025-03-01 to 2025-03-02

Figure 51: Along track statistics of "Apparent scene pressure" for 2025-03-01 to 2025-03-02

Figure 52: Along track statistics of "Apparent scene pressure precision" for 2025-03-01 to 2025-03-02

Figure 53: Along track statistics of " χ^2 " for 2025-03-01 to 2025-03-02

Figure 54: Along track statistics of "Number of iterations" for 2025-03-01 to 2025-03-02

Figure 55: Along track statistics of "Fluorescence" for 2025-03-01 to 2025-03-02

Figure 56: Along track statistics of "Fluorescence precision" for 2025-03-01 to 2025-03-02

Figure 57: Along track statistics of " χ^2 of fluorescence retrieval" for 2025-03-01 to 2025-03-02

Figure 58: Along track statistics of "Degrees of freedom for signal of fluorescence retrieval" for 2025-03-01 to 2025-03-02

Figure 59: Along track statistics of "Number of points in the spectrum" for 2025-03-01 to 2025-03-02

Figure 60: Along track statistics of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-03-01 to 2025-03-02

10 Coincidence density

To investigate the relation between parameters scatter density plots are produced. These include some 'hidden' parameters, latitude and the solar- and viewing geometries, in addition to all configured parameters. All combinations of pairs of parameters are included *once*, in one direction alone.

Contents

1	Short Introduction	1
	1.1 The list of parameters	1
2	Definitions	1
3	Granule outlines	8
4	Input data monitoring	9
5	Warnings and errors	10
6	World maps	11
7	Zonal average	17
8	Histograms	34
9	Along track statistics	51
10	Coincidence density	68
11	Copyright information of 'PyCAMA'	68

List of Figures

1	Outline of the granules.	8
2	Input data per granule	9
3	Fraction of pixels with specific warnings and errors during processing	10
4	Map of "Cloud pressure" for 2025-03-01 to 2025-03-02	11
5	Map of "Cloud fraction" for 2025-03-01 to 2025-03-02	12
6	Map of "Scene albedo" for 2025-03-01 to 2025-03-02	13
7	Map of "Apparent scene pressure" for 2025-03-01 to 2025-03-02	14
8	Map of "Fluorescence" for 2025-03-01 to 2025-03-02	15
9	Map of the number of observations for 2025-03-01 to 2025-03-02	16
10	Zonal average of "QA value" for 2025-03-01 to 2025-03-02.	17
11	Zonal average of "Cloud pressure" for 2025-03-01 to 2025-03-02.	18
12	Zonal average of "Cloud pressure precision" for 2025-03-01 to 2025-03-02.	19
13	Zonal average of "Cloud fraction" for 2025-03-01 to 2025-03-02.	20
14	Zonal average of "Cloud fraction precision" for 2025-03-01 to 2025-03-02.	21
15	Zonal average of "Scene albedo" for 2025-03-01 to 2025-03-02.	22
16	Zonal average of "Scene albedo precision" for 2025-03-01 to 2025-03-02.	23
17	Zonal average of "Apparent scene pressure" for 2025-03-01 to 2025-03-02.	24
18	Zonal average of "Apparent scene pressure precision" for 2025-03-01 to 2025-03-02.	25
19	Zonal average of " χ^2 " for 2025-03-01 to 2025-03-02	26
20	Zonal average of "Number of iterations" for 2025-03-01 to 2025-03-02.	27
21	Zonal average of "Fluorescence" for 2025-03-01 to 2025-03-02.	28
22	Zonal average of "Fluorescence precision" for 2025-03-01 to 2025-03-02.	29
23	Zonal average of " χ^2 of fluorescence retrieval" for 2025-03-01 to 2025-03-02	30
24	Zonal average of "Degrees of freedom for signal of fluorescence retrieval" for 2025-03-01 to 2025-03-02.	31
25	Zonal average of "Number of points in the spectrum" for 2025-03-01 to 2025-03-02.	32
26	Zonal average of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-03-01 to 2025-03-02	33
27	Histogram of "QA value" for 2025-03-01 to 2025-03-02	34
28	Histogram of "Cloud pressure" for 2025-03-01 to 2025-03-02	35
29	Histogram of "Cloud pressure precision" for 2025-03-01 to 2025-03-02	36

30	Histogram of "Cloud fraction" for 2025-03-01 to 2025-03-02	37
31	Histogram of "Cloud fraction precision" for 2025-03-01 to 2025-03-02	38
32	Histogram of "Scene albedo" for 2025-03-01 to 2025-03-02	39
33	Histogram of "Scene albedo precision" for 2025-03-01 to 2025-03-02	40
34	Histogram of "Apparent scene pressure" for 2025-03-01 to 2025-03-02	41
35	Histogram of "Apparent scene pressure precision" for 2025-03-01 to 2025-03-02	42
36	Histogram of " χ^2 " for 2025-03-01 to 2025-03-02	43
37	Histogram of "Number of iterations" for 2025-03-01 to 2025-03-02	44
38	Histogram of "Fluorescence" for 2025-03-01 to 2025-03-02	45
39	Histogram of "Fluorescence precision" for 2025-03-01 to 2025-03-02	46
40	Histogram of " χ^2 of fluorescence retrieval" for 2025-03-01 to 2025-03-02	47
41	Histogram of "Degrees of freedom for signal of fluorescence retrieval" for 2025-03-01 to 2025-03-02	48
42	Histogram of "Number of points in the spectrum" for 2025-03-01 to 2025-03-02	49
43	Histogram of "Spectral offset $(\lambda_{true} - \lambda_{nominal})$ " for 2025-03-01 to 2025-03-02	50
44	Along track statistics of "QA value" for 2025-03-01 to 2025-03-02	51
45	Along track statistics of "Cloud pressure" for 2025-03-01 to 2025-03-02	52
46	Along track statistics of "Cloud pressure precision" for 2025-03-01 to 2025-03-02	53
47	Along track statistics of "Cloud fraction" for 2025-03-01 to 2025-03-02	54
48	Along track statistics of "Cloud fraction precision" for 2025-03-01 to 2025-03-02	55
49	Along track statistics of "Scene albedo" for 2025-03-01 to 2025-03-02	56
50	Along track statistics of "Scene albedo precision" for 2025-03-01 to 2025-03-02	57
51	Along track statistics of "Apparent scene pressure" for 2025-03-01 to 2025-03-02	58
52	Along track statistics of "Apparent scene pressure precision" for 2025-03-01 to 2025-03-02	59
53	Along track statistics of " χ^2 " for 2025-03-01 to 2025-03-02	60
54	Along track statistics of "Number of iterations" for 2025-03-01 to 2025-03-02	61
55	Along track statistics of "Fluorescence" for 2025-03-01 to 2025-03-02	62
56	Along track statistics of "Fluorescence precision" for 2025-03-01 to 2025-03-02	63
57	Along track statistics of " χ^2 of fluorescence retrieval" for 2025-03-01 to 2025-03-02	64
58	Along track statistics of "Degrees of freedom for signal of fluorescence retrieval" for 2025-03-01 to 2025-03-02	65
59	Along track statistics of "Number of points in the spectrum" for 2025-03-01 to 2025-03-02	66
60	Along track statistics of "Spectral offset $(\lambda_{true} - \lambda_{nominal})$ " for 2025-03-01 to 2025-03-02	67

List of Tables

1	Parameterlist and basic statistics for the analysis
2	Percentile ranges
3	Parameterlist and basic statistics for the analysis for observations in the northern hemisphere
4	Parameterlist and basic statistics for the analysis for observations in the southern hemisphere
5	Parameterlist and basic statistics for the analysis for observations over water
6	Parameterlist and basic statistics for the analysis for observations over land

11 Copyright information of 'PyCAMA'

Copyright © 2005-2023, Maarten Sneep (KNMI).

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
- 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

This software is provided by the copyright holders and contributors "as is" and any express or implied warranties, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose are disclaimed. In no event shall the copyright holder or contributors be liable for any direct, indirect, incidental, special, exemplary, or consequential damages (including, but not limited to, procurement of substitute goods or services; loss of use, data, or profits; or business interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence or otherwise) arising in any way out of the use of this software, even if advised of the possibility of such damage.

Maarten Sneep (maarten.sneep@knmi.nl).