## PyCAMA report generated by tropl2-proc

#### tropl2-proc

#### 2025-03-04 (04:45)

### **1** Short Introduction

#### 1.1 The list of parameters

You may want to keep the list given in table 1 at hand when viewing the results.

### 2 Definitions

The averages shown here are unweighed averages:

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i \tag{1}$$

with N the number of observations in the dataset.

The spread of the measurements is indicated with the variance V(x), or rather the standard deviation  $\sigma(x) = \sqrt{V(x)}$ .

$$V(x) = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2$$
(2)

We also report the more robust statistics median, minimum, maximum, various percentiles and inter quartile range.

The median m is the value of parameter x for which half of the observations of x is smaller than m:

$$P(x \le m) = P(x \ge m) = \int_{-\infty}^{m} f(x) \, \mathrm{d}x = \frac{1}{2}$$
(3)

with f(x) the probability density function.

The median is a special case of a percentile. Instead of  $\frac{1}{2}$  in equation 3, other threshold values can be used. We report results for 1%, 5%, 10%, 15.9%, 25%, 75%, 84.1%, 90%, 95% and 99%. The inter quartile range is the difference between the 75% and 25% percentiles. Similarly the minimum and maximum values correspond to the 0% and 100% percentiles respectively.

For normally distributed parameters the mean and median are the same, while the  $\mu \pm \sigma$  values and the 15.9% and 84.1% percentiles coincide.

To get a measure for the relation of one variable  $x_{(k)}$  with another  $x_{(l)}$ , we calculate the covariance matrix  $C_{kl}$ .

$$C_{kl} = C(x_{(k)}, x_{(l)}) = \frac{1}{N-1} \sum_{i=1}^{N} (x_{(k),i} - \overline{x_{(k)}}) (x_{(l),i} - \overline{x_{(l)}})$$
(4)

Rather than a dimensionally dependent covariance, it is often easier to interpret a correlation matrix  $R_{kl}$ , a matrix of Pearson's *r* coefficients:

$$R_{kl} = R(x_{(k)}, x_{(l)}) = \frac{C_{kl}}{\sqrt{C_{kk}C_{ll}}} = \frac{C_{kl}}{\sqrt{V(x_k)V(x_l)}}$$
(5)

The diagonal elements of the covariance matrix are the variances of the elements,  $V(x_{(k)}) = C_{kk}$  and obviously  $R_{kk} = 1$ .

| Table 1: Parameterlist and basic statistics for the analyst | si |
|-------------------------------------------------------------|----|
|-------------------------------------------------------------|----|

|                                                                                                                                                     | Table 1: Parameter                   | list and basic | statistics for the a   | nalvsis                 |                        |                        |                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------|------------------------|-------------------------|------------------------|------------------------|------------------------|
| Variable                                                                                                                                            | mean $\pm \sigma$                    | Count          | Mode                   | IQR                     | Median                 | Minimum                | Maximum                |
| qa value [1]                                                                                                                                        | $0.928 \pm 0.167$                    | 23216216       | 0.995                  | 0.0                     | 1.000                  | 0.350                  | 1.000                  |
| cloud pressure crb [hPa]                                                                                                                            | $791 \pm 191$                        | 23216216       | $1.005 \times 10^{3}$  | 282                     | 846                    | 130                    | $1.075 \times 10^{3}$  |
| cloud pressure crb precision [hPa]                                                                                                                  | $2.74 \pm 10.29$                     | 23216216       | 0.750                  | 1.34                    | 0.577                  | $1.831 	imes 10^{-4}$  | $1.512 \times 10^{3}$  |
| cloud fraction crb [1]                                                                                                                              | $0.459 \pm 0.386$                    | 23216216       | 0.996                  | 0.814                   | 0.368                  | 0.0                    | 1.000                  |
| cloud fraction crb precision [1]                                                                                                                    | $(2.289 \pm 17.378) \times 10^{-4}$  | 23216216       | $2.500 	imes 10^{-4}$  | $6.120\times10^{-5}$    | $7.567 \times 10^{-5}$ | $6.622\times10^{-9}$   | 0.913                  |
| scene albedo [1]                                                                                                                                    | $0.450 \pm 0.332$                    | 23216216       | $1.500	imes10^{-2}$    | 0.605                   | 0.425                  | $-2.802	imes10^{-3}$   | 3.63                   |
| scene albedo precision [1]                                                                                                                          | $(8.620 \pm 10.443) \times 10^{-5}$  | 23216216       | $2.500	imes10^{-4}$    | $6.591	imes10^{-5}$     | $5.291	imes10^{-5}$    | $1.038	imes10^{-5}$    | $3.634 \times 10^{-3}$ |
| apparent scene pressure [hPa]                                                                                                                       | $822 \pm 170$                        | 23216216       | $1.008 \times 10^3$    | 247                     | 876                    | 130                    | $1.075 \times 10^{3}$  |
| apparent scene pressure precision [hPa]                                                                                                             | $1.02 \pm 1.87$                      | 23216216       | 0.500                  | 0.476                   | 0.432                  | 0.125                  | 60.4                   |
| chi square [1]                                                                                                                                      | $(0.215 \pm 2.488) \times 10^5$      | 23216216       | 0.150                  | $2.415 	imes 10^4$      | $1.574 	imes 10^4$     | 61.2                   | $3.024 	imes 10^8$     |
| number of iterations [1]                                                                                                                            | $3.37 \pm 1.07$                      | 23216216       | 3.23                   | 1.000                   | 3.00                   | 1.000                  | 14.0                   |
| fluorescence [mol s <sup><math>-1</math></sup> m <sup><math>-2</math></sup> nm <sup><math>-1</math></sup> sr <sup><math>-1</math></sup> ]           | $(8.516 \pm 69.135) \times 10^{-10}$ | 23216216       | $2.500\times10^{-10}$  | $4.872 	imes 10^{-9}$   | $9.726 	imes 10^{-10}$ | $-2.152\times10^{-6}$  | $1.818 	imes 10^{-6}$  |
| fluorescence precision [mol s <sup><math>-1</math></sup> m <sup><math>-2</math></sup> nm <sup><math>-1</math></sup> sr <sup><math>-1</math></sup> ] | $(1.699 \pm 0.668) \times 10^{-9}$   | 23216216       | $8.500 	imes 10^{-10}$ | $9.562 \times 10^{-10}$ | $1.639 \times 10^{-9}$ | $4.353 	imes 10^{-10}$ | $5.620 \times 10^{-9}$ |
| chi square fluorescence [1]                                                                                                                         | $(0.489 \pm 0.962) \times 10^5$      | 23216216       | $1.250 \times 10^{3}$  | $4.274 	imes 10^4$      | $1.284 	imes 10^4$     | 89.5                   | $8.122 	imes 10^6$     |
| degrees of freedom fluorescence [1]                                                                                                                 | $6.00\pm0.00$                        | 23216216       | 5.95                   | 0.0                     | 6.00                   | 6.00                   | 6.00                   |
| number of spectral points in retrieval [1]                                                                                                          | $50.0 \pm 0.1$                       | 23216216       | 49.7                   | 0.0                     | 50.0                   | 45.0                   | 50.0                   |
| wavelength calibration offset [nm]                                                                                                                  | $(3.039 \pm 8.352) \times 10^{-3}$   | 23216216       | $2.800 	imes 10^{-3}$  | $5.473 	imes 10^{-3}$   | $3.077 	imes 10^{-3}$  | -0.173                 | 0.157                  |
|                                                                                                                                                     |                                      |                |                        |                         |                        |                        |                        |

|                                                                                                                                                     |                         |                         | Table 2:                | Percentile rang         | jes                     |                        |                        |                        |                       |                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|------------------------|------------------------|------------------------|-----------------------|------------------------|
| Variable                                                                                                                                            | 1 %                     | 5 %                     | 10 %                    | 15.9 %                  | 25 %                    | 75 %                   | 84.1 %                 | 90%                    | 95 %                  | 99 %                   |
| qa value [1]                                                                                                                                        | 0.500                   | 0.500                   | 0.500                   | 0.900                   | 1.000                   | 1.000                  | 1.000                  | 1.000                  | 1.000                 | 1.000                  |
| cloud pressure crb [hPa]                                                                                                                            | 258                     | 410                     | 510                     | 587                     | 665                     | 946                    | 975                    | 995                    | $1.009 \times 10^{3}$ | $1.020 \times 10^3$    |
| cloud pressure crb precision [hPa]                                                                                                                  | 0.170                   | 0.240                   | 0.268                   | 0.294                   | 0.336                   | 1.67                   | 3.01                   | 5.19                   | 10.5                  | 36.3                   |
| cloud fraction crb [1]                                                                                                                              | 0.0                     | $8.550 	imes 10^{-3}$   | $1.974	imes10^{-2}$     | $3.680 	imes 10^{-2}$   | $7.709\times10^{-2}$    | 0.891                  | 1.000                  | 1.000                  | 1.000                 | 1.000                  |
| cloud fraction crb precision [1]                                                                                                                    | $1.948	imes10^{-5}$     | $2.210	imes10^{-5}$     | $2.472 	imes 10^{-5}$   | $2.857 	imes 10^{-5}$   | $3.880 	imes 10^{-5}$   | $1.000 	imes 10^{-4}$  | $1.223 	imes 10^{-4}$  | $2.062 	imes 10^{-4}$  | $6.029	imes10^{-4}$   | $3.122 \times 10^{-3}$ |
| scene albedo [1]                                                                                                                                    | $7.014 	imes 10^{-3}$   | $1.759	imes10^{-2}$     | $3.212 	imes 10^{-2}$   | $5.767 	imes 10^{-2}$   | 0.129                   | 0.735                  | 0.839                  | 0.902                  | 0.967                 | 1.15                   |
| scene albedo precision [1]                                                                                                                          | $1.285 	imes 10^{-5}$   | $1.498 	imes 10^{-5}$   | $1.801 	imes 10^{-5}$   | $2.268 	imes 10^{-5}$   | $3.043 \times 10^{-5}$  | $9.634 \times 10^{-5}$ | $1.335 	imes 10^{-4}$  | $1.837	imes10^{-4}$    | $2.852 	imes 10^{-4}$ | $5.568 \times 10^{-4}$ |
| apparent scene pressure [hPa]                                                                                                                       | 348                     | 481                     | 569                     | 629                     | 711                     | 958                    | 983                    | 999                    | $1.010 \times 10^{3}$ | $1.020 \times 10^{3}$  |
| apparent scene pressure precision [hPa]                                                                                                             | 0.215                   | 0.246                   | 0.270                   | 0.292                   | 0.322                   | 0.799                  | 1.36                   | 2.24                   | 3.94                  | 9.44                   |
| chi square [1]                                                                                                                                      | 258                     | 594                     | $1.216 \times 10^{3}$   | $2.486 \times 10^{3}$   | $5.209 \times 10^{3}$   | $2.936 \times 10^{4}$  | $3.672 \times 10^{4}$  | $4.361 \times 10^{4}$  | $5.392 \times 10^{4}$ | $8.082 \times 10^4$    |
| number of iterations [1]                                                                                                                            | 2.00                    | 2.00                    | 2.00                    | 3.00                    | 3.00                    | 4.00                   | 4.00                   | 5.00                   | 5.00                  | 7.00                   |
| fluorescence [mol s <sup><math>-1</math></sup> m <sup><math>-2</math></sup> nm <sup><math>-1</math></sup> sr <sup><math>-1</math></sup> ]           | $-1.495 	imes 10^{-8}$  | $-7.217 \times 10^{-9}$ | $-4.435 \times 10^{-9}$ | $-2.780 \times 10^{-9}$ | $-1.354 \times 10^{-9}$ | $3.517 \times 10^{-9}$ | $4.866 \times 10^{-9}$ | $6.187 	imes 10^{-9}$  | $8.181 	imes 10^{-9}$ | $1.302 \times 10^{-8}$ |
| fluorescence precision [mol s <sup><math>-1</math></sup> m <sup><math>-2</math></sup> nm <sup><math>-1</math></sup> sr <sup><math>-1</math></sup> ] | $7.409 	imes 10^{-10}$  | $8.180 	imes 10^{-10}$  | $8.867 	imes 10^{-10}$  | $9.756 	imes 10^{-10}$  | $1.156 \times 10^{-9}$  | $2.113 \times 10^{-9}$ | $2.352 \times 10^{-9}$ | $2.616 \times 10^{-9}$ | $2.938 	imes 10^{-9}$ | $3.589 \times 10^{-9}$ |
| chi square fluorescence [1]                                                                                                                         | 413                     | 871                     | $1.349 \times 10^{3}$   | $2.091 \times 10^{3}$   | $3.729 \times 10^{3}$   | $4.646 \times 10^{4}$  | $8.467 \times 10^{4}$  | $1.377 \times 10^{5}$  | $2.309 \times 10^{5}$ | $4.722 \times 10^{5}$  |
| degrees of freedom fluorescence [1]                                                                                                                 | 6.00                    | 6.00                    | 6.00                    | 6.00                    | 6.00                    | 6.00                   | 6.00                   | 6.00                   | 6.00                  | 6.00                   |
| number of spectral points in retrieval [1]                                                                                                          | 50.0                    | 50.0                    | 50.0                    | 50.0                    | 50.0                    | 50.0                   | 50.0                   | 50.0                   | 50.0                  | 50.0                   |
| wavelength calibration offset [nm]                                                                                                                  | $-2.423 \times 10^{-2}$ | $-9.061 \times 10^{-3}$ | $-4.159 \times 10^{-3}$ | $-1.667 \times 10^{-3}$ | $3.082 	imes 10^{-4}$   | $5.781 \times 10^{-3}$ | $7.710 \times 10^{-3}$ | $1.020 	imes 10^{-2}$  | $1.513 	imes 10^{-2}$ | $3.001 \times 10^{-2}$ |

| Table                                                                                                                                               | 3: Parameterlist and basic          | statistics for | the analysis for       | observations in       | the northern her        | nisphere               |                         |                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|----------------|------------------------|-----------------------|-------------------------|------------------------|-------------------------|------------------------|
| Variable                                                                                                                                            | mean $\pm \sigma$                   | Count          | IQR                    | Median                | Minimum                 | Maximum                | 25 % percentile         | 75 % percentile        |
| qa value [1]                                                                                                                                        | $0.949 \pm 0.141$                   | 11377642       | 0.0                    | 1.000                 | 0.350                   | 1.000                  | 1.000                   | 1.000                  |
| cloud pressure crb [hPa]                                                                                                                            | $786 \pm 196$                       | 11377642       | 277                    | 845                   | 130                     | $1.075 \times 10^{3}$  | 666                     | 944                    |
| cloud pressure crb precision [hPa]                                                                                                                  | $2.76 \pm 9.68$                     | 11377642       | 1.54                   | 0.713                 | $1.831 	imes 10^{-4}$   | $1.504 \times 10^{3}$  | 0.366                   | 1.91                   |
| cloud fraction crb [1]                                                                                                                              | $0.442 \pm 0.385$                   | 11377642       | 0.804                  | 0.320                 | 0.0                     | 1.000                  | $7.453\times10^{-2}$    | 0.878                  |
| cloud fraction crb precision [1]                                                                                                                    | $(3.016 \pm 22.891) \times 10^{-4}$ | 11377642       | $7.081	imes10^{-5}$    | $9.397	imes10^{-5}$   | $6.918	imes10^{-9}$     | 0.913                  | $4.590 	imes 10^{-5}$   | $1.167	imes10^{-4}$    |
| scene albedo [1]                                                                                                                                    | $0.471 \pm 0.324$                   | 11377642       | 0.566                  | 0.457                 | $-1.764 	imes 10^{-3}$  | 3.20                   | 0.178                   | 0.744                  |
| scene albedo precision [1]                                                                                                                          | $(9.563 \pm 11.856) \times 10^{-5}$ | 11377642       | $7.019	imes10^{-5}$    | $5.564	imes10^{-5}$   | $1.076\times10^{-5}$    | $2.590\times10^{-3}$   | $3.210 	imes 10^{-5}$   | $1.023	imes10^{-4}$    |
| apparent scene pressure [hPa]                                                                                                                       | $830\pm166$                         | 11377642       | 209                    | 884                   | 130                     | $1.075 \times 10^3$    | 747                     | 956                    |
| apparent scene pressure precision [hPa]                                                                                                             | $0.837 \pm 1.350$                   | 11377642       | 0.385                  | 0.437                 | 0.142                   | 53.6                   | 0.327                   | 0.712                  |
| chi square [1]                                                                                                                                      | $(0.243 \pm 2.802) \times 10^5$     | 11377642       | $2.640 	imes 10^4$     | $1.669 \times 10^4$   | 81.9                    | $2.412 	imes 10^8$     | $6.186 \times 10^{3}$   | $3.259 \times 10^4$    |
| number of iterations [1]                                                                                                                            | $3.61 \pm 1.17$                     | 11377642       | 1.000                  | 3.00                  | 1.000                   | 14.0                   | 3.00                    | 4.00                   |
| fluorescence [mol s <sup><math>-1</math></sup> m <sup><math>-2</math></sup> nm <sup><math>-1</math></sup> sr <sup><math>-1</math></sup> ]           | $(1.291 \pm 5.356) \times 10^{-9}$  | 11377642       | $4.813 	imes 10^{-9}$  | $1.401 	imes 10^{-9}$ | $-2.045	imes10^{-6}$    | $1.818	imes10^{-6}$    | $-9.477 	imes 10^{-10}$ | $3.865 \times 10^{-9}$ |
| fluorescence precision [mol s <sup><math>-1</math></sup> m <sup><math>-2</math></sup> nm <sup><math>-1</math></sup> sr <sup><math>-1</math></sup> ] | $(1.692 \pm 0.656) \times 10^{-9}$  | 11377642       | $9.346 	imes 10^{-10}$ | $1.628	imes10^{-9}$   | $4.353 \times 10^{-10}$ | $5.620 \times 10^{-9}$ | $1.167	imes10^{-9}$     | $2.102 	imes 10^{-9}$  |
| chi square fluorescence [1]                                                                                                                         | $(0.394 \pm 0.781) \times 10^5$     | 11377642       | $3.293 	imes 10^4$     | $1.081 	imes 10^4$    | 89.5                    | $5.153	imes10^{6}$     | $3.738 	imes 10^3$      | $3.667 \times 10^4$    |
| degrees of freedom fluorescence [1]                                                                                                                 | $6.00\pm0.00$                       | 11377642       | 0.0                    | 6.00                  | 6.00                    | 6.00                   | 6.00                    | 6.00                   |
| number of spectral points in retrieval [1]                                                                                                          | $50.0 \pm 0.1$                      | 11377642       | 0.0                    | 50.0                  | 48.0                    | 50.0                   | 50.0                    | 50.0                   |
| wavelength calibration offset [nm]                                                                                                                  | $(2.963 \pm 7.616) \times 10^{-3}$  | 11377642       | $5.262 	imes 10^{-3}$  | $2.959\times10^{-3}$  | $-8.061 \times 10^{-2}$ | $8.569 \times 10^{-2}$ | $3.021 	imes 10^{-4}$   | $5.564 \times 10^{-3}$ |

| Table                                                                                                                                               | 4: Parameterlist and basic s         | statistics for | the analysis for       | observations in      | the southern hem       | isphere               |                        |                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------|------------------------|----------------------|------------------------|-----------------------|------------------------|------------------------|
| Variable                                                                                                                                            | mean $\pm \sigma$                    | Count          | IQR                    | Median               | Minimum                | Maximum               | 25 % percentile        | 75 % percentile        |
| qa value [1]                                                                                                                                        | $0.908 \pm 0.186$                    | 11838574       | 0.1000                 | 1.000                | 0.350                  | 1.000                 | 0.900                  | 1.000                  |
| cloud pressure crb [hPa]                                                                                                                            | $795 \pm 186$                        | 11838574       | 285                    | 846                  | 130                    | $1.029 \times 10^3$   | 663                    | 949                    |
| cloud pressure crb precision [hPa]                                                                                                                  | $2.72\pm10.84$                       | 11838574       | 1.07                   | 0.486                | $7.935	imes10^{-4}$    | $1.512 \times 10^{3}$ | 0.321                  | 1.39                   |
| cloud fraction crb [1]                                                                                                                              | $0.476 \pm 0.386$                    | 11838574       | 0.821                  | 0.422                | 0.0                    | 1.000                 | $8.036	imes10^{-2}$    | 0.901                  |
| cloud fraction crb precision [1]                                                                                                                    | $(1.590 \pm 9.359) \times 10^{-4}$   | 11838574       | $6.585	imes10^{-5}$    | $6.613	imes10^{-5}$  | $6.622 	imes 10^{-9}$  | 0.398                 | $3.415 	imes 10^{-5}$  | $1.000 	imes 10^{-4}$  |
| scene albedo [1]                                                                                                                                    | $0.431 \pm 0.338$                    | 11838574       | 0.627                  | 0.391                | $-2.802	imes10^{-3}$   | 3.63                  | $9.559 \times 10^{-2}$ | 0.723                  |
| scene albedo precision [1]                                                                                                                          | $(7.713 \pm 8.782) \times 10^{-5}$   | 11838574       | $6.138 \times 10^{-5}$ | $5.080	imes10^{-5}$  | $1.038 \times 10^{-5}$ | $3.634 	imes 10^{-3}$ | $2.898	imes10^{-5}$    | $9.036 \times 10^{-5}$ |
| apparent scene pressure [hPa]                                                                                                                       | $814 \pm 173$                        | 11838574       | 276                    | 864                  | 130                    | $1.029 \times 10^3$   | 684                    | 960                    |
| apparent scene pressure precision [hPa]                                                                                                             | $1.19 \pm 2.25$                      | 11838574       | 0.603                  | 0.427                | 0.125                  | 60.4                  | 0.318                  | 0.921                  |
| chi square [1]                                                                                                                                      | $(0.187 \pm 2.143) \times 10^5$      | 11838574       | $2.251 	imes 10^4$     | $1.491 	imes 10^4$   | 61.2                   | $3.024 	imes 10^8$    | $4.394 \times 10^{3}$  | $2.690 	imes 10^4$     |
| number of iterations [1]                                                                                                                            | $3.13 \pm 0.91$                      | 11838574       | 1.000                  | 3.00                 | 1.000                  | 14.0                  | 3.00                   | 4.00                   |
| fluorescence [mol s <sup><math>-1</math></sup> m <sup><math>-2</math></sup> nm <sup><math>-1</math></sup> sr <sup><math>-1</math></sup> ]           | $(4.297 \pm 81.118) \times 10^{-10}$ | 11838574       | $4.855\times10^{-9}$   | $5.708	imes10^{-10}$ | $-2.152\times10^{-6}$  | $1.783	imes10^{-6}$   | $-1.726 	imes 10^{-9}$ | $3.129 	imes 10^{-9}$  |
| fluorescence precision [mol s <sup><math>-1</math></sup> m <sup><math>-2</math></sup> nm <sup><math>-1</math></sup> sr <sup><math>-1</math></sup> ] | $(1.705 \pm 0.680) \times 10^{-9}$   | 11838574       | $9.780 	imes 10^{-10}$ | $1.650\times10^{-9}$ | $5.281	imes10^{-10}$   | $5.606\times10^{-9}$  | $1.144 	imes 10^{-9}$  | $2.122\times10^{-9}$   |
| chi square fluorescence [1]                                                                                                                         | $(0.580 \pm 1.100) \times 10^5$      | 11838574       | $5.385 	imes 10^4$     | $1.548 	imes 10^4$   | 128                    | $8.122 	imes 10^6$    | $3.716 \times 10^3$    | $5.757 	imes 10^4$     |
| degrees of freedom fluorescence [1]                                                                                                                 | $6.00 \pm 0.00$                      | 11838574       | 0.0                    | 6.00                 | 6.00                   | 6.00                  | 6.00                   | 6.00                   |
| number of spectral points in retrieval [1]                                                                                                          | $50.0 \pm 0.1$                       | 11838574       | 0.0                    | 50.0                 | 45.0                   | 50.0                  | 50.0                   | 50.0                   |
| wavelength calibration offset [nm]                                                                                                                  | $(3.111 \pm 9.002) \times 10^{-3}$   | 11838574       | $5.686 \times 10^{-3}$ | $3.196\times10^{-3}$ | -0.173                 | 0.157                 | $3.149\times10^{-4}$   | $6.001\times10^{-3}$   |

|                                                                                                                                                     | Table 5: Parameterlist and          | d basic statis | stics for the ana      | lysis for observa      | ations over water       |                        |                         |                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|----------------|------------------------|------------------------|-------------------------|------------------------|-------------------------|------------------------|
| Variable                                                                                                                                            | mean $\pm \sigma$                   | Count          | IQR                    | Median                 | Minimum                 | Maximum                | 25 % percentile         | 75 % percentile        |
| qa value [1]                                                                                                                                        | $0.979 \pm 0.065$                   | 15038943       | 0.0                    | 1.000                  | 0.350                   | 1.000                  | 1.000                   | 1.000                  |
| cloud pressure crb [hPa]                                                                                                                            | $813 \pm 188$                       | 15038943       | 255                    | 877                    | 130                     | $1.075 	imes 10^3$     | 704                     | 959                    |
| cloud pressure crb precision [hPa]                                                                                                                  | $2.82\pm10.76$                      | 15038943       | 1.32                   | 0.622                  | $1.831 	imes 10^{-4}$   | $1.261 \times 10^3$    | 0.356                   | 1.68                   |
| cloud fraction crb [1]                                                                                                                              | $0.392 \pm 0.350$                   | 15038943       | 0.640                  | 0.286                  | 0.0                     | 1.000                  | $6.215	imes10^{-2}$     | 0.703                  |
| cloud fraction crb precision [1]                                                                                                                    | $(1.292 \pm 10.218) \times 10^{-4}$ | 15038943       | $6.251 	imes 10^{-5}$  | $5.173	imes10^{-5}$    | $6.918	imes10^{-9}$     | 0.421                  | $2.885 	imes 10^{-5}$   | $9.136	imes10^{-5}$    |
| scene albedo [1]                                                                                                                                    | $0.342 \pm 0.302$                   | 15038943       | 0.538                  | 0.256                  | $-2.802 \times 10^{-3}$ | 3.20                   | $5.986	imes10^{-2}$     | 0.598                  |
| scene albedo precision [1]                                                                                                                          | $(7.013 \pm 9.554) \times 10^{-5}$  | 15038943       | $4.845 	imes 10^{-5}$  | $4.416\times10^{-5}$   | $1.038 	imes 10^{-5}$   | $3.634 \times 10^{-3}$ | $2.310\times10^{-5}$    | $7.155\times10^{-5}$   |
| apparent scene pressure [hPa]                                                                                                                       | $833 \pm 176$                       | 15038943       | 232                    | 892                    | 136                     | $1.075 	imes 10^3$     | 740                     | 971                    |
| apparent scene pressure precision [hPa]                                                                                                             | $1.36 \pm 2.25$                     | 15038943       | 0.965                  | 0.561                  | 0.153                   | 60.4                   | 0.350                   | 1.32                   |
| chi square [1]                                                                                                                                      | $(0.153 \pm 1.128) \times 10^5$     | 15038943       | $2.051 	imes 10^4$     | $9.565 \times 10^{3}$  | 61.2                    | $2.412 \times 10^8$    | $2.628 \times 10^3$     | $2.313 	imes 10^4$     |
| number of iterations [1]                                                                                                                            | $3.01\pm0.85$                       | 15038943       | 0.0                    | 3.00                   | 1.000                   | 14.0                   | 3.00                    | 3.00                   |
| fluorescence [mol s <sup><math>-1</math></sup> m <sup><math>-2</math></sup> nm <sup><math>-1</math></sup> sr <sup><math>-1</math></sup> ]           | $(1.352\pm65.570)\times10^{-10}$    | 15038943       | $4.201 	imes 10^{-9}$  | $2.229\times10^{-10}$  | $-2.152 	imes 10^{-6}$  | $1.818	imes10^{-6}$    | $-1.734 	imes 10^{-9}$  | $2.467 \times 10^{-9}$ |
| fluorescence precision [mol s <sup><math>-1</math></sup> m <sup><math>-2</math></sup> nm <sup><math>-1</math></sup> sr <sup><math>-1</math></sup> ] | $(1.594 \pm 0.684) \times 10^{-9}$  | 15038943       | $1.013 	imes 10^{-9}$  | $1.463 \times 10^{-9}$ | $4.353 	imes 10^{-10}$  | $5.620 	imes 10^{-9}$  | $1.016\times10^{-9}$    | $2.029 \times 10^{-9}$ |
| chi square fluorescence [1]                                                                                                                         | $(0.436 \pm 0.885) \times 10^5$     | 15038943       | $3.917 	imes 10^4$     | $1.298 	imes 10^4$     | 89.5                    | $7.553	imes10^6$       | $4.181 \times 10^{3}$   | $4.335 	imes 10^4$     |
| degrees of freedom fluorescence [1]                                                                                                                 | $6.00\pm0.00$                       | 15038943       | 0.0                    | 6.00                   | 6.00                    | 6.00                   | 6.00                    | 6.00                   |
| number of spectral points in retrieval [1]                                                                                                          | $50.0 \pm 0.1$                      | 15038943       | 0.0                    | 50.0                   | 45.0                    | 50.0                   | 50.0                    | 50.0                   |
| wavelength calibration offset [nm]                                                                                                                  | $(3.001 \pm 9.711) \times 10^{-3}$  | 15038943       | $6.543 \times 10^{-3}$ | $3.065 \times 10^{-3}$ | -0.173                  | 0.157                  | $-2.765 \times 10^{-4}$ | $6.266 \times 10^{-3}$ |

| Table 6: Parameterlist an           | d basic stat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | tistics for the ana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | alysis for observ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ations over land                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| mean $\pm \sigma$                   | Count                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IQR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Median                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Minimum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Maximum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 25 % percentile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 75 % percentile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $0.800 \pm 0.249$                   | 6344216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $742\pm184$                         | 6344216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 271                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 755                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $1.068 \times 10^{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 627                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 898                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $2.39 \pm 8.49$                     | 6344216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.464                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $3.052 	imes 10^{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $1.234 \times 10^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.308                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $0.614 \pm 0.419$                   | 6344216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.867                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.886                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $(4.434 \pm 26.968) \times 10^{-4}$ | 6344216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $3.531 	imes 10^{-5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $1.000 	imes 10^{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $6.622 	imes 10^{-9}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.913                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $1.000 	imes 10^{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $1.353 	imes 10^{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $0.679 \pm 0.285$                   | 6344216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.481                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.738                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $1.182	imes10^{-2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.422                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.903                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $(1.254 \pm 1.184) \times 10^{-4}$  | 6344216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $1.045 	imes 10^{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $9.321	imes10^{-5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $1.270	imes10^{-5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $1.965 	imes 10^{-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $4.587	imes10^{-5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $1.504	imes10^{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $789 \pm 153$                       | 6344216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 258                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 817                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $1.059 \times 10^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 665                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 923                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $0.384 \pm 0.122$                   | 6344216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.138                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.357                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.438                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $(0.325 \pm 3.684) \times 10^5$     | 6344216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $2.213 	imes 10^4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $2.474 	imes 10^4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $3.024 	imes 10^8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $1.538 \times 10^4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $3.751 	imes 10^4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $4.07 \pm 1.11$                     | 6344216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $(2.180 \pm 5.906) \times 10^{-9}$  | 6344216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $4.452 	imes 10^{-9}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $2.621\times10^{-9}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $-1.345	imes10^{-6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $1.297	imes10^{-6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $2.869 	imes 10^{-10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $4.739\times10^{-9}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $(1.864 \pm 0.587) \times 10^{-9}$  | 6344216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $7.146 	imes 10^{-10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $1.783	imes10^{-9}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $5.124	imes10^{-10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $5.606 \times 10^{-9}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $1.465	imes10^{-9}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $2.180	imes10^{-9}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $(0.530 \pm 1.017) \times 10^5$     | 6344216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $4.463 	imes 10^4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $9.723 \times 10^{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $2.019 	imes 10^6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $2.243 \times 10^{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $4.687	imes10^4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $6.00\pm0.00$                       | 6344216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $50.0 \pm 0.1$                      | 6344216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 48.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $(3.084 \pm 4.322) \times 10^{-3}$  | 6344216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $3.873 	imes 10^{-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $3.089 \times 10^{-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $-8.742\times10^{-2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $6.429 \times 10^{-2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $1.148\times10^{-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $5.021\times10^{-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                     | Table 6: Parameterlist an<br>mean $\pm \sigma$<br>0.800 $\pm$ 0.249<br>742 $\pm$ 184<br>2.39 $\pm$ 8.49<br>0.614 $\pm$ 0.419<br>(4.434 $\pm$ 26.968) × 10 <sup>-4</sup><br>0.679 $\pm$ 0.285<br>(1.254 $\pm$ 1.184) × 10 <sup>-4</sup><br>789 $\pm$ 153<br>0.384 $\pm$ 0.122<br>(0.325 $\pm$ 3.684) × 10 <sup>5</sup><br>4.07 $\pm$ 1.11<br>(2.180 $\pm$ 5.906) × 10 <sup>-9</sup><br>(1.864 $\pm$ 0.587) × 10 <sup>-9</sup><br>(0.530 $\pm$ 1.017) × 10 <sup>5</sup><br>6.00 $\pm$ 0.00<br>50.0 $\pm$ 0.1<br>(3.084 $\pm$ 4.322) × 10 <sup>-3</sup> | Table 6: Parameterlist and basic statemean $\pm \sigma$ Count0.800 $\pm$ 0.2496344216742 $\pm$ 18463442162.39 $\pm$ 8.4963442160.614 $\pm$ 0.4196344216(4.434 $\pm$ 26.968) $\times 10^{-4}$ 6344216(1.254 $\pm$ 1.184) $\times 10^{-4}$ 6344216(1.254 $\pm$ 1.184) $\times 10^{-4}$ 63442160.384 $\pm$ 0.1226344216(0.325 $\pm$ 3.684) $\times 10^{5}$ 6344216(0.325 $\pm$ 3.684) $\times 10^{5}$ 6344216(2.180 $\pm$ 5.906) $\times 10^{-9}$ 6344216(1.864 $\pm$ 0.587) $\times 10^{-9}$ 6344216(0.530 $\pm$ 1.017) $\times 10^{5}$ 63442166.00 $\pm$ 0.006344216(3.084 $\pm$ 4.322) $\times 10^{-3}$ 6344216 | Table 6: Parameterlist and basic statistics for the and<br>mean $\pm \sigma$ CountIQR0.800 $\pm$ 0.24963442160.500742 $\pm$ 18463442162712.39 $\pm$ 8.4963442161.230.614 $\pm$ 0.41963442163.531 $\times$ 10 <sup>-5</sup> 0.679 $\pm$ 0.28563442163.531 $\times$ 10 <sup>-5</sup> 0.679 $\pm$ 0.28563442161.045 $\times$ 10 <sup>-4</sup> 789 $\pm$ 15363442161.045 $\times$ 10 <sup>-4</sup> 789 $\pm$ 15363442160.138(0.325 $\pm$ 3.684) $\times$ 10 <sup>5</sup> 63442162.213 $\times$ 10 <sup>4</sup> 4.07 $\pm$ 1.1163442160.0(2.180 $\pm$ 5.906) $\times$ 10 <sup>-9</sup> 63442167.146 $\times$ 10 <sup>-10</sup> (0.530 $\pm$ 1.017) $\times$ 10 <sup>5</sup> 63442164.463 $\times$ 10 <sup>4</sup> 6.00 $\pm$ 0.0063442160.050.0 $\pm$ 0.163442160.0(3.084 $\pm$ 4.322) $\times$ 10 <sup>-3</sup> 63442163.873 $\times$ 10 <sup>-3</sup> | Table 6: Parameterlist and basic statistics for the analysis for observed<br>mean $\pm \sigma$ CountIQRMedian0.800 $\pm$ 0.24963442160.5001.000742 $\pm$ 18463442162717552.39 $\pm$ 8.4963442161.230.4640.614 $\pm$ 0.41963442163.531 $\times$ 10 <sup>-5</sup> 1.000 $\times$ 10 <sup>-4</sup> 0.679 $\pm$ 0.28563442160.4810.738(1.254 $\pm$ 1.184) $\times$ 10 <sup>-4</sup> 63442161.045 $\times$ 10 <sup>-4</sup> 9.321 $\times$ 10 <sup>-5</sup> 789 $\pm$ 15363442162.588170.384 $\pm$ 0.12263442162.213 $\times$ 10 <sup>4</sup> 2.474 $\times$ 10 <sup>4</sup> 4.07 $\pm$ 1.1163442160.04.00(2.180 $\pm$ 5.906) $\times$ 10 <sup>-9</sup> 63442167.146 $\times$ 10 <sup>-10</sup> 1.783 $\times$ 10 <sup>-9</sup> (0.530 $\pm$ 1.017) $\times$ 10 <sup>5</sup> 63442164.463 $\times$ 10 <sup>4</sup> 9.723 $\times$ 10 <sup>3</sup> 6.00 $\pm$ 0.0063442160.050.0(3.084 $\pm$ 4.322) $\times$ 10 <sup>-3</sup> 63442160.050.0 | Table 6: Parameterlist and basic statistics for the analysis for observations over land<br>mean $\pm \sigma$ CountIQRMedianMinimum0.800 $\pm$ 0.24963442160.5001.0000.350742 $\pm$ 18463442162717551302.39 $\pm$ 8.4963442161.230.4643.052 $\times$ 10 <sup>-4</sup> 0.614 $\pm$ 0.41963442160.8670.8860.0(4.434 $\pm$ 26.968) $\times$ 10 <sup>-4</sup> 63442163.531 $\times$ 10 <sup>-5</sup> 1.000 $\times$ 10 <sup>-4</sup> 6.622 $\times$ 10 <sup>-9</sup> 0.679 $\pm$ 0.28563442160.4810.7381.182 $\times$ 10 <sup>-2</sup> (1.254 $\pm$ 1.184) $\times$ 10 <sup>-4</sup> 63442161.045 $\times$ 10 <sup>-4</sup> 9.321 $\times$ 10 <sup>-5</sup> 1.270 $\times$ 10 <sup>-5</sup> 789 $\pm$ 15363442162.588171300.384 $\pm$ 0.12263442162.213 $\times$ 10 <sup>4</sup> 2.474 $\times$ 10 <sup>4</sup> 2704.07 $\pm$ 1.1163442160.04.001.000(2.180 $\pm$ 5.906) $\times$ 10 <sup>-9</sup> 63442167.146 $\times$ 10 <sup>-10</sup> 1.783 $\times$ 10 <sup>-9</sup> 5.124 $\times$ 10 <sup>-10</sup> (0.530 $\pm$ 1.017) $\times$ 10 <sup>5</sup> 63442160.06.006.0050.0 $\pm$ 0.163442160.06.006.0050.0 $\pm$ 0.163442160.06.006.0050.0 $\pm$ 0.163442160.050.048.0(3.084 $\pm$ 4.322) $\times$ 10 <sup>-3</sup> 63442163.873 $\times$ 10 <sup>-3</sup> 3.089 $\times$ 10 <sup>-3</sup> -8.742 $\times$ 10 <sup>-2</sup> | Table 6: Parameterlist and basic statistics for the analysis for observations over land<br>mean $\pm \sigma$ CountIQRMedianMinimumMaximum0.800 $\pm 0.249$ 63442160.5001.0000.3501.000742 $\pm 184$ 63442162717551301.068 $\times 10^3$ 2.39 $\pm 8.49$ 63442161.230.4643.052 $\times 10^{-4}$ 1.234 $\times 10^3$ 0.614 $\pm 0.419$ 63442160.8670.8860.01.000(4.434 $\pm 26.968) \times 10^{-4}$ 63442163.531 $\times 10^{-5}$ 1.000 $\times 10^{-4}$ 6.622 $\times 10^{-9}$ 0.9130.679 $\pm 0.285$ 63442160.4810.7381.182 $\times 10^{-2}$ 3.63(1.254 $\pm 1.184) \times 10^{-4}$ 63442161.045 $\times 10^{-4}$ 9.321 $\times 10^{-5}$ 1.270 $\times 10^{-5}$ 1.965 $\times 10^{-3}$ 789 $\pm 153$ 63442162.588171301.059 $\times 10^3$ 0.384 $\pm 0.122$ 63442160.1380.3570.13710.1(0.325 $\pm 3.684) \times 10^5$ 63442162.213 $\times 10^4$ 2.474 $\times 10^4$ 2703.024 $\times 10^8$ 4.07 $\pm 1.11$ 63442160.04.001.00014.0(2.180 $\pm 5.906) \times 10^{-9}$ 63442167.146 $\times 10^{-10}$ 1.783 $\times 10^{-9}$ 5.124 $\times 10^{-10}$ 5.606 $\times 10^{-9}$ (0.530 $\pm 1.017) \times 10^5$ 63442160.06.006.006.0050.0(0.50 $\pm 0.11$ 63442160.050.048.050.0(3.084 $\pm 4.322) \times 10^{-3}$ 63442160.050.048.050.0(2.180 $\pm 5.906) \times $ | Table 6: Parameterlist and basic statistics for the analysis for observations over landMaximum25 % percentile $mean \pm \sigma$ CountIQRMedianMinimumMaximum25 % percentile $0.800 \pm 0.249$ $6344216$ $0.500$ $1.000$ $0.350$ $1.000$ $0.500$ $742 \pm 184$ $6344216$ $271$ $755$ $130$ $1.068 \times 10^3$ $627$ $2.39 \pm 8.49$ $6344216$ $1.23$ $0.464$ $3.052 \times 10^{-4}$ $1.234 \times 10^3$ $0.308$ $0.614 \pm 0.419$ $6344216$ $0.867$ $0.886$ $0.0$ $1.000$ $0.133$ $(4.434 \pm 26.968) \times 10^{-4}$ $6344216$ $3.531 \times 10^{-5}$ $1.000 \times 10^{-4}$ $6.622 \times 10^{-9}$ $0.913$ $1.000 \times 10^{-4}$ $0.679 \pm 0.285$ $6344216$ $0.481$ $0.738$ $1.182 \times 10^{-2}$ $3.63$ $0.422$ $(1.254 \pm 1.184) \times 10^{-4}$ $6344216$ $1.045 \times 10^{-4}$ $9.321 \times 10^{-5}$ $1.965 \times 10^{-3}$ $4.587 \times 10^{-5}$ $789 \pm 153$ $6344216$ $2.18$ $8.17$ $130$ $1.059 \times 10^3$ $665$ $0.384 \pm 0.122$ $6344216$ $2.13 \times 10^4$ $2.474 \times 10^4$ $270$ $3.024 \times 10^8$ $1.538 \times 10^4$ $4.07 \pm 1.11$ $6344216$ $0.0$ $4.00$ $1.000$ $14.0$ $4.00$ $(2.180 \pm 5.906) \times 10^{-9}$ $6344216$ $7.146 \times 10^{-10}$ $1.783 \times 10^{-9}$ $5.124 \times 10^{-10}$ $5.606 \times 10^{-9}$ $1.465 \times 10^{-9}$ $(0.530 \pm 1.017) \times 10^5$ $6344216$ $0.00$ $6.00$ $6.00$ $6.00$ $6.00$ $6.00$ </td |

# Granule outlines



Figure 1: Outline of the granules.

## 4 Input data monitoring



Figure 2: Input data per granule



Figure 3: Fraction of pixels with specific warnings and errors during processing

# 6 World maps



Figure 4: Map of "Cloud pressure" for 2025-03-02 to 2025-03-03





Figure 5: Map of "Cloud fraction" for 2025-03-02 to 2025-03-03





Figure 6: Map of "Scene albedo" for 2025-03-02 to 2025-03-03





Figure 7: Map of "Apparent scene pressure" for 2025-03-02 to 2025-03-03





Figure 8: Map of "Fluorescence" for 2025-03-02 to 2025-03-03



Figure 9: Map of the number of observations for 2025-03-02 to 2025-03-03

# 7 Zonal average



Figure 10: Zonal average of "QA value" for 2025-03-02 to 2025-03-03.



Figure 11: Zonal average of "Cloud pressure" for 2025-03-02 to 2025-03-03.



Figure 12: Zonal average of "Cloud pressure precision" for 2025-03-02 to 2025-03-03.



Figure 13: Zonal average of "Cloud fraction" for 2025-03-02 to 2025-03-03.



Figure 14: Zonal average of "Cloud fraction precision" for 2025-03-02 to 2025-03-03.



Figure 15: Zonal average of "Scene albedo" for 2025-03-02 to 2025-03-03.



Figure 16: Zonal average of "Scene albedo precision" for 2025-03-02 to 2025-03-03.



Figure 17: Zonal average of "Apparent scene pressure" for 2025-03-02 to 2025-03-03.



Figure 18: Zonal average of "Apparent scene pressure precision" for 2025-03-02 to 2025-03-03.



Figure 19: Zonal average of " $\chi^2$ " for 2025-03-02 to 2025-03-03.



Figure 20: Zonal average of "Number of iterations" for 2025-03-02 to 2025-03-03.



Figure 21: Zonal average of "Fluorescence" for 2025-03-02 to 2025-03-03.



Figure 22: Zonal average of "Fluorescence precision" for 2025-03-02 to 2025-03-03.



Figure 23: Zonal average of " $\chi^2$  of fluorescence retrieval" for 2025-03-02 to 2025-03-03.



Figure 24: Zonal average of "Degrees of freedom for signal of fluorescence retrieval" for 2025-03-02 to 2025-03-03.



Figure 25: Zonal average of "Number of points in the spectrum" for 2025-03-02 to 2025-03-03.



Figure 26: Zonal average of "Spectral offset ( $\lambda_{true} - \lambda_{nominal}$ )" for 2025-03-02 to 2025-03-03.

# 8 Histograms

The definitions of the parameters given in this section can be found in section 2.



Figure 27: Histogram of "QA value" for 2025-03-02 to 2025-03-03



Figure 28: Histogram of "Cloud pressure" for 2025-03-02 to 2025-03-03



Figure 29: Histogram of "Cloud pressure precision" for 2025-03-02 to 2025-03-03



Figure 30: Histogram of "Cloud fraction" for 2025-03-02 to 2025-03-03



Figure 31: Histogram of "Cloud fraction precision" for 2025-03-02 to 2025-03-03



Figure 32: Histogram of "Scene albedo" for 2025-03-02 to 2025-03-03



Figure 33: Histogram of "Scene albedo precision" for 2025-03-02 to 2025-03-03



Figure 34: Histogram of "Apparent scene pressure" for 2025-03-02 to 2025-03-03



Figure 35: Histogram of "Apparent scene pressure precision" for 2025-03-02 to 2025-03-03



Figure 36: Histogram of " $\chi^2$ " for 2025-03-02 to 2025-03-03



Figure 37: Histogram of "Number of iterations" for 2025-03-02 to 2025-03-03



Figure 38: Histogram of "Fluorescence" for 2025-03-02 to 2025-03-03



Figure 39: Histogram of "Fluorescence precision" for 2025-03-02 to 2025-03-03



Figure 40: Histogram of " $\chi^2$  of fluorescence retrieval" for 2025-03-02 to 2025-03-03



Figure 41: Histogram of "Degrees of freedom for signal of fluorescence retrieval" for 2025-03-02 to 2025-03-03



Figure 42: Histogram of "Number of points in the spectrum" for 2025-03-02 to 2025-03-03



Figure 43: Histogram of "Spectral offset ( $\lambda_{true} - \lambda_{nominal}$ )" for 2025-03-02 to 2025-03-03

## 9 Along track statistics

The TROPOMI instrument uses different binned detector rows for different viewing directions. In this section statistics are presented for each of the binned rows in the instrument.



Figure 44: Along track statistics of "QA value" for 2025-03-02 to 2025-03-03



Figure 45: Along track statistics of "Cloud pressure" for 2025-03-02 to 2025-03-03



Figure 46: Along track statistics of "Cloud pressure precision" for 2025-03-02 to 2025-03-03



Figure 47: Along track statistics of "Cloud fraction" for 2025-03-02 to 2025-03-03



Figure 48: Along track statistics of "Cloud fraction precision" for 2025-03-02 to 2025-03-03



Figure 49: Along track statistics of "Scene albedo" for 2025-03-02 to 2025-03-03



Figure 50: Along track statistics of "Scene albedo precision" for 2025-03-02 to 2025-03-03



Figure 51: Along track statistics of "Apparent scene pressure" for 2025-03-02 to 2025-03-03



Figure 52: Along track statistics of "Apparent scene pressure precision" for 2025-03-02 to 2025-03-03



Figure 53: Along track statistics of " $\chi^2$ " for 2025-03-02 to 2025-03-03



Figure 54: Along track statistics of "Number of iterations" for 2025-03-02 to 2025-03-03



Figure 55: Along track statistics of "Fluorescence" for 2025-03-02 to 2025-03-03



Figure 56: Along track statistics of "Fluorescence precision" for 2025-03-02 to 2025-03-03



Figure 57: Along track statistics of " $\chi^2$  of fluorescence retrieval" for 2025-03-02 to 2025-03-03



Figure 58: Along track statistics of "Degrees of freedom for signal of fluorescence retrieval" for 2025-03-02 to 2025-03-03



Figure 59: Along track statistics of "Number of points in the spectrum" for 2025-03-02 to 2025-03-03



Figure 60: Along track statistics of "Spectral offset ( $\lambda_{true} - \lambda_{nominal}$ )" for 2025-03-02 to 2025-03-03

## 10 Coincidence density

To investigate the relation between parameters scatter density plots are produced. These include some 'hidden' parameters, latitude and the solar- and viewing geometries, in addition to all configured parameters. All combinations of pairs of parameters are included *once*, in one direction alone.

### Contents

| 1  | Short Introduction                | 1  |
|----|-----------------------------------|----|
|    | 1.1 The list of parameters        | 1  |
| 2  | Definitions                       | 1  |
| 3  | Granule outlines                  | 8  |
| 4  | Input data monitoring             | 9  |
| 5  | Warnings and errors               | 10 |
| 6  | World maps                        | 11 |
| 7  | Zonal average                     | 17 |
| 8  | Histograms                        | 34 |
| 9  | Along track statistics            | 51 |
| 10 | Coincidence density               | 68 |
| 11 | Copyright information of 'PyCAMA' | 68 |

## **List of Figures**

| 1  | Outline of the granules.                                                                                 | 8  |
|----|----------------------------------------------------------------------------------------------------------|----|
| 2  | Input data per granule                                                                                   | 9  |
| 3  | Fraction of pixels with specific warnings and errors during processing                                   | 10 |
| 4  | Map of "Cloud pressure" for 2025-03-02 to 2025-03-03                                                     | 11 |
| 5  | Map of "Cloud fraction" for 2025-03-02 to 2025-03-03                                                     | 12 |
| 6  | Map of "Scene albedo" for 2025-03-02 to 2025-03-03                                                       | 13 |
| 7  | Map of "Apparent scene pressure" for 2025-03-02 to 2025-03-03                                            | 14 |
| 8  | Map of "Fluorescence" for 2025-03-02 to 2025-03-03                                                       | 15 |
| 9  | Map of the number of observations for 2025-03-02 to 2025-03-03                                           | 16 |
| 10 | Zonal average of "QA value" for 2025-03-02 to 2025-03-03.                                                | 17 |
| 11 | Zonal average of "Cloud pressure" for 2025-03-02 to 2025-03-03.                                          | 18 |
| 12 | Zonal average of "Cloud pressure precision" for 2025-03-02 to 2025-03-03.                                | 19 |
| 13 | Zonal average of "Cloud fraction" for 2025-03-02 to 2025-03-03.                                          | 20 |
| 14 | Zonal average of "Cloud fraction precision" for 2025-03-02 to 2025-03-03.                                | 21 |
| 15 | Zonal average of "Scene albedo" for 2025-03-02 to 2025-03-03.                                            | 22 |
| 16 | Zonal average of "Scene albedo precision" for 2025-03-02 to 2025-03-03.                                  | 23 |
| 17 | Zonal average of "Apparent scene pressure" for 2025-03-02 to 2025-03-03.                                 | 24 |
| 18 | Zonal average of "Apparent scene pressure precision" for 2025-03-02 to 2025-03-03                        | 25 |
| 19 | Zonal average of " $\chi^2$ " for 2025-03-02 to 2025-03-03                                               | 26 |
| 20 | Zonal average of "Number of iterations" for 2025-03-02 to 2025-03-03.                                    | 27 |
| 21 | Zonal average of "Fluorescence" for 2025-03-02 to 2025-03-03.                                            | 28 |
| 22 | Zonal average of "Fluorescence precision" for 2025-03-02 to 2025-03-03                                   | 29 |
| 23 | Zonal average of " $\chi^2$ of fluorescence retrieval" for 2025-03-02 to 2025-03-03                      | 30 |
| 24 | Zonal average of "Degrees of freedom for signal of fluorescence retrieval" for 2025-03-02 to 2025-03-03. | 31 |
| 25 | Zonal average of "Number of points in the spectrum" for 2025-03-02 to 2025-03-03.                        | 32 |
| 26 | Zonal average of "Spectral offset ( $\lambda_{true} - \lambda_{nominal}$ )" for 2025-03-02 to 2025-03-03 | 33 |
| 27 | Histogram of "QA value" for 2025-03-02 to 2025-03-03                                                     | 34 |
| 28 | Histogram of "Cloud pressure" for 2025-03-02 to 2025-03-03                                               | 35 |
| 29 | Histogram of "Cloud pressure precision" for 2025-03-02 to 2025-03-03                                     | 36 |

| 30 | Histogram of "Cloud fraction" for 2025-03-02 to 2025-03-03                                                       | 37 |
|----|------------------------------------------------------------------------------------------------------------------|----|
| 31 | Histogram of "Cloud fraction precision" for 2025-03-02 to 2025-03-03                                             | 38 |
| 32 | Histogram of "Scene albedo" for 2025-03-02 to 2025-03-03                                                         | 39 |
| 33 | Histogram of "Scene albedo precision" for 2025-03-02 to 2025-03-03                                               | 40 |
| 34 | Histogram of "Apparent scene pressure" for 2025-03-02 to 2025-03-03                                              | 41 |
| 35 | Histogram of "Apparent scene pressure precision" for 2025-03-02 to 2025-03-03                                    | 42 |
| 36 | Histogram of " $\chi^2$ " for 2025-03-02 to 2025-03-03                                                           | 43 |
| 37 | Histogram of "Number of iterations" for 2025-03-02 to 2025-03-03                                                 | 44 |
| 38 | Histogram of "Fluorescence" for 2025-03-02 to 2025-03-03                                                         | 45 |
| 39 | Histogram of "Fluorescence precision" for 2025-03-02 to 2025-03-03                                               | 46 |
| 40 | Histogram of " $\chi^2$ of fluorescence retrieval" for 2025-03-02 to 2025-03-03                                  | 47 |
| 41 | Histogram of "Degrees of freedom for signal of fluorescence retrieval" for 2025-03-02 to 2025-03-03              | 48 |
| 42 | Histogram of "Number of points in the spectrum" for 2025-03-02 to 2025-03-03                                     | 49 |
| 43 | Histogram of "Spectral offset $(\lambda_{true} - \lambda_{nominal})$ " for 2025-03-02 to 2025-03-03              | 50 |
| 44 | Along track statistics of "QA value" for 2025-03-02 to 2025-03-03                                                | 51 |
| 45 | Along track statistics of "Cloud pressure" for 2025-03-02 to 2025-03-03                                          | 52 |
| 46 | Along track statistics of "Cloud pressure precision" for 2025-03-02 to 2025-03-03                                | 53 |
| 47 | Along track statistics of "Cloud fraction" for 2025-03-02 to 2025-03-03                                          | 54 |
| 48 | Along track statistics of "Cloud fraction precision" for 2025-03-02 to 2025-03-03                                | 55 |
| 49 | Along track statistics of "Scene albedo" for 2025-03-02 to 2025-03-03                                            | 56 |
| 50 | Along track statistics of "Scene albedo precision" for 2025-03-02 to 2025-03-03                                  | 57 |
| 51 | Along track statistics of "Apparent scene pressure" for 2025-03-02 to 2025-03-03                                 | 58 |
| 52 | Along track statistics of "Apparent scene pressure precision" for 2025-03-02 to 2025-03-03                       | 59 |
| 53 | Along track statistics of " $\chi^2$ " for 2025-03-02 to 2025-03-03                                              | 60 |
| 54 | Along track statistics of "Number of iterations" for 2025-03-02 to 2025-03-03                                    | 61 |
| 55 | Along track statistics of "Fluorescence" for 2025-03-02 to 2025-03-03                                            | 62 |
| 56 | Along track statistics of "Fluorescence precision" for 2025-03-02 to 2025-03-03                                  | 63 |
| 57 | Along track statistics of " $\chi^2$ of fluorescence retrieval" for 2025-03-02 to 2025-03-03                     | 64 |
| 58 | Along track statistics of "Degrees of freedom for signal of fluorescence retrieval" for 2025-03-02 to 2025-03-03 | 65 |
| 59 | Along track statistics of "Number of points in the spectrum" for 2025-03-02 to 2025-03-03                        | 66 |
| 60 | Along track statistics of "Spectral offset $(\lambda_{true} - \lambda_{nominal})$ " for 2025-03-02 to 2025-03-03 | 67 |

### **List of Tables**

| 1 | Parameterlist and basic statistics for the analysis                                             |
|---|-------------------------------------------------------------------------------------------------|
| 2 | Percentile ranges                                                                               |
| 3 | Parameterlist and basic statistics for the analysis for observations in the northern hemisphere |
| 4 | Parameterlist and basic statistics for the analysis for observations in the southern hemisphere |
| 5 | Parameterlist and basic statistics for the analysis for observations over water                 |
| 6 | Parameterlist and basic statistics for the analysis for observations over land                  |

## 11 Copyright information of 'PyCAMA'

Copyright © 2005-2023, Maarten Sneep (KNMI).

#### All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
- 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

This software is provided by the copyright holders and contributors "as is" and any express or implied warranties, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose are disclaimed. In no event shall the copyright holder or contributors be liable for any direct, indirect, incidental, special, exemplary, or consequential damages (including, but not limited to, procurement of substitute goods or services; loss of use, data, or profits; or business interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence or otherwise) arising in any way out of the use of this software, even if advised of the possibility of such damage.

Maarten Sneep (maarten.sneep@knmi.nl).