PyCAMA report generated by tropl2-proc

tropl2-proc

2025-03-12 (08:15)

1 Short Introduction

1.1 The list of parameters

You may want to keep the list given in table 1 at hand when viewing the results.

2 Definitions

The averages shown here are unweighed averages:

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i \tag{1}$$

with N the number of observations in the dataset.

The spread of the measurements is indicated with the variance V(x), or rather the standard deviation $\sigma(x) = \sqrt{V(x)}$.

$$V(x) = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2$$
(2)

We also report the more robust statistics median, minimum, maximum, various percentiles and inter quartile range.

The median m is the value of parameter x for which half of the observations of x is smaller than m:

$$P(x \le m) = P(x \ge m) = \int_{-\infty}^{m} f(x) \, \mathrm{d}x = \frac{1}{2}$$
(3)

with f(x) the probability density function.

The median is a special case of a percentile. Instead of $\frac{1}{2}$ in equation 3, other threshold values can be used. We report results for 1%, 5%, 10%, 15.9%, 25%, 75%, 84.1%, 90%, 95% and 99%. The inter quartile range is the difference between the 75% and 25% percentiles. Similarly the minimum and maximum values correspond to the 0% and 100% percentiles respectively.

For normally distributed parameters the mean and median are the same, while the $\mu \pm \sigma$ values and the 15.9% and 84.1% percentiles coincide.

To get a measure for the relation of one variable $x_{(k)}$ with another $x_{(l)}$, we calculate the covariance matrix C_{kl} .

$$C_{kl} = C(x_{(k)}, x_{(l)}) = \frac{1}{N-1} \sum_{i=1}^{N} (x_{(k),i} - \overline{x_{(k)}}) (x_{(l),i} - \overline{x_{(l)}})$$
(4)

Rather than a dimensionally dependent covariance, it is often easier to interpret a correlation matrix R_{kl} , a matrix of Pearson's *r* coefficients:

$$R_{kl} = R(x_{(k)}, x_{(l)}) = \frac{C_{kl}}{\sqrt{C_{kk}C_{ll}}} = \frac{C_{kl}}{\sqrt{V(x_k)V(x_l)}}$$
(5)

The diagonal elements of the covariance matrix are the variances of the elements, $V(x_{(k)}) = C_{kk}$ and obviously $R_{kk} = 1$.

Variable	mean $\pm \sigma$	Count	Mode	IQR	Median	Minimum	Maximum
qa value [1]	0.931 ± 0.163	23241458	0.995	0.0	1.000	0.350	1.000
cloud pressure crb [hPa]	791 ± 191	23241458	$1.015 imes 10^3$	278	847	130	1.067×10^{3}
cloud pressure crb precision [hPa]	2.67 ± 9.85	23241458	0.750	1.35	0.608	$2.441 imes 10^{-4}$	1.584×10^3
cloud fraction crb [1]	0.451 ± 0.386	23241458	0.996	0.808	0.342	0.0	1.000
cloud fraction crb precision [1]	$(2.074 \pm 13.850) \times 10^{-4}$	23241458	$2.500 imes 10^{-4}$	6.009×10^{-5}	7.565×10^{-5}	4.860×10^{-9}	0.989
scene albedo [1]	0.445 ± 0.332	23241458	1.500×10^{-2}	0.607	0.410	$-2.868 imes 10^{-3}$	4.00
scene albedo precision [1]	$(8.620 \pm 10.583) \times 10^{-5}$	23241458	$2.500 imes10^{-4}$	6.319×10^{-5}	$5.184 imes10^{-5}$	1.060×10^{-5}	$6.791 imes 10^{-3}$
apparent scene pressure [hPa]	825 ± 166	23241458	976	239	876	130	1.051×10^3
apparent scene pressure precision [hPa]	1.01 ± 1.79	23241458	0.500	0.500	0.441	0.119	60.1
chi square [1]	$(0.222 \pm 3.596) \times 10^5$	23241458	0.150	$2.319 imes 10^4$	$1.534 imes 10^4$	69.2	3.627×10^8
number of iterations [1]	3.40 ± 1.08	23241458	3.23	1.000	3.00	1.000	14.0
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(7.520 \pm 62.781) \times 10^{-10}$	23241458	2.500×10^{-10}	$4.920 imes 10^{-9}$	$9.375 imes 10^{-10}$	$-1.876 imes 10^{-6}$	$1.868 imes10^{-6}$
fluorescence precision [mol $s^{-1} m^{-2} nm^{-1} sr^{-1}$]	$(1.696 \pm 0.670) \times 10^{-9}$	23241458	$8.500 imes10^{-10}$	$9.804 imes 10^{-10}$	$1.623 imes 10^{-9}$	$4.243 imes10^{-10}$	5.662×10^{-9}
chi square fluorescence [1]	$(0.493 \pm 0.988) \times 10^5$	23241458	750	$4.226 imes 10^4$	$1.223 imes 10^4$	99.1	$4.271 imes 10^6$
degrees of freedom fluorescence [1]	6.00 ± 0.00	23241458	5.95	0.0	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	23241458	49.7	0.0	50.0	46.0	50.0
wavelength calibration offset [nm]	$(2.968 \pm 8.833) \times 10^{-3}$	23241458	$2.800 imes 10^{-3}$	$5.745 imes 10^{-3}$	3.002×10^{-3}	-0.137	0.329

			Table 2:	Percentile rang	jes					
Variable	1 %	5 %	10 %	15.9 %	25 %	75 %	84.1 %	90 %	95 %	99 %
qa value [1]	0.500	0.500	0.500	0.900	1.000	1.000	1.000	1.000	1.000	1.000
cloud pressure crb [hPa]	251	411	510	586	666	944	973	992	1.009×10^{3}	1.020×10^3
cloud pressure crb precision [hPa]	0.179	0.241	0.270	0.299	0.344	1.70	2.94	4.96	9.91	35.8
cloud fraction crb [1]	0.0	$9.381 imes 10^{-3}$	$2.127 imes10^{-2}$	$3.898 imes10^{-2}$	$7.673 imes10^{-2}$	0.885	1.000	1.000	1.000	1.000
cloud fraction crb precision [1]	$1.986 imes10^{-5}$	$2.265 imes10^{-5}$	$2.540 imes10^{-5}$	$2.922 imes 10^{-5}$	3.991×10^{-5}	$1.000 imes 10^{-4}$	$1.187 imes10^{-4}$	$1.920 imes 10^{-4}$	$5.364 imes10^{-4}$	2.622×10^{-3}
scene albedo [1]	$7.747 imes 10^{-3}$	$1.857 imes10^{-2}$	$3.386 imes10^{-2}$	$5.842 imes 10^{-2}$	0.126	0.732	0.840	0.900	0.969	1.15
scene albedo precision [1]	$1.293 imes10^{-5}$	$1.511 imes10^{-5}$	$1.826 imes10^{-5}$	$2.291 imes 10^{-5}$	$3.065 imes 10^{-5}$	$9.383 imes10^{-5}$	$1.344 imes 10^{-4}$	$1.860 imes10^{-4}$	$2.894 imes10^{-4}$	$5.636 imes 10^{-4}$
apparent scene pressure [hPa]	361	495	578	634	719	957	980	996	1.010×10^{3}	1.021×10^{3}
apparent scene pressure precision [hPa]	0.214	0.246	0.271	0.293	0.325	0.824	1.38	2.20	3.84	8.93
chi square [1]	262	618	1.284×10^{3}	2.609×10^{3}	5.412×10^{3}	2.860×10^{4}	3.625×10^{4}	4.351×10^{4}	5.489×10^{4}	8.134×10^{4}
number of iterations [1]	2.00	2.00	2.00	3.00	3.00	4.00	4.00	5.00	5.00	7.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$-1.578 imes 10^{-8}$	-7.765×10^{-9}	-4.702×10^{-9}	-2.925×10^{-9}	-1.430×10^{-9}	3.490×10^{-9}	4.857×10^{-9}	$6.187 imes10^{-9}$	$8.172 imes 10^{-9}$	$1.310 imes 10^{-8}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$7.404 imes 10^{-10}$	8.209×10^{-10}	$8.900 imes 10^{-10}$	$9.758 imes 10^{-10}$	1.144×10^{-9}	2.124×10^{-9}	2.375×10^{-9}	2.627×10^{-9}	2.950×10^{-9}	3.532×10^{-9}
chi square fluorescence [1]	383	753	1.275×10^{3}	2.120×10^{3}	3.706×10^{3}	4.597×10^{4}	8.473×10^{4}	1.375×10^{5}	2.358×10^{5}	4.968×10^{5}
degrees of freedom fluorescence [1]	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$-2.588 imes 10^{-2}$	-1.008×10^{-2}	-4.746×10^{-3}	-2.023×10^{-3}	$9.653 imes 10^{-5}$	5.841×10^{-3}	$7.928 imes 10^{-3}$	$1.067 imes 10^{-2}$	$1.603 imes 10^{-2}$	3.156×10^{-2}

Table 3. Parameterlist and	d basic statistic	s for the ans	alvsis for o	observations in	the northern	hemisphere
rable 5. r arameternst and	a basic statistic	s for the and	ary 515 101 C	Juser varions m	i ule normern	nemisphere

Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.939 ± 0.155	11823132	0.0	1.000	0.350	1.000	1.000	1.000
cloud pressure crb [hPa]	799 ± 193	11823132	259	862	130	1.067×10^3	690	949
cloud pressure crb precision [hPa]	3.04 ± 10.76	11823132	1.58	0.747	$2.441 imes 10^{-4}$	1.584×10^3	0.374	1.96
cloud fraction crb [1]	0.432 ± 0.389	11823132	0.829	0.282	0.0	1.000	$7.151 imes 10^{-2}$	0.901
cloud fraction crb precision [1]	$(2.525 \pm 15.974) \times 10^{-4}$	11823132	$6.159 imes 10^{-5}$	$9.024 imes 10^{-5}$	$1.430 imes 10^{-8}$	0.785	$4.466 imes10^{-5}$	1.062×10^{-4}
scene albedo [1]	0.465 ± 0.333	11823132	0.593	0.432	$-2.868 imes 10^{-3}$	4.00	0.161	0.754
scene albedo precision [1]	$(9.478 \pm 11.859) \times 10^{-5}$	11823132	$7.161 imes 10^{-5}$	5.343×10^{-5}	$1.076 imes10^{-5}$	$1.823 imes 10^{-3}$	$3.142 imes 10^{-5}$	$1.030 imes 10^{-4}$
apparent scene pressure [hPa]	845 ± 155	11823132	192	898	130	1.051×10^{3}	770	962
apparent scene pressure precision [hPa]	0.877 ± 1.434	11823132	0.419	0.447	0.119	60.1	0.328	0.747
chi square [1]	$(0.266 \pm 4.592) \times 10^5$	11823132	2.693×10^{4}	1.673×10^{4}	74.5	3.627×10^{8}	6.546×10^{3}	3.347×10^{4}
number of iterations [1]	3.66 ± 1.17	11823132	1.000	3.00	1.000	14.0	3.00	4.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.129\pm 6.151) imes 10^{-9}$	11823132	$4.996 imes 10^{-9}$	1.333×10^{-9}	$-1.876 imes 10^{-6}$	$1.850 imes10^{-6}$	-1.099×10^{-9}	$3.897 imes 10^{-9}$
fluorescence precision [mol s ⁻¹ m ⁻² nm ⁻¹ sr ⁻¹]	$(1.691\pm0.654) imes10^{-9}$	11823132	9.457×10^{-10}	$1.617 imes 10^{-9}$	4.243×10^{-10}	5.653×10^{-9}	$1.164 imes 10^{-9}$	2.110×10^{-9}
chi square fluorescence [1]	$(0.415 \pm 0.832) \times 10^5$	11823132	3.508×10^4	$1.071 imes 10^4$	99.1	2.753×10^{6}	3.779×10^{3}	$3.885 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	11823132	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	11823132	0.0	50.0	47.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(2.920 \pm 8.412) \times 10^{-3}$	11823132	5.455×10^{-3}	2.909×10^{-3}	-8.127×10^{-2}	8.824×10^{-2}	1.606×10^{-4}	5.616×10^{-3}

Table 4	4: Parameterlist and basic s	tatistics for	the analysis for	observations in	the southern hem	nisphere		
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.924 ± 0.171	11418326	0.0	1.000	0.350	1.000	1.000	1.000
cloud pressure crb [hPa]	783 ± 188	11418326	288	829	130	1.032×10^3	649	937
cloud pressure crb precision [hPa]	2.28 ± 8.79	11418326	1.06	0.502	$2.441 imes 10^{-4}$	1.127×10^3	0.326	1.39
cloud fraction crb [1]	0.470 ± 0.381	11418326	0.791	0.411	0.0	1.000	$8.435 imes 10^{-2}$	0.876
cloud fraction crb precision [1]	$(1.606 \pm 11.218) \times 10^{-4}$	11418326	$6.399 imes10^{-5}$	$6.828 imes10^{-5}$	4.860×10^{-9}	0.989	3.600×10^{-5}	$1.000 imes10^{-4}$
scene albedo [1]	0.426 ± 0.329	11418326	0.611	0.388	$-2.249 imes 10^{-3}$	3.97	$9.738 imes10^{-2}$	0.709
scene albedo precision [1]	$(7.731 \pm 8.987) \times 10^{-5}$	11418326	$5.478 imes10^{-5}$	5.052×10^{-5}	1.060×10^{-5}	$6.791 imes10^{-3}$	2.980×10^{-5}	$8.458 imes10^{-5}$
apparent scene pressure [hPa]	803 ± 174	11418326	275	847	130	1.032×10^3	674	949
apparent scene pressure precision [hPa]	1.15 ± 2.09	11418326	0.620	0.436	0.138	59.1	0.321	0.941
chi square [1]	$(0.177 \pm 2.118) \times 10^5$	11418326	$2.055 imes 10^4$	$1.417 imes 10^4$	69.2	$2.115 imes 10^8$	4.383×10^{3}	2.494×10^4
number of iterations [1]	3.14 ± 0.91	11418326	1.000	3.00	1.000	14.0	3.00	4.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(3.622 \pm 63.835) \times 10^{-10}$	11418326	$4.771 imes 10^{-9}$	$5.504 imes 10^{-10}$	$-1.586 imes 10^{-6}$	$1.868 imes10^{-6}$	$-1.739 imes 10^{-9}$	$3.032 imes 10^{-9}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.702 \pm 0.687) \times 10^{-9}$	11418326	$1.017 imes10^{-9}$	$1.629 imes 10^{-9}$	$5.530 imes 10^{-10}$	5.662×10^{-9}	$1.121 imes 10^{-9}$	$2.138 imes10^{-9}$
chi square fluorescence [1]	$(0.574 \pm 1.120) \times 10^{5}$	11418326	$5.062 imes 10^4$	$1.418 imes 10^4$	114	$4.271 imes 10^{6}$	3.594×10^{3}	5.422×10^4
degrees of freedom fluorescence [1]	6.00 ± 0.00	11418326	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	11418326	0.0	50.0	46.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(3.018 \pm 9.249) \times 10^{-3}$	11418326	6.066×10^{-3}	3.106×10^{-3}	-0.137	0.329	2.115×10^{-5}	$6.087 imes 10^{-3}$

	Table 5: Parameterlist an	d basic stati	stics for the ana	lysis for observa	tions over water			
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.975 ± 0.082	15298252	0.0	1.000	0.350	1.000	1.000	1.000
cloud pressure crb [hPa]	817 ± 182	15298252	241	877	130	1.032×10^{3}	715	956
cloud pressure crb precision [hPa]	2.66 ± 10.13	15298252	1.31	0.636	$2.441 imes 10^{-4}$	1.361×10^{3}	0.359	1.67
cloud fraction crb [1]	0.400 ± 0.359	15298252	0.663	0.286	0.0	1.000	$6.392 imes 10^{-2}$	0.727
cloud fraction crb precision [1]	$(1.285 \pm 9.213) \times 10^{-4}$	15298252	6.941×10^{-5}	5.358×10^{-5}	8.347×10^{-9}	0.372	2.967×10^{-5}	$9.908 imes10^{-5}$
scene albedo [1]	0.351 ± 0.313	15298252	0.551	0.258	$-2.868 imes 10^{-3}$	4.00	$6.181 imes 10^{-2}$	0.613
scene albedo precision [1]	$(7.334 \pm 10.006) \times 10^{-5}$	15298252	$5.098 imes10^{-5}$	$4.503 imes 10^{-5}$	1.060×10^{-5}	$6.791 imes 10^{-3}$	2.353×10^{-5}	$7.451 imes 10^{-5}$
apparent scene pressure [hPa]	836 ± 169	15298252	219	891	130	1.032×10^3	748	968
apparent scene pressure precision [hPa]	1.33 ± 2.14	15298252	0.957	0.574	0.157	60.1	0.354	1.31
chi square [1]	$(0.159 \pm 2.051) \times 10^5$	15298252	$1.982 imes 10^4$	9.931×10^{3}	69.2	$2.115 imes 10^8$	$2.810 imes 10^3$	$2.263 imes 10^4$
number of iterations [1]	3.07 ± 0.89	15298252	0.0	3.00	1.000	14.0	3.00	3.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.047 \pm 57.534) \times 10^{-10}$	15298252	$4.292 imes 10^{-9}$	2.507×10^{-10}	-1.245×10^{-6}	$1.868 imes10^{-6}$	$-1.767 imes 10^{-9}$	2.524×10^{-9}
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.584 \pm 0.679) \times 10^{-9}$	15298252	$9.994 imes 10^{-10}$	$1.437 imes 10^{-9}$	$4.243 imes 10^{-10}$	5.653×10^{-9}	1.018×10^{-9}	2.017×10^{-9}
chi square fluorescence [1]	$(0.425 \pm 0.848) \times 10^5$	15298252	$3.785 imes 10^4$	$1.289 imes 10^4$	99.1	$4.271 imes 10^{6}$	4.014×10^3	$4.187 imes10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	15298252	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	15298252	0.0	50.0	46.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(2.936 \pm 10.216) \times 10^{-3}$	15298252	6.868×10^{-3}	2.970×10^{-3}	-0.137	0.329	-5.092×10^{-4}	6.359×10^{-3}

	Table 6: Parameterlist an	d basic stat	tistics for the ana	alysis for observ	vations over land			
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.819 ± 0.244	6077891	0.500	1.000	0.350	1.000	0.500	1.000
cloud pressure crb [hPa]	732 ± 192	6077891	280	750	130	1.039×10^3	612	892
cloud pressure crb precision [hPa]	2.47 ± 8.81	6077891	1.32	0.512	$2.441 imes10^{-4}$	1.534×10^3	0.319	1.64
cloud fraction crb [1]	0.581 ± 0.419	6077891	0.880	0.665	0.0	1.000	0.120	1.000
cloud fraction crb precision [1]	$(3.961 \pm 21.424) \times 10^{-4}$	6077891	$4.000 imes 10^{-5}$	$1.000 imes 10^{-4}$	$4.860 imes 10^{-9}$	0.989	$9.242 imes 10^{-5}$	$1.324 imes10^{-4}$
scene albedo [1]	0.656 ± 0.285	6077891	0.490	0.692	$1.072 imes 10^{-2}$	3.97	0.398	0.888
scene albedo precision [1]	$(1.210 \pm 1.181) \times 10^{-4}$	6077891	$1.042 imes 10^{-4}$	8.045×10^{-5}	$1.284 imes10^{-5}$	$1.799 imes 10^{-3}$	$4.328 imes 10^{-5}$	$1.475 imes10^{-4}$
apparent scene pressure [hPa]	788 ± 156	6077891	266	816	130	1.038×10^3	661	926
apparent scene pressure precision [hPa]	0.388 ± 0.125	6077891	0.141	0.359	0.119	6.39	0.303	0.444
chi square [1]	$(0.333 \pm 4.562) \times 10^5$	6077891	$2.199 imes 10^4$	$2.413 imes 10^4$	425	$3.627 imes 10^8$	$1.488 imes 10^4$	$3.687 imes 10^4$
number of iterations [1]	4.08 ± 1.12	6077891	1.000	4.00	1.000	14.0	3.00	4.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.971 \pm 6.691) \times 10^{-9}$	6077891	$4.696 imes 10^{-9}$	2.530×10^{-9}	$-1.539 imes 10^{-6}$	$1.850 imes10^{-6}$	$3.523 imes 10^{-11}$	4.731×10^{-9}
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.884 \pm 0.595) \times 10^{-9}$	6077891	$7.414 imes10^{-10}$	1.801×10^{-9}	4.845×10^{-10}	5.634×10^{-9}	$1.473 imes10^{-9}$	2.215×10^{-9}
chi square fluorescence [1]	$(0.578 \pm 1.151) \times 10^5$	6077891	$5.156 imes 10^4$	$8.503 imes 10^3$	168	$2.098 imes 10^6$	2.417×10^3	$5.397 imes10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	6077891	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	6077891	0.0	50.0	48.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(3.025 \pm 4.572) \times 10^{-3}$	6077891	4.018×10^{-3}	3.055×10^{-3}	$-7.250 imes 10^{-2}$	7.368×10^{-2}	1.033×10^{-3}	5.051×10^{-3}

Granule outlines

Figure 1: Outline of the granules.

4 Input data monitoring

Figure 2: Input data per granule

5 Warnings and errors

Figure 3: Fraction of pixels with specific warnings and errors during processing

6 World maps

Figure 4: Map of "Cloud pressure" for 2025-03-10 to 2025-03-10

Figure 5: Map of "Cloud fraction" for 2025-03-10 to 2025-03-10

Figure 6: Map of "Scene albedo" for 2025-03-10 to 2025-03-10

Figure 7: Map of "Apparent scene pressure" for 2025-03-10 to 2025-03-10

2025-03-10

Figure 8: Map of "Fluorescence" for 2025-03-10 to 2025-03-10

Figure 9: Map of the number of observations for 2025-03-10 to 2025-03-10

7 Zonal average

Figure 10: Zonal average of "QA value" for 2025-03-10 to 2025-03-10.

Figure 11: Zonal average of "Cloud pressure" for 2025-03-10 to 2025-03-10.

Figure 12: Zonal average of "Cloud pressure precision" for 2025-03-10 to 2025-03-10.

Figure 13: Zonal average of "Cloud fraction" for 2025-03-10 to 2025-03-10.

Figure 14: Zonal average of "Cloud fraction precision" for 2025-03-10 to 2025-03-10.

Figure 15: Zonal average of "Scene albedo" for 2025-03-10 to 2025-03-10.

Figure 16: Zonal average of "Scene albedo precision" for 2025-03-10 to 2025-03-10.

Figure 17: Zonal average of "Apparent scene pressure" for 2025-03-10 to 2025-03-10.

Figure 18: Zonal average of "Apparent scene pressure precision" for 2025-03-10 to 2025-03-10.

Figure 19: Zonal average of " χ^2 " for 2025-03-10 to 2025-03-10.

Figure 20: Zonal average of "Number of iterations" for 2025-03-10 to 2025-03-10.

Figure 21: Zonal average of "Fluorescence" for 2025-03-10 to 2025-03-10.

Figure 22: Zonal average of "Fluorescence precision" for 2025-03-10 to 2025-03-10.

Figure 23: Zonal average of " χ^2 of fluorescence retrieval" for 2025-03-10 to 2025-03-10.

Figure 24: Zonal average of "Degrees of freedom for signal of fluorescence retrieval" for 2025-03-10 to 2025-03-10.

Figure 25: Zonal average of "Number of points in the spectrum" for 2025-03-10 to 2025-03-10.

Figure 26: Zonal average of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-03-10 to 2025-03-10.

8 Histograms

The definitions of the parameters given in this section can be found in section 2.

Figure 27: Histogram of "QA value" for 2025-03-10 to 2025-03-10

Figure 28: Histogram of "Cloud pressure" for 2025-03-10 to 2025-03-10

Figure 29: Histogram of "Cloud pressure precision" for 2025-03-10 to 2025-03-10

Figure 30: Histogram of "Cloud fraction" for 2025-03-10 to 2025-03-10

Figure 31: Histogram of "Cloud fraction precision" for 2025-03-10 to 2025-03-10

Figure 32: Histogram of "Scene albedo" for 2025-03-10 to 2025-03-10

Figure 33: Histogram of "Scene albedo precision" for 2025-03-10 to 2025-03-10

Figure 34: Histogram of "Apparent scene pressure" for 2025-03-10 to 2025-03-10

Figure 35: Histogram of "Apparent scene pressure precision" for 2025-03-10 to 2025-03-10

Figure 36: Histogram of " χ^2 " for 2025-03-10 to 2025-03-10

Figure 37: Histogram of "Number of iterations" for 2025-03-10 to 2025-03-10

Figure 38: Histogram of "Fluorescence" for 2025-03-10 to 2025-03-10

Figure 39: Histogram of "Fluorescence precision" for 2025-03-10 to 2025-03-10

Figure 40: Histogram of " χ^2 of fluorescence retrieval" for 2025-03-10 to 2025-03-10

Figure 41: Histogram of "Degrees of freedom for signal of fluorescence retrieval" for 2025-03-10 to 2025-03-10

Figure 42: Histogram of "Number of points in the spectrum" for 2025-03-10 to 2025-03-10

Figure 43: Histogram of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-03-10 to 2025-03-10

9 Along track statistics

The TROPOMI instrument uses different binned detector rows for different viewing directions. In this section statistics are presented for each of the binned rows in the instrument.

Figure 44: Along track statistics of "QA value" for 2025-03-10 to 2025-03-10

Figure 45: Along track statistics of "Cloud pressure" for 2025-03-10 to 2025-03-10

Figure 46: Along track statistics of "Cloud pressure precision" for 2025-03-10 to 2025-03-10

Figure 47: Along track statistics of "Cloud fraction" for 2025-03-10 to 2025-03-10

Figure 48: Along track statistics of "Cloud fraction precision" for 2025-03-10 to 2025-03-10

Figure 49: Along track statistics of "Scene albedo" for 2025-03-10 to 2025-03-10

Figure 50: Along track statistics of "Scene albedo precision" for 2025-03-10 to 2025-03-10

Figure 51: Along track statistics of "Apparent scene pressure" for 2025-03-10 to 2025-03-10

Figure 52: Along track statistics of "Apparent scene pressure precision" for 2025-03-10 to 2025-03-10

Figure 53: Along track statistics of " χ^2 " for 2025-03-10 to 2025-03-10

Figure 54: Along track statistics of "Number of iterations" for 2025-03-10 to 2025-03-10

Figure 55: Along track statistics of "Fluorescence" for 2025-03-10 to 2025-03-10

Figure 56: Along track statistics of "Fluorescence precision" for 2025-03-10 to 2025-03-10

Figure 57: Along track statistics of " χ^2 of fluorescence retrieval" for 2025-03-10 to 2025-03-10

Figure 58: Along track statistics of "Degrees of freedom for signal of fluorescence retrieval" for 2025-03-10 to 2025-03-10

Figure 59: Along track statistics of "Number of points in the spectrum" for 2025-03-10 to 2025-03-10

Figure 60: Along track statistics of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-03-10 to 2025-03-10

10 Coincidence density

To investigate the relation between parameters scatter density plots are produced. These include some 'hidden' parameters, latitude and the solar- and viewing geometries, in addition to all configured parameters. All combinations of pairs of parameters are included *once*, in one direction alone.

Contents

1	Short Introduction	1
	1.1 The list of parameters	1
2	Definitions	1
3	Granule outlines	8
4	Input data monitoring	9
5	Warnings and errors	10
6	World maps	11
7	Zonal average	17
8	Histograms	34
9	Along track statistics	51
10	Coincidence density	68
11	Copyright information of 'PyCAMA'	68

List of Figures

1	Outline of the granules.	8
2	Input data per granule	9
3	Fraction of pixels with specific warnings and errors during processing	10
4	Map of "Cloud pressure" for 2025-03-10 to 2025-03-10	11
5	Map of "Cloud fraction" for 2025-03-10 to 2025-03-10	12
6	Map of "Scene albedo" for 2025-03-10 to 2025-03-10	13
7	Map of "Apparent scene pressure" for 2025-03-10 to 2025-03-10	14
8	Map of "Fluorescence" for 2025-03-10 to 2025-03-10	15
9	Map of the number of observations for 2025-03-10 to 2025-03-10	16
10	Zonal average of "QA value" for 2025-03-10 to 2025-03-10.	17
11	Zonal average of "Cloud pressure" for 2025-03-10 to 2025-03-10.	18
12	Zonal average of "Cloud pressure precision" for 2025-03-10 to 2025-03-10.	19
13	Zonal average of "Cloud fraction" for 2025-03-10 to 2025-03-10.	20
14	Zonal average of "Cloud fraction precision" for 2025-03-10 to 2025-03-10.	21
15	Zonal average of "Scene albedo" for 2025-03-10 to 2025-03-10.	22
16	Zonal average of "Scene albedo precision" for 2025-03-10 to 2025-03-10.	23
17	Zonal average of "Apparent scene pressure" for 2025-03-10 to 2025-03-10.	24
18	Zonal average of "Apparent scene pressure precision" for 2025-03-10 to 2025-03-10.	25
19	Zonal average of " χ^2 " for 2025-03-10 to 2025-03-10	26
20	Zonal average of "Number of iterations" for 2025-03-10 to 2025-03-10.	27
21	Zonal average of "Fluorescence" for 2025-03-10 to 2025-03-10.	28
22	Zonal average of "Fluorescence precision" for 2025-03-10 to 2025-03-10.	29
23	Zonal average of " χ^2 of fluorescence retrieval" for 2025-03-10 to 2025-03-10	30
24	Zonal average of "Degrees of freedom for signal of fluorescence retrieval" for 2025-03-10 to 2025-03-10.	31
25	Zonal average of "Number of points in the spectrum" for 2025-03-10 to 2025-03-10.	32
26	Zonal average of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-03-10 to 2025-03-10	33
27	Histogram of "QA value" for 2025-03-10 to 2025-03-10	34
28	Histogram of "Cloud pressure" for 2025-03-10 to 2025-03-10	35
29	Histogram of "Cloud pressure precision" for 2025-03-10 to 2025-03-10	36

30	Histogram of "Cloud fraction" for 2025-03-10 to 2025-03-10	37
31	Histogram of "Cloud fraction precision" for 2025-03-10 to 2025-03-10	38
32	Histogram of "Scene albedo" for 2025-03-10 to 2025-03-10	39
33	Histogram of "Scene albedo precision" for 2025-03-10 to 2025-03-10	40
34	Histogram of "Apparent scene pressure" for 2025-03-10 to 2025-03-10	41
35	Histogram of "Apparent scene pressure precision" for 2025-03-10 to 2025-03-10	42
36	Histogram of " χ^2 " for 2025-03-10 to 2025-03-10	43
37	Histogram of "Number of iterations" for 2025-03-10 to 2025-03-10	44
38	Histogram of "Fluorescence" for 2025-03-10 to 2025-03-10	45
39	Histogram of "Fluorescence precision" for 2025-03-10 to 2025-03-10	46
40	Histogram of " χ^2 of fluorescence retrieval" for 2025-03-10 to 2025-03-10	47
41	Histogram of "Degrees of freedom for signal of fluorescence retrieval" for 2025-03-10 to 2025-03-10	48
42	Histogram of "Number of points in the spectrum" for 2025-03-10 to 2025-03-10	49
43	Histogram of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-03-10 to 2025-03-10	50
44	Along track statistics of "QA value" for 2025-03-10 to 2025-03-10	51
45	Along track statistics of "Cloud pressure" for 2025-03-10 to 2025-03-10	52
46	Along track statistics of "Cloud pressure precision" for 2025-03-10 to 2025-03-10	53
47	Along track statistics of "Cloud fraction" for 2025-03-10 to 2025-03-10	54
48	Along track statistics of "Cloud fraction precision" for 2025-03-10 to 2025-03-10	55
49	Along track statistics of "Scene albedo" for 2025-03-10 to 2025-03-10	56
50	Along track statistics of "Scene albedo precision" for 2025-03-10 to 2025-03-10	57
51	Along track statistics of "Apparent scene pressure" for 2025-03-10 to 2025-03-10	58
52	Along track statistics of "Apparent scene pressure precision" for 2025-03-10 to 2025-03-10	59
53	Along track statistics of " χ^2 " for 2025-03-10 to 2025-03-10	60
54	Along track statistics of "Number of iterations" for 2025-03-10 to 2025-03-10	61
55	Along track statistics of "Fluorescence" for 2025-03-10 to 2025-03-10	62
56	Along track statistics of "Fluorescence precision" for 2025-03-10 to 2025-03-10	63
57	Along track statistics of " χ^2 of fluorescence retrieval" for 2025-03-10 to 2025-03-10	64
58	Along track statistics of "Degrees of freedom for signal of fluorescence retrieval" for 2025-03-10 to 2025-03-10	65
59	Along track statistics of "Number of points in the spectrum" for 2025-03-10 to 2025-03-10	66
60	Along track statistics of "Spectral offset $(\lambda_{true} - \lambda_{nominal})$ " for 2025-03-10 to 2025-03-10	67

List of Tables

1	Parameterlist and basic statistics for the analysis
2	Percentile ranges
3	Parameterlist and basic statistics for the analysis for observations in the northern hemisphere
4	Parameterlist and basic statistics for the analysis for observations in the southern hemisphere
5	Parameterlist and basic statistics for the analysis for observations over water
6	Parameterlist and basic statistics for the analysis for observations over land

11 Copyright information of 'PyCAMA'

Copyright © 2005-2023, Maarten Sneep (KNMI).

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
- 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

This software is provided by the copyright holders and contributors "as is" and any express or implied warranties, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose are disclaimed. In no event shall the copyright holder or contributors be liable for any direct, indirect, incidental, special, exemplary, or consequential damages (including, but not limited to, procurement of substitute goods or services; loss of use, data, or profits; or business interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence or otherwise) arising in any way out of the use of this software, even if advised of the possibility of such damage.

Maarten Sneep (maarten.sneep@knmi.nl).