PyCAMA report generated by tropl2-proc

tropl2-proc

2025-03-06 (02:15)

1 Short Introduction

1.1 The list of parameters

You may want to keep the list given in table 1 at hand when viewing the results.

2 Definitions

The averages shown here are unweighed averages:

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i \tag{1}$$

with N the number of observations in the dataset.

The spread of the measurements is indicated with the variance V(x), or rather the standard deviation $\sigma(x) = \sqrt{V(x)}$.

$$V(x) = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2$$
(2)

We also report the more robust statistics median, minimum, maximum, various percentiles and inter quartile range.

The median m is the value of parameter x for which half of the observations of x is smaller than m:

$$P(x \le m) = P(x \ge m) = \int_{-\infty}^{m} f(x) \, \mathrm{d}x = \frac{1}{2}$$
(3)

with f(x) the probability density function.

The median is a special case of a percentile. Instead of $\frac{1}{2}$ in equation 3, other threshold values can be used. We report results for 1%, 5%, 10%, 15.9%, 25%, 75%, 84.1%, 90%, 95% and 99%. The inter quartile range is the difference between the 75% and 25% percentiles. Similarly the minimum and maximum values correspond to the 0% and 100% percentiles respectively.

For normally distributed parameters the mean and median are the same, while the $\mu \pm \sigma$ values and the 15.9% and 84.1% percentiles coincide.

To get a measure for the relation of one variable $x_{(k)}$ with another $x_{(l)}$, we calculate the covariance matrix C_{kl} .

$$C_{kl} = C(x_{(k)}, x_{(l)}) = \frac{1}{N-1} \sum_{i=1}^{N} (x_{(k),i} - \overline{x_{(k)}}) (x_{(l),i} - \overline{x_{(l)}})$$
(4)

Rather than a dimensionally dependent covariance, it is often easier to interpret a correlation matrix R_{kl} , a matrix of Pearson's *r* coefficients:

$$R_{kl} = R(x_{(k)}, x_{(l)}) = \frac{C_{kl}}{\sqrt{C_{kk}C_{ll}}} = \frac{C_{kl}}{\sqrt{V(x_k)V(x_l)}}$$
(5)

The diagonal elements of the covariance matrix are the variances of the elements, $V(x_{(k)}) = C_{kk}$ and obviously $R_{kk} = 1$.

Table 1: Parameterlist and basic statistics for the	e anal	ysi	ls
---	--------	-----	----

Variable	mean $\pm \sigma$	Count	Mode	IQR	Median	Minimum	Maximum
qa value [1]	0.929 ± 0.166	23165718	0.995	0.0	1.000	0.350	1.000
cloud pressure crb [hPa]	786 ± 191	23165718	1.005×10^3	279	841	130	1.035×10^3
cloud pressure crb precision [hPa]	2.51 ± 9.69	23165718	0.750	1.24	0.564	$3.052 imes 10^{-4}$	1.426×10^3
cloud fraction crb [1]	0.467 ± 0.387	23165718	0.996	0.828	0.381	0.0	1.000
cloud fraction crb precision [1]	$(2.275 \pm 16.385) \times 10^{-4}$	23165718	$2.500 imes10^{-4}$	$6.024 imes10^{-5}$	7.763×10^{-5}	5.665×10^{-9}	0.627
scene albedo [1]	0.458 ± 0.330	23165718	1.500×10^{-2}	0.607	0.439	$-5.477 imes 10^{-3}$	4.14
scene albedo precision [1]	$(8.455 \pm 10.118) \times 10^{-5}$	23165718	$2.500 imes10^{-4}$	$6.423 imes10^{-5}$	$5.336 imes10^{-5}$	$1.023 imes 10^{-5}$	$1.014 imes10^{-2}$
apparent scene pressure [hPa]	819 ± 168	23165718	1.008×10^3	243	870	130	1.032×10^3
apparent scene pressure precision [hPa]	0.957 ± 1.737	23165718	0.500	0.460	0.423	0.113	64.1
chi square [1]	$(0.218 \pm 1.651) \times 10^5$	23165718	0.150	$2.409 imes 10^4$	$1.638 imes 10^4$	48.8	$1.900 imes 10^8$
number of iterations [1]	3.37 ± 1.08	23165718	3.23	1.000	3.00	1.000	14.0
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(8.011 \pm 68.189) \times 10^{-10}$	23165718	2.500×10^{-10}	$4.962 imes 10^{-9}$	9.538×10^{-10}	-1.697×10^{-6}	$1.974 imes10^{-6}$
fluorescence precision [mol $s^{-1} m^{-2} nm^{-1} sr^{-1}$]	$(1.726 \pm 0.675) \times 10^{-9}$	23165718	8.500×10^{-10}	$9.704 imes 10^{-10}$	1.665×10^{-9}	$4.138 imes 10^{-10}$	5.624×10^{-9}
chi square fluorescence [1]	$(0.484 \pm 0.927) \times 10^5$	23165718	750	$4.267 imes 10^4$	$1.340 imes 10^4$	103	$6.407 imes 10^6$
degrees of freedom fluorescence [1]	6.00 ± 0.00	23165718	5.95	0.0	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	23165718	49.7	0.0	50.0	37.0	50.0
wavelength calibration offset [nm]	$(3.017 \pm 8.524) \times 10^{-3}$	23165718	$2.800 imes 10^{-3}$	5.530×10^{-3}	3.053×10^{-3}	-0.199	0.206

			Table 2:	Percentile rang	jes					
Variable	1 %	5%	10 %	15.9 %	25 %	75 %	84.1 %	90%	95 %	99 %
qa value [1]	0.500	0.500	0.500	0.900	1.000	1.000	1.000	1.000	1.000	1.000
cloud pressure crb [hPa]	254	406	508	584	662	940	971	991	1.008×10^3	1.019×10^3
cloud pressure crb precision [hPa]	0.170	0.238	0.266	0.290	0.330	1.57	2.74	4.63	9.29	32.5
cloud fraction crb [1]	$5.505 imes10^{-4}$	$1.021 imes 10^{-2}$	$2.274 imes10^{-2}$	$4.164 imes 10^{-2}$	8.219×10^{-2}	0.910	1.000	1.000	1.000	1.000
cloud fraction crb precision [1]	$1.971 imes10^{-5}$	$2.249 imes10^{-5}$	$2.527 imes 10^{-5}$	$2.898 imes10^{-5}$	$3.976 imes 10^{-5}$	$1.000 imes 10^{-4}$	$1.224 imes 10^{-4}$	$2.099 imes 10^{-4}$	$5.997 imes10^{-4}$	2.958×10^{-3}
scene albedo [1]	$8.098 imes 10^{-3}$	$1.943 imes 10^{-2}$	$3.583 imes10^{-2}$	$6.231 imes 10^{-2}$	0.136	0.743	0.842	0.902	0.966	1.14
scene albedo precision [1]	$1.285 imes 10^{-5}$	1.492×10^{-5}	$1.784 imes10^{-5}$	$2.258 imes 10^{-5}$	3.066×10^{-5}	9.489×10^{-5}	1.310×10^{-4}	1.767×10^{-4}	$2.721 imes 10^{-4}$	5.431×10^{-4}
apparent scene pressure [hPa]	346	486	572	628	710	952	979	997	1.010×10^{3}	1.019×10^{3}
apparent scene pressure precision [hPa]	0.213	0.244	0.267	0.288	0.317	0.777	1.27	2.04	3.62	8.48
chi square [1]	275	648	1.377×10^{3}	2.783×10^{3}	5.686×10^{3}	2.977×10^{4}	3.709×10^{4}	4.391×10^{4}	5.401×10^{4}	$8.054 imes 10^4$
number of iterations [1]	2.00	2.00	2.00	3.00	3.00	4.00	4.00	5.00	5.00	7.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	-1.522×10^{-8}	-7.422×10^{-9}	-4.585×10^{-9}	-2.898×10^{-9}	-1.439×10^{-9}	3.523×10^{-9}	4.874×10^{-9}	6.192×10^{-9}	$8.184 imes10^{-9}$	1.299×10^{-8}
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$7.433 imes 10^{-10}$	$8.258 imes 10^{-10}$	9.009×10^{-10}	9.975×10^{-10}	1.177×10^{-9}	2.148×10^{-9}	2.413×10^{-9}	2.647×10^{-9}	2.963×10^{-9}	3.621×10^{-9}
chi square fluorescence [1]	428	855	1.405×10^{3}	2.288×10^{3}	4.117×10^{3}	4.679×10^{4}	8.347×10^{4}	1.359×10^{5}	2.269×10^{5}	4.691×10^{5}
degrees of freedom fluorescence [1]	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0
wavelength calibration offset [nm]	-2.494×10^{-2}	-9.420×10^{-3}	-4.328×10^{-3}	-1.748×10^{-3}	$2.653 imes 10^{-4}$	5.795×10^{-3}	7.773×10^{-3}	$1.034 imes 10^{-2}$	$1.540 imes10^{-2}$	3.061×10^{-2}

Table	3: Parameterlist and basic s	statistics for	the analysis for	observations in	the northern hem	nisphere		
Variable	$ $ mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.946 ± 0.145	11466645	0.0	1.000	0.350	1.000	1.000	1.000
cloud pressure crb [hPa]	786 ± 196	11466645	266	845	130	1.035×10^3	676	941
cloud pressure crb precision [hPa]	2.60 ± 9.49	11466645	1.41	0.689	$3.052 imes 10^{-4}$	1.426×10^{3}	0.349	1.76
cloud fraction crb [1]	0.455 ± 0.388	11466645	0.836	0.340	0.0	1.000	7.997×10^{-2}	0.916
cloud fraction crb precision [1]	$(3.108 \pm 21.431) \times 10^{-4}$	11466645	$6.925 imes 10^{-5}$	$9.625 imes 10^{-5}$	$1.575 imes10^{-8}$	0.627	$4.689 imes 10^{-5}$	$1.161 imes 10^{-4}$
scene albedo [1]	0.481 ± 0.324	11466645	0.573	0.480	$-2.773 imes 10^{-3}$	4.14	0.184	0.757
scene albedo precision [1]	$(9.288 \pm 11.333) \times 10^{-5}$	11466645	$6.885 imes10^{-5}$	$5.703 imes 10^{-5}$	$1.072 imes 10^{-5}$	$3.824 imes 10^{-3}$	$3.235 imes 10^{-5}$	$1.012 imes 10^{-4}$
apparent scene pressure [hPa]	832 ± 162	11466645	200	881	130	1.032×10^3	754	954
apparent scene pressure precision [hPa]	0.793 ± 1.216	11466645	0.380	0.425	0.164	51.2	0.319	0.699
chi square [1]	$(0.250 \pm 1.685) \times 10^5$	11466645	$2.677 imes 10^4$	$1.793 imes 10^4$	73.3	$1.900 imes 10^8$	6.950×10^{3}	3.372×10^4
number of iterations [1]	3.62 ± 1.18	11466645	1.000	3.00	1.000	14.0	3.00	4.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.250\pm5.740)\times10^{-9}$	11466645	$4.943 imes 10^{-9}$	$1.408 imes 10^{-9}$	$-1.697 imes 10^{-6}$	$1.663 imes10^{-6}$	-1.026×10^{-9}	$3.917 imes10^{-9}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.729 \pm 0.664) \times 10^{-9}$	11466645	$9.510 imes 10^{-10}$	1.666×10^{-9}	$4.138 imes 10^{-10}$	$5.624 imes 10^{-9}$	$1.196 imes 10^{-9}$	2.147×10^{-9}
chi square fluorescence [1]	$(0.408 \pm 0.780) \times 10^5$	11466645	$3.524 imes 10^4$	$1.175 imes 10^4$	103	$3.818 imes 10^6$	4.283×10^{3}	3.952×10^{4}
degrees of freedom fluorescence [1]	6.00 ± 0.00	11466645	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	11466645	0.0	50.0	48.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(2.961 \pm 7.821) \times 10^{-3}$	11466645	5.263×10^{-3}	2.950×10^{-3}	-8.340×10^{-2}	8.810×10^{-2}	2.950×10^{-4}	5.558×10^{-3}

Table	4: Parameterlist and basic s	statistics for	the analysis for	observations in	the southern hem	isphere		
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.912 ± 0.182	11699073	0.0	1.000	0.350	1.000	1.000	1.000
cloud pressure crb [hPa]	786 ± 185	11699073	287	836	130	1.032×10^{3}	652	939
cloud pressure crb precision [hPa]	2.42 ± 9.87	11699073	1.02	0.481	1.343×10^{-3}	1.038×10^3	0.319	1.34
cloud fraction crb [1]	0.479 ± 0.385	11699073	0.820	0.426	0.0	1.000	8.509×10^{-2}	0.905
cloud fraction crb precision [1]	$(1.459 \pm 8.948) \times 10^{-4}$	11699073	$6.469 imes10^{-5}$	$6.747 imes10^{-5}$	5.665×10^{-9}	0.568	$3.531 imes 10^{-5}$	$1.000 imes 10^{-4}$
scene albedo [1]	0.435 ± 0.335	11699073	0.624	0.397	$-5.477 imes 10^{-3}$	4.10	0.102	0.726
scene albedo precision [1]	$(7.640 \pm 8.689) \times 10^{-5}$	11699073	$5.878 imes10^{-5}$	$5.032 imes 10^{-5}$	1.023×10^{-5}	$1.014 imes10^{-2}$	2.921×10^{-5}	$8.800 imes10^{-5}$
apparent scene pressure [hPa]	805 ± 173	11699073	277	854	130	1.032×10^3	673	950
apparent scene pressure precision [hPa]	1.12 ± 2.12	11699073	0.574	0.421	0.113	64.1	0.316	0.890
chi square [1]	$(0.188 \pm 1.616) \times 10^5$	11699073	$2.207 imes 10^4$	$1.512 imes 10^4$	48.8	$1.760 imes 10^8$	4.652×10^{3}	$2.672 imes 10^4$
number of iterations [1]	3.12 ± 0.90	11699073	1.000	3.00	1.000	14.0	3.00	4.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(3.613 \pm 77.066) \times 10^{-10}$	11699073	$4.888 imes10^{-9}$	5.210×10^{-10}	$-1.690 imes 10^{-6}$	$1.974 imes10^{-6}$	-1.809×10^{-9}	$3.079 imes 10^{-9}$
fluorescence precision [mol $s^{-1} m^{-2} nm^{-1} sr^{-1}$]	$(1.722 \pm 0.685) \times 10^{-9}$	11699073	$9.932 imes 10^{-10}$	1.664×10^{-9}	$5.264 imes 10^{-10}$	5.613×10^{-9}	1.156×10^{-9}	$2.149 imes 10^{-9}$
chi square fluorescence [1]	$(0.560 \pm 1.046) \times 10^5$	11699073	$5.089 imes 10^4$	1.556×10^4	128	$6.407 imes 10^6$	3.899×10^{3}	$5.479 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	11699073	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	11699073	0.0	50.0	37.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(3.071 \pm 9.161) \times 10^{-3}$	11699073	$5.814 imes 10^{-3}$	3.161×10^{-3}	-0.199	0.206	2.311×10^{-4}	6.045×10^{-3}

	Table 5: Parameterlist and	basic statis	tics for the anal	ysis for observa	tions over water			
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.978 ± 0.070	15022808	0.0	1.000	0.350	1.000	1.000	1.000
cloud pressure crb [hPa]	812 ± 185	15022808	249	873	130	1.035×10^3	705	954
cloud pressure crb precision [hPa]	2.51 ± 9.99	15022808	1.22	0.605	$4.883 imes10^{-4}$	668	0.346	1.56
cloud fraction crb [1]	0.406 ± 0.356	15022808	0.665	0.304	0.0	1.000	$6.744 imes10^{-2}$	0.733
cloud fraction crb precision [1]	$(1.439 \pm 11.525) \times 10^{-4}$	15022808	$6.495 imes 10^{-5}$	$5.335 imes 10^{-5}$	$5.908 imes10^{-8}$	0.319	$2.927 imes 10^{-5}$	9.422×10^{-5}
scene albedo [1]	0.354 ± 0.307	15022808	0.556	0.273	$-5.477 imes 10^{-3}$	3.66	$6.453 imes10^{-2}$	0.621
scene albedo precision [1]	$(6.954 \pm 9.280) \times 10^{-5}$	15022808	4.910×10^{-5}	$4.471 imes 10^{-5}$	$1.023 imes 10^{-5}$	$1.014 imes10^{-2}$	$2.303 imes10^{-5}$	$7.213 imes 10^{-5}$
apparent scene pressure [hPa]	831±173	15022808	228	887	130	1.032×10^3	738	966
apparent scene pressure precision [hPa]	1.27 ± 2.09	15022808	0.895	0.543	0.136	64.1	0.341	1.24
chi square [1]	$(0.162 \pm 1.268) \times 10^5$	15022808	$2.094 imes 10^4$	$1.039 imes 10^4$	48.8	$1.414 imes 10^8$	$2.918 imes 10^3$	$2.386 imes 10^4$
number of iterations [1]	3.02 ± 0.87	15022808	0.0	3.00	1.000	14.0	3.00	3.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(8.232\pm 636.259)\times 10^{-11}$	15022808	$4.304 imes10^{-9}$	1.957×10^{-10}	-1.697×10^{-6}	$1.974 imes10^{-6}$	$-1.824 imes10^{-9}$	$2.481 imes10^{-9}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.618 \pm 0.689) \times 10^{-9}$	15022808	1.028×10^{-9}	$1.486 imes 10^{-9}$	$4.138 imes 10^{-10}$	$5.624 imes 10^{-9}$	$1.041 imes 10^{-9}$	2.069×10^{-9}
chi square fluorescence [1]	$(0.432 \pm 0.832) \times 10^5$	15022808	$3.971 imes 10^4$	$1.410 imes 10^4$	103	$6.407 imes 10^6$	4.537×10^{3}	$4.425 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	15022808	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	15022808	0.0	50.0	48.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(2.988 \pm 9.924) \times 10^{-3}$	15022808	6.614×10^{-3}	3.057×10^{-3}	-0.199	0.206	$-3.153 imes10^{-4}$	6.298×10^{-3}

	Table 6: Parameterlist an	d basic stat	istics for the ana	alysis for observ	vations over land			
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.807 ± 0.247	6263897	0.500	1.000	0.350	1.000	0.500	1.000
cloud pressure crb [hPa]	734 ± 185	6263897	263	750	130	1.034×10^3	621	884
cloud pressure crb precision [hPa]	2.47 ± 9.00	6263897	1.25	0.475	$3.052 imes 10^{-4}$	1.426×10^3	0.310	1.56
cloud fraction crb [1]	0.602 ± 0.419	6263897	0.869	0.798	0.0	1.000	0.131	1.000
cloud fraction crb precision [1]	$(4.044 \pm 23.461) \times 10^{-4}$	6263897	3.676×10^{-5}	$1.000 imes 10^{-4}$	$5.665 imes 10^{-9}$	0.627	$9.773 imes10^{-5}$	$1.345 imes 10^{-4}$
scene albedo [1]	0.671 ± 0.284	6263897	0.485	0.723	3.050×10^{-3}	4.14	0.413	0.898
scene albedo precision [1]	$(1.207 \pm 1.148) \times 10^{-4}$	6263897	$9.825 imes 10^{-5}$	$8.849 imes 10^{-5}$	$1.215 imes 10^{-5}$	2.076×10^{-3}	$4.526 imes10^{-5}$	$1.435 imes 10^{-4}$
apparent scene pressure [hPa]	786 ± 151	6263897	255	813	130	1.032×10^3	662	918
apparent scene pressure precision [hPa]	0.383 ± 0.126	6263897	0.136	0.356	0.164	56.6	0.299	0.436
chi square [1]	$(0.322 \pm 2.178) \times 10^5$	6263897	2.110×10^4	2.470×10^{4}	229	$1.900 imes 10^8$	1.572×10^{4}	3.681×10^{4}
number of iterations [1]	4.06 ± 1.12	6263897	1.000	4.00	2.00	14.0	3.00	4.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(2.088 \pm 7.118) \times 10^{-9}$	6263897	$4.528 imes 10^{-9}$	$2.575 imes 10^{-9}$	$-1.690 imes 10^{-6}$	$1.807 imes10^{-6}$	$1.728 imes 10^{-10}$	4.701×10^{-9}
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.886 \pm 0.587) \times 10^{-9}$	6263897	7.232×10^{-10}	$1.794 imes 10^{-9}$	$5.253 imes 10^{-10}$	$5.538 imes10^{-9}$	$1.480 imes 10^{-9}$	$2.204 imes 10^{-9}$
chi square fluorescence [1]	$(0.528 \pm 1.013) \times 10^5$	6263897	$4.378 imes 10^4$	9.442×10^{3}	161	$1.692 imes 10^6$	$2.388 imes 10^3$	$4.616 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	6263897	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	6263897	0.0	50.0	48.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(3.053 \pm 4.390) \times 10^{-3}$	6263897	3.938×10^{-3}	3.054×10^{-3}	-7.103×10^{-2}	8.448×10^{-2}	1.091×10^{-3}	5.030×10^{-3}

Granule outlines

Figure 1: Outline of the granules.

4 Input data monitoring

Figure 2: Input data per granule

5 Warnings and errors

Figure 3: Fraction of pixels with specific warnings and errors during processing

6 World maps

Figure 4: Map of "Cloud pressure" for 2025-03-04 to 2025-03-04

2025-03-04

Figure 5: Map of "Cloud fraction" for 2025-03-04 to 2025-03-04

2025-03-04

Figure 6: Map of "Scene albedo" for 2025-03-04 to 2025-03-04

Figure 7: Map of "Apparent scene pressure" for 2025-03-04 to 2025-03-04

2025-03-04

Figure 8: Map of "Fluorescence" for 2025-03-04 to 2025-03-04

Figure 9: Map of the number of observations for 2025-03-04 to 2025-03-04

7 Zonal average

Figure 10: Zonal average of "QA value" for 2025-03-04 to 2025-03-04.

Figure 11: Zonal average of "Cloud pressure" for 2025-03-04 to 2025-03-04.

Figure 12: Zonal average of "Cloud pressure precision" for 2025-03-04 to 2025-03-04.

Figure 13: Zonal average of "Cloud fraction" for 2025-03-04 to 2025-03-04.

Figure 14: Zonal average of "Cloud fraction precision" for 2025-03-04 to 2025-03-04.

Figure 15: Zonal average of "Scene albedo" for 2025-03-04 to 2025-03-04.

Figure 16: Zonal average of "Scene albedo precision" for 2025-03-04 to 2025-03-04.

Figure 17: Zonal average of "Apparent scene pressure" for 2025-03-04 to 2025-03-04.

Figure 18: Zonal average of "Apparent scene pressure precision" for 2025-03-04 to 2025-03-04.

Figure 19: Zonal average of " χ^2 " for 2025-03-04 to 2025-03-04.

Figure 20: Zonal average of "Number of iterations" for 2025-03-04 to 2025-03-04.

Figure 21: Zonal average of "Fluorescence" for 2025-03-04 to 2025-03-04.

Figure 22: Zonal average of "Fluorescence precision" for 2025-03-04 to 2025-03-04.

Figure 23: Zonal average of " χ^2 of fluorescence retrieval" for 2025-03-04 to 2025-03-04.

Figure 24: Zonal average of "Degrees of freedom for signal of fluorescence retrieval" for 2025-03-04 to 2025-03-04.

Figure 25: Zonal average of "Number of points in the spectrum" for 2025-03-04 to 2025-03-04.

Figure 26: Zonal average of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-03-04 to 2025-03-04.

8 Histograms

The definitions of the parameters given in this section can be found in section 2.

Figure 27: Histogram of "QA value" for 2025-03-04 to 2025-03-04

Figure 28: Histogram of "Cloud pressure" for 2025-03-04 to 2025-03-04

Figure 29: Histogram of "Cloud pressure precision" for 2025-03-04 to 2025-03-04

Figure 30: Histogram of "Cloud fraction" for 2025-03-04 to 2025-03-04

Figure 31: Histogram of "Cloud fraction precision" for 2025-03-04 to 2025-03-04

Figure 32: Histogram of "Scene albedo" for 2025-03-04 to 2025-03-04

Figure 33: Histogram of "Scene albedo precision" for 2025-03-04 to 2025-03-04

Figure 34: Histogram of "Apparent scene pressure" for 2025-03-04 to 2025-03-04

Figure 35: Histogram of "Apparent scene pressure precision" for 2025-03-04 to 2025-03-04

Figure 36: Histogram of " χ^2 " for 2025-03-04 to 2025-03-04

Figure 37: Histogram of "Number of iterations" for 2025-03-04 to 2025-03-04

Figure 38: Histogram of "Fluorescence" for 2025-03-04 to 2025-03-04

Figure 39: Histogram of "Fluorescence precision" for 2025-03-04 to 2025-03-04

Figure 40: Histogram of " χ^2 of fluorescence retrieval" for 2025-03-04 to 2025-03-04

Figure 41: Histogram of "Degrees of freedom for signal of fluorescence retrieval" for 2025-03-04 to 2025-03-04

Figure 42: Histogram of "Number of points in the spectrum" for 2025-03-04 to 2025-03-04

Figure 43: Histogram of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-03-04 to 2025-03-04

9 Along track statistics

The TROPOMI instrument uses different binned detector rows for different viewing directions. In this section statistics are presented for each of the binned rows in the instrument.

Figure 44: Along track statistics of "QA value" for 2025-03-04 to 2025-03-04

Figure 45: Along track statistics of "Cloud pressure" for 2025-03-04 to 2025-03-04

Figure 46: Along track statistics of "Cloud pressure precision" for 2025-03-04 to 2025-03-04

Figure 47: Along track statistics of "Cloud fraction" for 2025-03-04 to 2025-03-04

Figure 48: Along track statistics of "Cloud fraction precision" for 2025-03-04 to 2025-03-04

Figure 49: Along track statistics of "Scene albedo" for 2025-03-04 to 2025-03-04

Figure 50: Along track statistics of "Scene albedo precision" for 2025-03-04 to 2025-03-04

Figure 51: Along track statistics of "Apparent scene pressure" for 2025-03-04 to 2025-03-04

Figure 52: Along track statistics of "Apparent scene pressure precision" for 2025-03-04 to 2025-03-04

Figure 53: Along track statistics of " χ^2 " for 2025-03-04 to 2025-03-04

Figure 54: Along track statistics of "Number of iterations" for 2025-03-04 to 2025-03-04

Figure 55: Along track statistics of "Fluorescence" for 2025-03-04 to 2025-03-04

Figure 56: Along track statistics of "Fluorescence precision" for 2025-03-04 to 2025-03-04

Figure 57: Along track statistics of " χ^2 of fluorescence retrieval" for 2025-03-04 to 2025-03-04

Figure 58: Along track statistics of "Degrees of freedom for signal of fluorescence retrieval" for 2025-03-04 to 2025-03-04

Figure 59: Along track statistics of "Number of points in the spectrum" for 2025-03-04 to 2025-03-04

Figure 60: Along track statistics of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-03-04 to 2025-03-04

10 Coincidence density

To investigate the relation between parameters scatter density plots are produced. These include some 'hidden' parameters, latitude and the solar- and viewing geometries, in addition to all configured parameters. All combinations of pairs of parameters are included *once*, in one direction alone.

Contents

1	Short Introduction	1
	1.1 The list of parameters	1
2	Definitions	1
3	Granule outlines	8
4	Input data monitoring	9
5	Warnings and errors	10
6	World maps	11
7	Zonal average	17
8	Histograms	34
9	Along track statistics	51
10	Coincidence density	68
11	Copyright information of 'PyCAMA'	68

List of Figures

1	Outline of the granules.	8
2	Input data per granule	9
3	Fraction of pixels with specific warnings and errors during processing	10
4	Map of "Cloud pressure" for 2025-03-04 to 2025-03-04	11
5	Map of "Cloud fraction" for 2025-03-04 to 2025-03-04	12
6	Map of "Scene albedo" for 2025-03-04 to 2025-03-04	13
7	Map of "Apparent scene pressure" for 2025-03-04 to 2025-03-04	14
8	Map of "Fluorescence" for 2025-03-04 to 2025-03-04	15
9	Map of the number of observations for 2025-03-04 to 2025-03-04	16
10	Zonal average of "QA value" for 2025-03-04 to 2025-03-04.	17
11	Zonal average of "Cloud pressure" for 2025-03-04 to 2025-03-04.	18
12	Zonal average of "Cloud pressure precision" for 2025-03-04 to 2025-03-04.	19
13	Zonal average of "Cloud fraction" for 2025-03-04 to 2025-03-04.	20
14	Zonal average of "Cloud fraction precision" for 2025-03-04 to 2025-03-04.	21
15	Zonal average of "Scene albedo" for 2025-03-04 to 2025-03-04.	22
16	Zonal average of "Scene albedo precision" for 2025-03-04 to 2025-03-04.	23
17	Zonal average of "Apparent scene pressure" for 2025-03-04 to 2025-03-04.	24
18	Zonal average of "Apparent scene pressure precision" for 2025-03-04 to 2025-03-04.	25
19	Zonal average of " χ^2 " for 2025-03-04 to 2025-03-04	26
20	Zonal average of "Number of iterations" for 2025-03-04 to 2025-03-04.	27
21	Zonal average of "Fluorescence" for 2025-03-04 to 2025-03-04.	28
22	Zonal average of "Fluorescence precision" for 2025-03-04 to 2025-03-04	29
23	Zonal average of " χ^2 of fluorescence retrieval" for 2025-03-04 to 2025-03-04	30
24	Zonal average of "Degrees of freedom for signal of fluorescence retrieval" for 2025-03-04 to 2025-03-04.	31
25	Zonal average of "Number of points in the spectrum" for 2025-03-04 to 2025-03-04.	32
26	Zonal average of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-03-04 to 2025-03-04	33
27	Histogram of "QA value" for 2025-03-04 to 2025-03-04	34
28	Histogram of "Cloud pressure" for 2025-03-04 to 2025-03-04	35
29	Histogram of "Cloud pressure precision" for 2025-03-04 to 2025-03-04	36

30	Histogram of "Cloud fraction" for 2025-03-04 to 2025-03-04	37
31	Histogram of "Cloud fraction precision" for 2025-03-04 to 2025-03-04	38
32	Histogram of "Scene albedo" for 2025-03-04 to 2025-03-04	39
33	Histogram of "Scene albedo precision" for 2025-03-04 to 2025-03-04	40
34	Histogram of "Apparent scene pressure" for 2025-03-04 to 2025-03-04	41
35	Histogram of "Apparent scene pressure precision" for 2025-03-04 to 2025-03-04	42
36	Histogram of " χ^2 " for 2025-03-04 to 2025-03-04	43
37	Histogram of "Number of iterations" for 2025-03-04 to 2025-03-04	44
38	Histogram of "Fluorescence" for 2025-03-04 to 2025-03-04	45
39	Histogram of "Fluorescence precision" for 2025-03-04 to 2025-03-04	46
40	Histogram of " χ^2 of fluorescence retrieval" for 2025-03-04 to 2025-03-04	47
41	Histogram of "Degrees of freedom for signal of fluorescence retrieval" for 2025-03-04 to 2025-03-04	48
42	Histogram of "Number of points in the spectrum" for 2025-03-04 to 2025-03-04	49
43	Histogram of "Spectral offset $(\lambda_{true} - \lambda_{nominal})$ " for 2025-03-04 to 2025-03-04	50
44	Along track statistics of "QA value" for 2025-03-04 to 2025-03-04	51
45	Along track statistics of "Cloud pressure" for 2025-03-04 to 2025-03-04	52
46	Along track statistics of "Cloud pressure precision" for 2025-03-04 to 2025-03-04	53
47	Along track statistics of "Cloud fraction" for 2025-03-04 to 2025-03-04	54
48	Along track statistics of "Cloud fraction precision" for 2025-03-04 to 2025-03-04	55
49	Along track statistics of "Scene albedo" for 2025-03-04 to 2025-03-04	56
50	Along track statistics of "Scene albedo precision" for 2025-03-04 to 2025-03-04	57
51	Along track statistics of "Apparent scene pressure" for 2025-03-04 to 2025-03-04	58
52	Along track statistics of "Apparent scene pressure precision" for 2025-03-04 to 2025-03-04	59
53	Along track statistics of " χ^2 " for 2025-03-04 to 2025-03-04 $\ldots \ldots \ldots$	60
54	Along track statistics of "Number of iterations" for 2025-03-04 to 2025-03-04	61
55	Along track statistics of "Fluorescence" for 2025-03-04 to 2025-03-04	62
56	Along track statistics of "Fluorescence precision" for 2025-03-04 to 2025-03-04	63
57	Along track statistics of " χ^2 of fluorescence retrieval" for 2025-03-04 to 2025-03-04	64
58	Along track statistics of "Degrees of freedom for signal of fluorescence retrieval" for 2025-03-04 to 2025-03-04	65
59	Along track statistics of "Number of points in the spectrum" for 2025-03-04 to 2025-03-04	66
60	Along track statistics of "Spectral offset $(\lambda_{true} - \lambda_{nominal})$ " for 2025-03-04 to 2025-03-04	67

List of Tables

1	Parameterlist and basic statistics for the analysis
2	Percentile ranges
3	Parameterlist and basic statistics for the analysis for observations in the northern hemisphere
4	Parameterlist and basic statistics for the analysis for observations in the southern hemisphere
5	Parameterlist and basic statistics for the analysis for observations over water
6	Parameterlist and basic statistics for the analysis for observations over land

11 Copyright information of 'PyCAMA'

Copyright © 2005-2023, Maarten Sneep (KNMI).

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
- 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

This software is provided by the copyright holders and contributors "as is" and any express or implied warranties, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose are disclaimed. In no event shall the copyright holder or contributors be liable for any direct, indirect, incidental, special, exemplary, or consequential damages (including, but not limited to, procurement of substitute goods or services; loss of use, data, or profits; or business interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence or otherwise) arising in any way out of the use of this software, even if advised of the possibility of such damage.

Maarten Sneep (maarten.sneep@knmi.nl).