PyCAMA report generated by tropl2-proc

tropl2-proc

2025-03-07 (02:15)

1 Short Introduction

1.1 The list of parameters

You may want to keep the list given in table 1 at hand when viewing the results.

2 Definitions

The averages shown here are unweighed averages:

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i \tag{1}$$

with N the number of observations in the dataset.

The spread of the measurements is indicated with the variance V(x), or rather the standard deviation $\sigma(x) = \sqrt{V(x)}$.

$$V(x) = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2$$
(2)

We also report the more robust statistics median, minimum, maximum, various percentiles and inter quartile range.

The median m is the value of parameter x for which half of the observations of x is smaller than m:

$$P(x \le m) = P(x \ge m) = \int_{-\infty}^{m} f(x) \, \mathrm{d}x = \frac{1}{2}$$
(3)

with f(x) the probability density function.

The median is a special case of a percentile. Instead of $\frac{1}{2}$ in equation 3, other threshold values can be used. We report results for 1%, 5%, 10%, 15.9%, 25%, 75%, 84.1%, 90%, 95% and 99%. The inter quartile range is the difference between the 75% and 25% percentiles. Similarly the minimum and maximum values correspond to the 0% and 100% percentiles respectively.

For normally distributed parameters the mean and median are the same, while the $\mu \pm \sigma$ values and the 15.9% and 84.1% percentiles coincide.

To get a measure for the relation of one variable $x_{(k)}$ with another $x_{(l)}$, we calculate the covariance matrix C_{kl} .

$$C_{kl} = C(x_{(k)}, x_{(l)}) = \frac{1}{N-1} \sum_{i=1}^{N} (x_{(k),i} - \overline{x_{(k)}}) (x_{(l),i} - \overline{x_{(l)}})$$
(4)

Rather than a dimensionally dependent covariance, it is often easier to interpret a correlation matrix R_{kl} , a matrix of Pearson's *r* coefficients:

$$R_{kl} = R(x_{(k)}, x_{(l)}) = \frac{C_{kl}}{\sqrt{C_{kk}C_{ll}}} = \frac{C_{kl}}{\sqrt{V(x_k)V(x_l)}}$$
(5)

The diagonal elements of the covariance matrix are the variances of the elements, $V(x_{(k)}) = C_{kk}$ and obviously $R_{kk} = 1$.

Table 1: Parameterlist and basic statistics for the analysi

	Table 1: Parameter	list and basic	statistics for the a	nalysis			
Variable	mean $\pm \sigma$	Count	Mode	IQR	Median	Minimum	Maximum
qa value [1]	0.928 ± 0.167	23268548	0.995	0.0	1.000	0.350	1.000
cloud pressure crb [hPa]	784 ± 192	23268548	1.005×10^{3}	285	840	130	1.065×10^{3}
cloud pressure crb precision [hPa]	2.57 ± 9.63	23268548	0.750	1.25	0.573	$3.052 imes 10^{-4}$	1.510×10^3
cloud fraction crb [1]	0.464 ± 0.387	23268548	0.996	0.829	0.373	0.0	1.000
cloud fraction crb precision [1]	$(2.155 \pm 15.348) \times 10^{-4}$	23268548	$2.500 imes 10^{-4}$	$6.014 imes10^{-5}$	7.666×10^{-5}	$1.177 imes10^{-8}$	0.773
scene albedo [1]	0.455 ± 0.333	23268548	1.500×10^{-2}	0.610	0.428	-3.026×10^{-3}	4.21
scene albedo precision [1]	$(8.593 \pm 10.391) \times 10^{-5}$	23268548	$2.500 imes 10^{-4}$	$6.486 imes10^{-5}$	$5.308 imes10^{-5}$	1.040×10^{-5}	6.781×10^{-3}
apparent scene pressure [hPa]	816 ± 169	23268548	1.008×10^{3}	253	868	130	1.051×10^{3}
apparent scene pressure precision [hPa]	0.979 ± 1.754	23268548	0.500	0.468	0.430	8.966×10^{-2}	63.1
chi square [1]	$(0.216 \pm 2.461) \times 10^5$	23268548	0.150	2.349×10^4	$1.583 imes 10^4$	61.7	$1.918 imes10^8$
number of iterations [1]	3.38 ± 1.07	23268548	3.23	1.000	3.00	1.000	14.0
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(8.135 \pm 59.584) \times 10^{-10}$	23268548	2.500×10^{-10}	4.960×10^{-9}	$9.666 imes 10^{-10}$	-2.049×10^{-6}	1.657×10^{-6}
fluorescence precision [mol $s^{-1} m^{-2} nm^{-1} sr^{-1}$]	$(1.713 \pm 0.677) \times 10^{-9}$	23268548	8.500×10^{-10}	$9.725 imes 10^{-10}$	1.646×10^{-9}	$4.366 imes 10^{-10}$	5.754×10^{-9}
chi square fluorescence [1]	$(0.491 \pm 0.962) \times 10^5$	23268548	750	$4.105 imes 10^4$	1.259×10^{4}	110	$3.895 imes 10^6$
degrees of freedom fluorescence [1]	6.00 ± 0.00	23268548	5.95	0.0	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	23268548	49.7	0.0	50.0	47.0	50.0
wavelength calibration offset [nm]	$(3.013 \pm 8.599) \times 10^{-3}$	23268548	2.800×10^{-3}	5.546×10^{-3}	$3.048 imes 10^{-3}$	-0.147	0.217

			Table 2:	Percentile rang	jes					
Variable	1 %	5%	10 %	15.9 %	25 %	75 %	84.1 %	90 %	95 %	99 %
qa value [1]	0.500	0.500	0.500	0.900	1.000	1.000	1.000	1.000	1.000	1.000
cloud pressure crb [hPa]	255	405	503	578	655	940	971	992	1.008×10^3	1.020×10^3
cloud pressure crb precision [hPa]	0.174	0.239	0.267	0.293	0.335	1.59	2.80	4.84	9.76	34.3
cloud fraction crb [1]	$4.491 imes10^{-4}$	$9.668 imes 10^{-3}$	$2.169 imes10^{-2}$	$4.038 imes 10^{-2}$	$8.080 imes10^{-2}$	0.909	1.000	1.000	1.000	1.000
cloud fraction crb precision [1]	$1.968 imes10^{-5}$	$2.264 imes10^{-5}$	$2.534 imes 10^{-5}$	$2.919 imes10^{-5}$	$3.986 imes 10^{-5}$	$1.000 imes 10^{-4}$	$1.198 imes10^{-4}$	$1.987 imes10^{-4}$	$5.660 imes10^{-4}$	2.717×10^{-3}
scene albedo [1]	$7.828 imes 10^{-3}$	$1.909 imes10^{-2}$	$3.549 imes10^{-2}$	$6.150 imes 10^{-2}$	0.133	0.743	0.844	0.903	0.970	1.15
scene albedo precision [1]	$1.282 imes 10^{-5}$	1.491×10^{-5}	$1.803 imes 10^{-5}$	$2.281 imes 10^{-5}$	3.072×10^{-5}	$9.558 imes 10^{-5}$	1.335×10^{-4}	1.829×10^{-4}	$2.853 imes 10^{-4}$	5.485×10^{-4}
apparent scene pressure [hPa]	355	487	566	621	699	952	979	997	1.010×10^{3}	1.020×10^{3}
apparent scene pressure precision [hPa]	0.214	0.245	0.268	0.290	0.320	0.788	1.30	2.09	3.73	8.78
chi square [1]	270	638	1.349×10^{3}	2.703×10^{3}	5.539×10^{3}	2.903×10^{4}	3.633×10^{4}	4.341×10^{4}	5.399×10^{4}	7.756×10^{4}
number of iterations [1]	2.00	2.00	2.00	3.00	3.00	4.00	4.00	5.00	5.00	7.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$-1.518 imes 10^{-8}$	-7.471×10^{-9}	-4.590×10^{-9}	-2.886×10^{-9}	-1.426×10^{-9}	3.534×10^{-9}	4.899×10^{-9}	6.233×10^{-9}	$8.237 imes 10^{-9}$	1.306×10^{-8}
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$7.364 imes 10^{-10}$	8.227×10^{-10}	8.967×10^{-10}	9.882×10^{-10}	1.163×10^{-9}	2.136×10^{-9}	2.401×10^{-9}	2.638×10^{-9}	2.951×10^{-9}	3.642×10^{-9}
chi square fluorescence [1]	413	812	1.358×10^{3}	2.192×10^{3}	3.917×10^{3}	4.496×10^{4}	8.447×10^{4}	1.382×10^{5}	2.394×10^{5}	4.863×10^{5}
degrees of freedom fluorescence [1]	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$-2.515 imes 10^{-2}$	-9.545×10^{-3}	-4.392×10^{-3}	-1.785×10^{-3}	$2.463 imes 10^{-4}$	5.792×10^{-3}	7.776×10^{-3}	$1.038 imes 10^{-2}$	$1.555 imes10^{-2}$	3.094×10^{-2}

Table	3: Parameterlist and basic s	statistics for	the analysis for	observations in	the northern hem	nisphere		
Variable	$ $ mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.943 ± 0.149	11565045	0.0	1.000	0.350	1.000	1.000	1.000
cloud pressure crb [hPa]	783 ± 195	11565045	275	842	130	1.065×10^3	665	939
cloud pressure crb precision [hPa]	2.63 ± 9.56	11565045	1.38	0.670	$3.052 imes 10^{-4}$	$1.510 imes 10^3$	0.354	1.74
cloud fraction crb [1]	0.457 ± 0.387	11565045	0.840	0.346	0.0	1.000	$8.148 imes 10^{-2}$	0.922
cloud fraction crb precision [1]	$(2.843 \pm 18.896) \times 10^{-4}$	11565045	$6.488 imes10^{-5}$	$9.495 imes10^{-5}$	$2.076 imes10^{-8}$	0.773	$4.719 imes10^{-5}$	$1.121 imes 10^{-4}$
scene albedo [1]	0.480 ± 0.328	11565045	0.579	0.472	$-2.247 imes 10^{-3}$	3.65	0.180	0.758
scene albedo precision [1]	$(9.447 \pm 11.646) \times 10^{-5}$	11565045	$6.961 imes10^{-5}$	$5.632 imes 10^{-5}$	$1.072 imes 10^{-5}$	$1.850 imes 10^{-3}$	$3.232 imes 10^{-5}$	1.019×10^{-4}
apparent scene pressure [hPa]	827 ± 162	11565045	215	877	130	1.051×10^3	737	953
apparent scene pressure precision [hPa]	0.797 ± 1.220	11565045	0.379	0.432	0.160	52.3	0.321	0.700
chi square [1]	$(0.251 \pm 2.985) \times 10^5$	11565045	$2.599 imes 10^4$	$1.745 imes 10^4$	81.1	$1.719 imes10^8$	$6.918 imes 10^3$	$3.291 imes 10^4$
number of iterations [1]	3.61 ± 1.17	11565045	1.000	3.00	1.000	14.0	3.00	4.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.267 \pm 5.548) \times 10^{-9}$	11565045	$4.994 imes10^{-9}$	1.432×10^{-9}	-1.589×10^{-6}	$1.537 imes10^{-6}$	-1.017×10^{-9}	3.977×10^{-9}
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.723 \pm 0.675) \times 10^{-9}$	11565045	$9.624 imes 10^{-10}$	1.644×10^{-9}	$4.366 imes 10^{-10}$	5.509×10^{-9}	$1.183 imes10^{-9}$	$2.146 imes10^{-9}$
chi square fluorescence [1]	$(0.409 \pm 0.816) \times 10^5$	11565045	$3.294 imes 10^4$	1.111×10^4	110	$1.784 imes 10^{6}$	4.217×10^{3}	3.716×10^4
degrees of freedom fluorescence [1]	6.00 ± 0.00	11565045	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	11565045	0.0	50.0	47.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(2.951 \pm 8.141) \times 10^{-3}$	11565045	5.354×10^{-3}	2.939×10^{-3}	$-8.787 imes 10^{-2}$	$8.987 imes 10^{-2}$	2.408×10^{-4}	$5.595 imes 10^{-3}$

Table	4: Parameterlist and basic s	statistics for	the analysis for	observations in	the southern hem	isphere		
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.913 ± 0.182	11703503	0.0	1.000	0.350	1.000	1.000	1.000
cloud pressure crb [hPa]	785 ± 188	11703503	292	836	130	1.033×10^{3}	648	940
cloud pressure crb precision [hPa]	2.52 ± 9.70	11703503	1.09	0.501	1.038×10^{-3}	990	0.323	1.42
cloud fraction crb [1]	0.472 ± 0.386	11703503	0.821	0.403	0.0	1.000	$7.999 imes 10^{-2}$	0.901
cloud fraction crb precision [1]	$(1.476 \pm 10.704) \times 10^{-4}$	11703503	$6.487 imes 10^{-5}$	$6.705 imes 10^{-5}$	$1.177 imes10^{-8}$	0.683	3.513×10^{-5}	$1.000 imes 10^{-4}$
scene albedo [1]	0.430 ± 0.335	11703503	0.626	0.384	-3.026×10^{-3}	4.21	$9.805 imes 10^{-2}$	0.724
scene albedo precision [1]	$(7.749 \pm 8.899) \times 10^{-5}$	11703503	$6.001 imes 10^{-5}$	$5.007 imes 10^{-5}$	1.040×10^{-5}	6.781×10^{-3}	$2.922 imes 10^{-5}$	$8.923 imes 10^{-5}$
apparent scene pressure [hPa]	805 ± 175	11703503	281	856	130	1.033×10^{3}	670	951
apparent scene pressure precision [hPa]	1.16 ± 2.14	11703503	0.600	0.429	$8.966 imes 10^{-2}$	63.1	0.319	0.918
chi square [1]	$(0.182 \pm 1.799) \times 10^5$	11703503	2.160×10^{4}	1.448×10^{4}	61.7	$1.918 imes 10^8$	4.374×10^{3}	2.597×10^{4}
number of iterations [1]	3.14 ± 0.90	11703503	1.000	3.00	1.000	14.0	3.00	4.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(3.658 \pm 63.064) \times 10^{-10}$	11703503	$4.835 imes 10^{-9}$	$5.233 imes 10^{-10}$	$-2.049 imes 10^{-6}$	$1.657 imes 10^{-6}$	$-1.788 imes10^{-9}$	3.047×10^{-9}
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.703 \pm 0.679) \times 10^{-9}$	11703503	$9.890 imes 10^{-10}$	1.648×10^{-9}	5.432×10^{-10}	5.754×10^{-9}	$1.138 imes 10^{-9}$	$2.127 imes 10^{-9}$
chi square fluorescence [1]	$(0.572 \pm 1.082) \times 10^5$	11703503	5.064×10^{4}	1.462×10^{4}	111	3.895×10^{6}	3.526×10^{3}	5.416×10^{4}
degrees of freedom fluorescence [1]	6.00 ± 0.00	11703503	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	11703503	0.0	50.0	47.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(3.073 \pm 9.029) \times 10^{-3}$	11703503	5.740×10^{-3}	3.161×10^{-3}	-0.147	0.217	$2.527 imes 10^{-4}$	5.993×10^{-3}

S

	Table 5: Parameterlist and	basic statis	tics for the anal	ysis for observa	tions over water			
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.977 ± 0.073	15133998	0.0	1.000	0.350	1.000	1.000	1.000
cloud pressure crb [hPa]	808 ± 186	15133998	256	870	130	1.065×10^{3}	696	952
cloud pressure crb precision [hPa]	2.52 ± 9.57	15133998	1.24	0.622	$1.038 imes 10^{-3}$	1.510×10^3	0.353	1.59
cloud fraction crb [1]	0.400 ± 0.353	15133998	0.653	0.293	0.0	1.000	$6.696 imes 10^{-2}$	0.720
cloud fraction crb precision [1]	$(1.330 \pm 9.983) \times 10^{-4}$	15133998	$6.490 imes 10^{-5}$	$5.331 imes 10^{-5}$	$1.919 imes10^{-8}$	0.287	2.954×10^{-5}	9.444×10^{-5}
scene albedo [1]	0.350 ± 0.307	15133998	0.549	0.263	-3.026×10^{-3}	2.67	6.397×10^{-2}	0.613
scene albedo precision [1]	$(7.027 \pm 9.368) \times 10^{-5}$	15133998	4.930×10^{-5}	$4.480 imes 10^{-5}$	1.040×10^{-5}	$6.781 imes 10^{-3}$	2.329×10^{-5}	$7.260 imes10^{-5}$
apparent scene pressure [hPa]	829 ± 172	15133998	233	884	130	1.034×10^3	731	964
apparent scene pressure precision [hPa]	1.29 ± 2.10	15133998	0.911	0.555	0.162	63.1	0.348	1.26
chi square [1]	$(0.157 \pm 1.219) \times 10^5$	15133998	2.031×10^4	$1.008 imes 10^4$	61.7	$1.702 imes 10^8$	2.856×10^{3}	$2.317 imes10^4$
number of iterations [1]	3.03 ± 0.87	15133998	0.0	3.00	1.000	14.0	3.00	3.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(7.854 \pm 563.723) \times 10^{-11}$	15133998	$4.250 imes10^{-9}$	$1.914 imes10^{-10}$	$-2.049 imes10^{-6}$	$1.605 imes10^{-6}$	-1.810×10^{-9}	$2.439 imes10^{-9}$
fluorescence precision [mol $s^{-1} m^{-2} nm^{-1} sr^{-1}$]	$(1.605 \pm 0.687) \times 10^{-9}$	15133998	1.018×10^{-9}	$1.469 imes 10^{-9}$	$4.366 imes 10^{-10}$	$5.587 imes10^{-9}$	1.033×10^{-9}	2.051×10^{-9}
chi square fluorescence [1]	$(0.432 \pm 0.858) \times 10^5$	15133998	$3.778 imes 10^4$	$1.341 imes 10^4$	111	3.670×10^{6}	4.311×10^{3}	$4.209 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	15133998	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	15133998	0.0	50.0	47.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(2.980 \pm 10.028) \times 10^{-3}$	15133998	6.737×10^{-3}	3.032×10^{-3}	-0.147	0.217	-3.994×10^{-4}	6.337×10^{-3}

	Table 6: Parameterlist an	d basic stat	istics for the ana	alysis for observ	ations over land			
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.803 ± 0.248	6269980	0.500	1.000	0.350	1.000	0.500	1.000
cloud pressure crb [hPa]	733 ± 187	6269980	271	743	130	1.041×10^{3}	617	888
cloud pressure crb precision [hPa]	2.55 ± 9.46	6269980	1.17	0.468	$3.052 imes 10^{-4}$	1.249×10^{3}	0.312	1.48
cloud fraction crb [1]	0.612 ± 0.418	6269980	0.864	0.863	0.0	1.000	0.136	1.000
cloud fraction crb precision [1]	$(3.914 \pm 22.527) \times 10^{-4}$	6269980	$2.947 imes 10^{-5}$	$1.000 imes 10^{-4}$	$1.177 imes10^{-8}$	0.773	$9.675 imes10^{-5}$	$1.262 imes 10^{-4}$
scene albedo [1]	0.675 ± 0.285	6269980	0.483	0.735	$2.046 imes10^{-2}$	4.21	0.416	0.899
scene albedo precision [1]	$(1.245 \pm 1.204) \times 10^{-4}$	6269980	$1.034 imes 10^{-4}$	$8.922 imes 10^{-5}$	$1.185 imes10^{-5}$	$1.850 imes 10^{-3}$	$4.499 imes10^{-5}$	$1.484 imes10^{-4}$
apparent scene pressure [hPa]	781 ± 155	6269980	267	806	130	1.041×10^{3}	654	921
apparent scene pressure precision [hPa]	0.383 ± 0.122	6269980	0.137	0.355	$8.966 imes10^{-2}$	3.40	0.300	0.437
chi square [1]	$(0.321 \pm 3.258) \times 10^5$	6269980	$2.138 imes 10^4$	$2.438 imes 10^4$	543	$1.890 imes 10^8$	$1.533 imes 10^4$	$3.671 imes 10^4$
number of iterations [1]	4.05 ± 1.09	6269980	1.000	4.00	1.000	14.0	3.00	4.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(2.142\pm5.962) imes10^{-9}$	6269980	$4.512 imes 10^{-9}$	2.652×10^{-9}	$-1.016 imes10^{-6}$	$1.549 imes10^{-6}$	$2.776 imes 10^{-10}$	$4.789 imes 10^{-9}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.879 \pm 0.598) \times 10^{-9}$	6269980	7.318×10^{-10}	$1.789 imes10^{-9}$	$5.284 imes 10^{-10}$	5.754×10^{-9}	$1.470 imes10^{-9}$	$2.202 imes 10^{-9}$
chi square fluorescence [1]	$(0.554 \pm 1.063) \times 10^5$	6269980	$4.656 imes 10^4$	$8.813 imes 10^3$	168	$1.640 imes 10^6$	$2.378 imes 10^3$	$4.894 imes10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	6269980	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	6269980	0.0	50.0	48.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(3.076 \pm 4.293) \times 10^{-3}$	6269980	$3.849 imes 10^{-3}$	$3.087 imes 10^{-3}$	-6.599×10^{-2}	8.032×10^{-2}	1.164×10^{-3}	$5.013 imes 10^{-3}$

 \neg

Granule outlines

Figure 1: Outline of the granules.

4 Input data monitoring

Figure 2: Input data per granule

5 Warnings and errors

Figure 3: Fraction of pixels with specific warnings and errors during processing

6 World maps

Figure 4: Map of "Cloud pressure" for 2025-03-05 to 2025-03-05

Figure 5: Map of "Cloud fraction" for 2025-03-05 to 2025-03-05

Figure 6: Map of "Scene albedo" for 2025-03-05 to 2025-03-05

Figure 7: Map of "Apparent scene pressure" for 2025-03-05 to 2025-03-05

2025-03-05

Figure 8: Map of "Fluorescence" for 2025-03-05 to 2025-03-05

Figure 9: Map of the number of observations for 2025-03-05 to 2025-03-05

7 Zonal average

Figure 10: Zonal average of "QA value" for 2025-03-05 to 2025-03-05.

Figure 11: Zonal average of "Cloud pressure" for 2025-03-05 to 2025-03-05.

Figure 12: Zonal average of "Cloud pressure precision" for 2025-03-05 to 2025-03-05.

Figure 13: Zonal average of "Cloud fraction" for 2025-03-05 to 2025-03-05.

Figure 14: Zonal average of "Cloud fraction precision" for 2025-03-05 to 2025-03-05.

Figure 15: Zonal average of "Scene albedo" for 2025-03-05 to 2025-03-05.

Figure 16: Zonal average of "Scene albedo precision" for 2025-03-05 to 2025-03-05.

Figure 17: Zonal average of "Apparent scene pressure" for 2025-03-05 to 2025-03-05.

Figure 18: Zonal average of "Apparent scene pressure precision" for 2025-03-05 to 2025-03-05.

Figure 19: Zonal average of " χ^2 " for 2025-03-05 to 2025-03-05.

Figure 20: Zonal average of "Number of iterations" for 2025-03-05 to 2025-03-05.

Figure 21: Zonal average of "Fluorescence" for 2025-03-05 to 2025-03-05.

Figure 22: Zonal average of "Fluorescence precision" for 2025-03-05 to 2025-03-05.

Figure 23: Zonal average of " χ^2 of fluorescence retrieval" for 2025-03-05 to 2025-03-05.

Figure 24: Zonal average of "Degrees of freedom for signal of fluorescence retrieval" for 2025-03-05 to 2025-03-05.

Figure 25: Zonal average of "Number of points in the spectrum" for 2025-03-05 to 2025-03-05.

Figure 26: Zonal average of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-03-05 to 2025-03-05.

8 Histograms

The definitions of the parameters given in this section can be found in section 2.

Figure 27: Histogram of "QA value" for 2025-03-05 to 2025-03-05

Figure 28: Histogram of "Cloud pressure" for 2025-03-05 to 2025-03-05

Figure 29: Histogram of "Cloud pressure precision" for 2025-03-05 to 2025-03-05

Figure 30: Histogram of "Cloud fraction" for 2025-03-05 to 2025-03-05

Figure 31: Histogram of "Cloud fraction precision" for 2025-03-05 to 2025-03-05

Figure 32: Histogram of "Scene albedo" for 2025-03-05 to 2025-03-05

Figure 33: Histogram of "Scene albedo precision" for 2025-03-05 to 2025-03-05

Figure 34: Histogram of "Apparent scene pressure" for 2025-03-05 to 2025-03-05

Figure 35: Histogram of "Apparent scene pressure precision" for 2025-03-05 to 2025-03-05

Figure 36: Histogram of " χ^2 " for 2025-03-05 to 2025-03-05

Figure 37: Histogram of "Number of iterations" for 2025-03-05 to 2025-03-05

Figure 38: Histogram of "Fluorescence" for 2025-03-05 to 2025-03-05

Figure 39: Histogram of "Fluorescence precision" for 2025-03-05 to 2025-03-05

Figure 40: Histogram of " χ^2 of fluorescence retrieval" for 2025-03-05 to 2025-03-05

Figure 41: Histogram of "Degrees of freedom for signal of fluorescence retrieval" for 2025-03-05 to 2025-03-05

Figure 42: Histogram of "Number of points in the spectrum" for 2025-03-05 to 2025-03-05

Figure 43: Histogram of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-03-05 to 2025-03-05

9 Along track statistics

The TROPOMI instrument uses different binned detector rows for different viewing directions. In this section statistics are presented for each of the binned rows in the instrument.

Figure 44: Along track statistics of "QA value" for 2025-03-05 to 2025-03-05

Figure 45: Along track statistics of "Cloud pressure" for 2025-03-05 to 2025-03-05

Figure 46: Along track statistics of "Cloud pressure precision" for 2025-03-05 to 2025-03-05

Figure 47: Along track statistics of "Cloud fraction" for 2025-03-05 to 2025-03-05

Figure 48: Along track statistics of "Cloud fraction precision" for 2025-03-05 to 2025-03-05

Figure 49: Along track statistics of "Scene albedo" for 2025-03-05 to 2025-03-05

Figure 50: Along track statistics of "Scene albedo precision" for 2025-03-05 to 2025-03-05

Figure 51: Along track statistics of "Apparent scene pressure" for 2025-03-05 to 2025-03-05

Figure 52: Along track statistics of "Apparent scene pressure precision" for 2025-03-05 to 2025-03-05

Figure 53: Along track statistics of " χ^2 " for 2025-03-05 to 2025-03-05

Figure 54: Along track statistics of "Number of iterations" for 2025-03-05 to 2025-03-05

Figure 55: Along track statistics of "Fluorescence" for 2025-03-05 to 2025-03-05

Figure 56: Along track statistics of "Fluorescence precision" for 2025-03-05 to 2025-03-05

Figure 57: Along track statistics of " χ^2 of fluorescence retrieval" for 2025-03-05 to 2025-03-05

Figure 58: Along track statistics of "Degrees of freedom for signal of fluorescence retrieval" for 2025-03-05 to 2025-03-05

Figure 59: Along track statistics of "Number of points in the spectrum" for 2025-03-05 to 2025-03-05

Figure 60: Along track statistics of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-03-05 to 2025-03-05

10 Coincidence density

To investigate the relation between parameters scatter density plots are produced. These include some 'hidden' parameters, latitude and the solar- and viewing geometries, in addition to all configured parameters. All combinations of pairs of parameters are included *once*, in one direction alone.

Contents

1	Short Introduction	1
	1.1 The list of parameters	1
2	Definitions	1
3	Granule outlines	8
4	Input data monitoring	9
5	Warnings and errors	10
6	World maps	11
7	Zonal average	17
8	Histograms	34
9	Along track statistics	51
10	Coincidence density	68
11	Copyright information of 'PyCAMA'	68

List of Figures

1	Outline of the granules.	8
2	Input data per granule	9
3	Fraction of pixels with specific warnings and errors during processing	10
4	Map of "Cloud pressure" for 2025-03-05 to 2025-03-05	11
5	Map of "Cloud fraction" for 2025-03-05 to 2025-03-05	12
6	Map of "Scene albedo" for 2025-03-05 to 2025-03-05	13
7	Map of "Apparent scene pressure" for 2025-03-05 to 2025-03-05	14
8	Map of "Fluorescence" for 2025-03-05 to 2025-03-05	15
9	Map of the number of observations for 2025-03-05 to 2025-03-05	16
10	Zonal average of "QA value" for 2025-03-05 to 2025-03-05.	17
11	Zonal average of "Cloud pressure" for 2025-03-05 to 2025-03-05.	18
12	Zonal average of "Cloud pressure precision" for 2025-03-05 to 2025-03-05.	19
13	Zonal average of "Cloud fraction" for 2025-03-05 to 2025-03-05.	20
14	Zonal average of "Cloud fraction precision" for 2025-03-05 to 2025-03-05.	21
15	Zonal average of "Scene albedo" for 2025-03-05 to 2025-03-05.	22
16	Zonal average of "Scene albedo precision" for 2025-03-05 to 2025-03-05.	23
17	Zonal average of "Apparent scene pressure" for 2025-03-05 to 2025-03-05.	24
18	Zonal average of "Apparent scene pressure precision" for 2025-03-05 to 2025-03-05.	25
19	Zonal average of " χ^2 " for 2025-03-05 to 2025-03-05	26
20	Zonal average of "Number of iterations" for 2025-03-05 to 2025-03-05.	27
21	Zonal average of "Fluorescence" for 2025-03-05 to 2025-03-05.	28
22	Zonal average of "Fluorescence precision" for 2025-03-05 to 2025-03-05.	29
23	Zonal average of " χ^2 of fluorescence retrieval" for 2025-03-05 to 2025-03-05	30
24	Zonal average of "Degrees of freedom for signal of fluorescence retrieval" for 2025-03-05 to 2025-03-05.	31
25	Zonal average of "Number of points in the spectrum" for 2025-03-05 to 2025-03-05.	32
26	Zonal average of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-03-05 to 2025-03-05	33
27	Histogram of "QA value" for 2025-03-05 to 2025-03-05	34
28	Histogram of "Cloud pressure" for 2025-03-05 to 2025-03-05	35
29	Histogram of "Cloud pressure precision" for 2025-03-05 to 2025-03-05	36

30	Histogram of "Cloud fraction" for 2025-03-05 to 2025-03-05	37
31	Histogram of "Cloud fraction precision" for 2025-03-05 to 2025-03-05	38
32	Histogram of "Scene albedo" for 2025-03-05 to 2025-03-05	39
33	Histogram of "Scene albedo precision" for 2025-03-05 to 2025-03-05	40
34	Histogram of "Apparent scene pressure" for 2025-03-05 to 2025-03-05	41
35	Histogram of "Apparent scene pressure precision" for 2025-03-05 to 2025-03-05	42
36	Histogram of " χ^2 " for 2025-03-05 to 2025-03-05	43
37	Histogram of "Number of iterations" for 2025-03-05 to 2025-03-05	44
38	Histogram of "Fluorescence" for 2025-03-05 to 2025-03-05	45
39	Histogram of "Fluorescence precision" for 2025-03-05 to 2025-03-05	46
40	Histogram of " χ^2 of fluorescence retrieval" for 2025-03-05 to 2025-03-05	47
41	Histogram of "Degrees of freedom for signal of fluorescence retrieval" for 2025-03-05 to 2025-03-05	48
42	Histogram of "Number of points in the spectrum" for 2025-03-05 to 2025-03-05	49
43	Histogram of "Spectral offset $(\lambda_{true} - \lambda_{nominal})$ " for 2025-03-05 to 2025-03-05	50
44	Along track statistics of "QA value" for 2025-03-05 to 2025-03-05	51
45	Along track statistics of "Cloud pressure" for 2025-03-05 to 2025-03-05	52
46	Along track statistics of "Cloud pressure precision" for 2025-03-05 to 2025-03-05	53
47	Along track statistics of "Cloud fraction" for 2025-03-05 to 2025-03-05	54
48	Along track statistics of "Cloud fraction precision" for 2025-03-05 to 2025-03-05	55
49	Along track statistics of "Scene albedo" for 2025-03-05 to 2025-03-05	56
50	Along track statistics of "Scene albedo precision" for 2025-03-05 to 2025-03-05	57
51	Along track statistics of "Apparent scene pressure" for 2025-03-05 to 2025-03-05	58
52	Along track statistics of "Apparent scene pressure precision" for 2025-03-05 to 2025-03-05	59
53	Along track statistics of " χ^2 " for 2025-03-05 to 2025-03-05	60
54	Along track statistics of "Number of iterations" for 2025-03-05 to 2025-03-05	61
55	Along track statistics of "Fluorescence" for 2025-03-05 to 2025-03-05	62
56	Along track statistics of "Fluorescence precision" for 2025-03-05 to 2025-03-05	63
57	Along track statistics of " χ^2 of fluorescence retrieval" for 2025-03-05 to 2025-03-05	64
58	Along track statistics of "Degrees of freedom for signal of fluorescence retrieval" for 2025-03-05 to 2025-03-05	65
59	Along track statistics of "Number of points in the spectrum" for 2025-03-05 to 2025-03-05	66
60	Along track statistics of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-03-05 to 2025-03-05	67

List of Tables

1	Parameterlist and basic statistics for the analysis
2	Percentile ranges
3	Parameterlist and basic statistics for the analysis for observations in the northern hemisphere
4	Parameterlist and basic statistics for the analysis for observations in the southern hemisphere
5	Parameterlist and basic statistics for the analysis for observations over water
6	Parameterlist and basic statistics for the analysis for observations over land

11 Copyright information of 'PyCAMA'

Copyright © 2005-2023, Maarten Sneep (KNMI).

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
- 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

This software is provided by the copyright holders and contributors "as is" and any express or implied warranties, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose are disclaimed. In no event shall the copyright holder or contributors be liable for any direct, indirect, incidental, special, exemplary, or consequential damages (including, but not limited to, procurement of substitute goods or services; loss of use, data, or profits; or business interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence or otherwise) arising in any way out of the use of this software, even if advised of the possibility of such damage.

Maarten Sneep (maarten.sneep@knmi.nl).