PyCAMA report generated by tropl2-proc

tropl2-proc

2025-03-14 (04:30)

1 Short Introduction

1.1 The list of parameters

You may want to keep the list given in table 1 at hand when viewing the results.

2 Definitions

The averages shown here are unweighed averages:

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i \tag{1}$$

with N the number of observations in the dataset.

The spread of the measurements is indicated with the variance V(x), or rather the standard deviation $\sigma(x) = \sqrt{V(x)}$.

$$V(x) = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2$$
(2)

We also report the more robust statistics median, minimum, maximum, various percentiles and inter quartile range.

The median m is the value of parameter x for which half of the observations of x is smaller than m:

$$P(x \le m) = P(x \ge m) = \int_{-\infty}^{m} f(x) \, \mathrm{d}x = \frac{1}{2}$$
(3)

with f(x) the probability density function.

The median is a special case of a percentile. Instead of $\frac{1}{2}$ in equation 3, other threshold values can be used. We report results for 1%, 5%, 10%, 15.9%, 25%, 75%, 84.1%, 90%, 95% and 99%. The inter quartile range is the difference between the 75% and 25% percentiles. Similarly the minimum and maximum values correspond to the 0% and 100% percentiles respectively.

For normally distributed parameters the mean and median are the same, while the $\mu \pm \sigma$ values and the 15.9% and 84.1% percentiles coincide.

To get a measure for the relation of one variable $x_{(k)}$ with another $x_{(l)}$, we calculate the covariance matrix C_{kl} .

$$C_{kl} = C(x_{(k)}, x_{(l)}) = \frac{1}{N-1} \sum_{i=1}^{N} (x_{(k),i} - \overline{x_{(k)}}) (x_{(l),i} - \overline{x_{(l)}})$$
(4)

Rather than a dimensionally dependent covariance, it is often easier to interpret a correlation matrix R_{kl} , a matrix of Pearson's *r* coefficients:

$$R_{kl} = R(x_{(k)}, x_{(l)}) = \frac{C_{kl}}{\sqrt{C_{kk}C_{ll}}} = \frac{C_{kl}}{\sqrt{V(x_k)V(x_l)}}$$
(5)

The diagonal elements of the covariance matrix are the variances of the elements, $V(x_{(k)}) = C_{kk}$ and obviously $R_{kk} = 1$.

Table 1: Parameterlist and basic statistics for the analysis
--

	Table 1: Parameter	list and basic	statistics for the a	nalysis			
Variable	mean $\pm \sigma$	Count	Mode	IQR	Median	Minimum	Maximum
qa value [1]	0.929 ± 0.167	23244745	0.995	0.0	1.000	$3.000 imes 10^{-2}$	1.000
cloud pressure crb [hPa]	797 ± 190	23244745	1.005×10^3	268	855	130	1.072×10^3
cloud pressure crb precision [hPa]	2.46 ± 9.70	23244745	0.750	1.21	0.583	$2.441 imes10^{-4}$	1.462×10^{3}
cloud fraction crb [1]	0.465 ± 0.385	23244745	0.996	0.820	0.374	0.0	1.000
cloud fraction crb precision [1]	$(2.136 \pm 14.203) \times 10^{-4}$	23244745	$2.500 imes 10^{-4}$	$6.002 imes 10^{-5}$	7.776×10^{-5}	1.656×10^{-9}	0.948
scene albedo [1]	0.455 ± 0.331	23244745	1.500×10^{-2}	0.609	0.430	-2.375×10^{-3}	4.25
scene albedo precision [1]	$(8.954 \pm 11.065) \times 10^{-5}$	23244745	$2.500 imes 10^{-4}$	6.687×10^{-5}	$5.321 imes10^{-5}$	1.056×10^{-5}	1.855×10^{-3}
apparent scene pressure [hPa]	829 ± 166	23244745	1.008×10^3	228	881	130	1.071×10^3
apparent scene pressure precision [hPa]	0.970 ± 1.703	23244745	0.500	0.464	0.435	0.121	60.2
chi square [1]	$(0.225 \pm 2.330) \times 10^5$	23244745	0.150	$2.395 imes 10^4$	$1.593 imes 10^4$	57.8	$2.857 imes 10^8$
number of iterations [1]	3.39 ± 1.08	23244745	3.23	1.000	3.00	1.000	14.0
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(8.122\pm59.126)\times10^{-10}$	23244745	2.500×10^{-10}	$5.089 imes10^{-9}$	$9.963 imes 10^{-10}$	-1.498×10^{-6}	2.006×10^{-6}
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.702 \pm 0.669) \times 10^{-9}$	23244745	$8.500 imes10^{-10}$	$9.745 imes 10^{-10}$	1.637×10^{-9}	$4.398 imes 10^{-10}$	5.616×10^{-9}
chi square fluorescence [1]	$(0.498 \pm 0.954) \times 10^5$	23244745	750	$4.275 imes 10^4$	$1.237 imes 10^4$	99.9	$6.570 imes 10^6$
degrees of freedom fluorescence [1]	6.00 ± 0.00	23244745	5.95	0.0	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	23244745	49.7	0.0	50.0	46.0	50.0
wavelength calibration offset [nm]	$(2.958 \pm 8.675) \times 10^{-3}$	23244745	2.800×10^{-3}	5.662×10^{-3}	3.016×10^{-3}	-0.172	0.307

			Table 2:	Percentile rang	jes					
Variable	1 %	5%	10 %	15.9 %	25 %	75 %	84.1 %	90 %	95 %	99 %
qa value [1]	0.500	0.500	0.500	0.900	1.000	1.000	1.000	1.000	1.000	1.000
cloud pressure crb [hPa]	253	411	514	592	679	947	976	995	1.009×10^{3}	1.020×10^3
cloud pressure crb precision [hPa]	0.182	0.245	0.274	0.301	0.343	1.55	2.66	4.43	8.74	31.8
cloud fraction crb [1]	$1.237 imes10^{-4}$	$1.068 imes10^{-2}$	$2.398 imes10^{-2}$	4.351×10^{-2}	$8.502 imes 10^{-2}$	0.905	1.000	1.000	1.000	1.000
cloud fraction crb precision [1]	$1.985 imes10^{-5}$	$2.254 imes10^{-5}$	$2.518 imes10^{-5}$	$2.909 imes 10^{-5}$	$3.998 imes 10^{-5}$	$1.000 imes 10^{-4}$	$1.193 imes10^{-4}$	$1.956 imes 10^{-4}$	$5.638 imes10^{-4}$	2.717×10^{-3}
scene albedo [1]	$7.691 imes 10^{-3}$	$1.925 imes 10^{-2}$	$3.566 imes 10^{-2}$	$6.230 imes 10^{-2}$	0.134	0.743	0.845	0.904	0.972	1.14
scene albedo precision [1]	$1.286 imes 10^{-5}$	$1.497 imes 10^{-5}$	$1.810 imes10^{-5}$	$2.276 imes 10^{-5}$	3.100×10^{-5}	$9.787 imes 10^{-5}$	1.405×10^{-4}	1.960×10^{-4}	$3.058 imes 10^{-4}$	5.839×10^{-4}
apparent scene pressure [hPa]	353	494	580	642	731	959	983	999	1.010×10^{3}	1.020×10^{3}
apparent scene pressure precision [hPa]	0.216	0.250	0.273	0.295	0.325	0.789	1.27	2.06	3.66	8.84
chi square [1]	276	640	1.364×10^{3}	2.787×10^{3}	5.716×10^{3}	2.967×10^{4}	3.757×10^{4}	4.515×10^{4}	5.673×10^{4}	8.592×10^{4}
number of iterations [1]	2.00	2.00	2.00	3.00	3.00	4.00	4.00	5.00	5.00	7.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	-1.543×10^{-8}	-7.678×10^{-9}	-4.703×10^{-9}	$-2.965 imes 10^{-9}$	-1.478×10^{-9}	3.611×10^{-9}	4.976×10^{-9}	6.306×10^{-9}	$8.290 imes 10^{-9}$	1.321×10^{-8}
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$7.516 imes 10^{-10}$	$8.290 imes 10^{-10}$	8.981×10^{-10}	9.849×10^{-10}	1.151×10^{-9}	2.125×10^{-9}	2.345×10^{-9}	2.611×10^{-9}	2.925×10^{-9}	3.605×10^{-9}
chi square fluorescence [1]	455	870	1.452×10^{3}	2.356×10^{3}	4.061×10^{3}	4.681×10^{4}	8.762×10^{4}	1.448×10^{5}	2.431×10^{5}	4.708×10^{5}
degrees of freedom fluorescence [1]	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0
wavelength calibration offset [nm]	-2.538×10^{-2}	-9.816×10^{-3}	-4.624×10^{-3}	-1.967×10^{-3}	1.362×10^{-4}	$5.798 imes 10^{-3}$	7.826×10^{-3}	1.048×10^{-2}	1.566×10^{-2}	3.095×10^{-2}

Table	3: Parameterlist and basic s	statistics for	the analysis for	observations in	the northern hem	nisphere		
Variable	$ $ mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.931 ± 0.166	11950743	0.0	1.000	3.000×10^{-2}	1.000	1.000	1.000
cloud pressure crb [hPa]	810 ± 186	11950743	238	870	130	1.072×10^{3}	715	953
cloud pressure crb precision [hPa]	2.76 ± 10.67	11950743	1.38	0.689	$2.441 imes 10^{-4}$	1.342×10^{3}	0.362	1.74
cloud fraction crb [1]	0.461 ± 0.395	11950743	0.913	0.334	0.0	1.000	$8.172 imes 10^{-2}$	0.995
cloud fraction crb precision [1]	$(2.663 \pm 16.356) \times 10^{-4}$	11950743	$5.853 imes10^{-5}$	$9.666 imes 10^{-5}$	$5.180 imes10^{-9}$	0.772	4.575×10^{-5}	$1.043 imes10^{-4}$
scene albedo [1]	0.486 ± 0.334	11950743	0.607	0.473	$-2.375 imes 10^{-3}$	2.88	0.176	0.783
scene albedo precision [1]	$(1.011 \pm 1.270) \times 10^{-4}$	11950743	$7.820 imes10^{-5}$	$5.682 imes 10^{-5}$	$1.074 imes10^{-5}$	1.855×10^{-3}	$3.220 imes 10^{-5}$	$1.104 imes10^{-4}$
apparent scene pressure [hPa]	852 ± 150	11950743	180	901	130	1.071×10^3	785	964
apparent scene pressure precision [hPa]	0.835 ± 1.366	11950743	0.392	0.435	0.121	60.2	0.324	0.716
chi square [1]	$(0.269 \pm 2.921) \times 10^5$	11950743	$2.782 imes 10^4$	$1.827 imes 10^4$	83.4	$2.857 imes 10^8$	$7.215 imes 10^3$	$3.504 imes 10^4$
number of iterations [1]	3.65 ± 1.15	11950743	1.000	3.00	1.000	14.0	3.00	4.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.389 \pm 6.104) \times 10^{-9}$	11950743	5.219×10^{-9}	$1.578 imes10^{-9}$	-1.498×10^{-6}	$2.006 imes 10^{-6}$	-1.032×10^{-9}	$4.187 imes10^{-9}$
fluorescence precision [mol $s^{-1} m^{-2} nm^{-1} sr^{-1}$]	$(1.710\pm0.662)\times10^{-9}$	11950743	$9.703 imes 10^{-10}$	1.648×10^{-9}	$4.398 imes 10^{-10}$	$5.597 imes 10^{-9}$	$1.167 imes10^{-9}$	$2.137 imes10^{-9}$
chi square fluorescence [1]	$(0.412 \pm 0.811) \times 10^5$	11950743	3.401×10^4	$1.086 imes 10^4$	109	$6.570 imes 10^6$	4.308×10^3	$3.832 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	11950743	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	11950743	0.0	50.0	46.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(2.919\pm7.778)\times10^{-3}$	11950743	$5.164 imes 10^{-3}$	2.939×10^{-3}	-8.516×10^{-2}	0.307	$3.162 imes 10^{-4}$	$5.480 imes 10^{-3}$

Table	4: Parameterlist and basic s	statistics for	the analysis for	observations in	the southern hem	isphere		
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.928 ± 0.167	11294002	0.0	1.000	0.350	1.000	1.000	1.000
cloud pressure crb [hPa]	783 ± 193	11294002	288	834	130	1.036×10^{3}	651	939
cloud pressure crb precision [hPa]	2.14 ± 8.53	11294002	0.990	0.501	1.465×10^{-3}	1.462×10^{3}	0.331	1.32
cloud fraction crb [1]	0.468 ± 0.375	11294002	0.764	0.413	0.0	1.000	$8.979 imes10^{-2}$	0.853
cloud fraction crb precision [1]	$(1.579 \pm 11.467) \times 10^{-4}$	11294002	$6.394 imes10^{-5}$	$6.807 imes10^{-5}$	1.656×10^{-9}	0.948	$3.606 imes 10^{-5}$	$1.000 imes 10^{-4}$
scene albedo [1]	0.423 ± 0.325	11294002	0.592	0.388	-2.337×10^{-3}	4.25	0.102	0.694
scene albedo precision [1]	$(7.731 \pm 8.856) \times 10^{-5}$	11294002	$5.635 imes 10^{-5}$	$5.029 imes 10^{-5}$	1.056×10^{-5}	$1.608 imes 10^{-3}$	$2.978 imes10^{-5}$	$8.613 imes10^{-5}$
apparent scene pressure [hPa]	804 ± 177	11294002	272	853	130	1.036×10^3	678	949
apparent scene pressure precision [hPa]	1.11 ± 1.99	11294002	0.580	0.435	0.165	58.9	0.325	0.905
chi square [1]	$(0.178 \pm 1.464) \times 10^5$	11294002	$2.073 imes 10^4$	1.400×10^4	57.8	$1.274 imes 10^8$	4.446×10^3	$2.518 imes10^4$
number of iterations [1]	3.11 ± 0.93	11294002	0.0	3.00	1.000	14.0	3.00	3.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(2.020\pm56.388)\times10^{-10}$	11294002	$4.840 imes 10^{-9}$	$4.586 imes 10^{-10}$	-1.208×10^{-6}	$1.244 imes10^{-6}$	-1.911×10^{-9}	2.929×10^{-9}
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.694 \pm 0.676) \times 10^{-9}$	11294002	9.815×10^{-10}	1.624×10^{-9}	5.545×10^{-10}	5.616×10^{-9}	1.132×10^{-9}	2.114×10^{-9}
chi square fluorescence [1]	$(0.588 \pm 1.078) \times 10^5$	11294002	$5.405 imes 10^4$	1.472×10^4	99.9	$1.896 imes 10^6$	3.652×10^3	$5.771 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	11294002	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	11294002	0.0	50.0	48.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(2.999 \pm 9.532) \times 10^{-3}$	11294002	6.281×10^{-3}	3.111×10^{-3}	-0.172	0.106	-9.787×10^{-5}	$6.183 imes 10^{-3}$

	Table 5: Parameterlist and	d basic stati	stics for the ana	lysis for observa	tions over water			
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.970 ± 0.094	15401276	0.0	1.000	6.000×10^{-2}	1.000	1.000	1.000
cloud pressure crb [hPa]	825 ± 180	15401276	223	884	130	1.071×10^3	737	961
cloud pressure crb precision [hPa]	2.58 ± 10.46	15401276	1.18	0.620	$2.441 imes 10^{-4}$	661	0.362	1.54
cloud fraction crb [1]	0.413 ± 0.361	15401276	0.678	0.308	0.0	1.000	7.007×10^{-2}	0.748
cloud fraction crb precision [1]	$(1.402 \pm 9.992) \times 10^{-4}$	15401276	$7.040 imes 10^{-5}$	$5.499 imes 10^{-5}$	$2.737 imes 10^{-9}$	0.335	2.961×10^{-5}	$1.000 imes 10^{-4}$
scene albedo [1]	0.362 ± 0.314	15401276	0.563	0.280	$-2.375 imes 10^{-3}$	3.95	$6.660 imes 10^{-2}$	0.629
scene albedo precision [1]	$(7.877 \pm 10.864) \times 10^{-5}$	15401276	5.549×10^{-5}	4.611×10^{-5}	1.056×10^{-5}	$1.756 imes 10^{-3}$	2.350×10^{-5}	7.899×10^{-5}
apparent scene pressure [hPa]	844 ± 166	15401276	203	897	130	1.070×10^3	768	971
apparent scene pressure precision [hPa]	1.27 ± 2.02	15401276	0.858	0.562	0.159	60.2	0.357	1.21
chi square [1]	$(0.167 \pm 1.554) \times 10^5$	15401276	$2.090 imes 10^4$	$1.065 imes 10^4$	57.8	$1.274 imes 10^8$	3.016×10^{3}	$2.391 imes 10^4$
number of iterations [1]	3.08 ± 0.93	15401276	0.0	3.00	1.000	14.0	3.00	3.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.784 \pm 53.008) \times 10^{-10}$	15401276	$4.488 imes10^{-9}$	$3.014 imes 10^{-10}$	-1.498×10^{-6}	$1.577 imes10^{-6}$	$-1.782 imes10^{-9}$	2.707×10^{-9}
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.571 \pm 0.661) \times 10^{-9}$	15401276	$9.564 imes 10^{-10}$	$1.429 imes 10^{-9}$	$4.398 imes 10^{-10}$	$5.597 imes10^{-9}$	1.030×10^{-9}	$1.986 imes 10^{-9}$
chi square fluorescence [1]	$(0.428 \pm 0.842) \times 10^5$	15401276	3.764×10^4	$1.246 imes 10^4$	99.9	$6.570 imes10^6$	4.240×10^{3}	$4.188 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	15401276	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	15401276	0.0	50.0	48.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(2.927 \pm 9.976) \times 10^{-3}$	15401276	6.608×10^{-3}	3.006×10^{-3}	-0.172	0.307	-3.766×10^{-4}	6.231×10^{-3}

	Table 6: Parameterlist an	nd basic sta	tistics for the an	alysis for obser	vations over land			
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.822 ± 0.244	5979423	0.500	1.000	5.000×10^{-2}	1.000	0.500	1.000
cloud pressure crb [hPa]	736 ± 193	5979423	282	758	130	1.064×10^{3}	615	897
cloud pressure crb precision [hPa]	2.11 ± 7.57	5979423	1.19	0.490	$3.662 imes 10^{-4}$	1.462×10^{3}	0.313	1.50
cloud fraction crb [1]	0.592 ± 0.414	5979423	0.866	0.703	0.0	1.000	0.134	1.000
cloud fraction crb precision [1]	$(3.951 \pm 21.494) \times 10^{-4}$	5979423	$3.980 imes 10^{-5}$	$1.000 imes 10^{-4}$	$1.656 imes 10^{-9}$	0.948	$9.113 imes10^{-5}$	$1.309 imes 10^{-4}$
scene albedo [1]	0.663 ± 0.281	5979423	0.484	0.698	1.265×10^{-2}	4.25	0.407	0.891
scene albedo precision [1]	$(1.201 \pm 1.174) \times 10^{-4}$	5979423	$1.013 imes 10^{-4}$	$7.905 imes 10^{-5}$	$1.341 imes 10^{-5}$	$1.794 imes 10^{-3}$	4.382×10^{-5}	$1.451 imes 10^{-4}$
apparent scene pressure [hPa]	787 ± 160	5979423	266	823	130	1.062×10^3	661	927
apparent scene pressure precision [hPa]	0.381 ± 0.121	5979423	0.132	0.354	0.121	4.62	0.300	0.432
chi square [1]	$(0.330 \pm 3.036) \times 10^5$	5979423	$2.256 imes 10^4$	$2.440 imes 10^4$	448	$2.857 imes 10^8$	$1.520 imes 10^4$	$3.776 imes 10^4$
number of iterations [1]	4.02 ± 1.08	5979423	1.000	4.00	1.000	14.0	3.00	4.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(2.016\pm6.176) imes10^{-9}$	5979423	4.914×10^{-9}	2.568×10^{-9}	-1.433×10^{-6}	2.006×10^{-6}	$-6.379 imes 10^{-11}$	$4.851 imes 10^{-9}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.926 \pm 0.605) \times 10^{-9}$	5979423	$7.292 imes 10^{-10}$	$1.853 imes 10^{-9}$	$4.457 imes 10^{-10}$	$5.597 imes10^{-9}$	$1.512 imes 10^{-9}$	2.241×10^{-9}
chi square fluorescence [1]	$(0.592 \pm 1.080) \times 10^5$	5979423	$5.494 imes 10^4$	$9.745 imes 10^3$	156	$1.544 imes10^6$	$2.809 imes 10^3$	$5.775 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	5979423	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	5979423	0.0	50.0	46.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(2.995 \pm 4.613) \times 10^{-3}$	5979423	4.090×10^{-3}	3.033×10^{-3}	-5.715×10^{-2}	5.997×10^{-2}	9.668×10^{-4}	5.057×10^{-3}

Granule outlines

Figure 1: Outline of the granules.

4 Input data monitoring

Figure 2: Input data per granule

Figure 3: Fraction of pixels with specific warnings and errors during processing

6 World maps

Figure 4: Map of "Cloud pressure" for 2025-03-12 to 2025-03-13

2025-03-12

Figure 5: Map of "Cloud fraction" for 2025-03-12 to 2025-03-13

Figure 6: Map of "Scene albedo" for 2025-03-12 to 2025-03-13

Figure 7: Map of "Apparent scene pressure" for 2025-03-12 to 2025-03-13

2025-03-12

Figure 8: Map of "Fluorescence" for 2025-03-12 to 2025-03-13

Figure 9: Map of the number of observations for 2025-03-12 to 2025-03-13

7 Zonal average

Figure 10: Zonal average of "QA value" for 2025-03-12 to 2025-03-13.

Figure 11: Zonal average of "Cloud pressure" for 2025-03-12 to 2025-03-13.

Figure 12: Zonal average of "Cloud pressure precision" for 2025-03-12 to 2025-03-13.

Figure 13: Zonal average of "Cloud fraction" for 2025-03-12 to 2025-03-13.

Figure 14: Zonal average of "Cloud fraction precision" for 2025-03-12 to 2025-03-13.

Figure 15: Zonal average of "Scene albedo" for 2025-03-12 to 2025-03-13.

Figure 16: Zonal average of "Scene albedo precision" for 2025-03-12 to 2025-03-13.

Figure 17: Zonal average of "Apparent scene pressure" for 2025-03-12 to 2025-03-13.

Figure 18: Zonal average of "Apparent scene pressure precision" for 2025-03-12 to 2025-03-13.

Figure 19: Zonal average of " χ^2 " for 2025-03-12 to 2025-03-13.

Figure 20: Zonal average of "Number of iterations" for 2025-03-12 to 2025-03-13.

Figure 21: Zonal average of "Fluorescence" for 2025-03-12 to 2025-03-13.

Figure 22: Zonal average of "Fluorescence precision" for 2025-03-12 to 2025-03-13.

Figure 23: Zonal average of " χ^2 of fluorescence retrieval" for 2025-03-12 to 2025-03-13.

Figure 24: Zonal average of "Degrees of freedom for signal of fluorescence retrieval" for 2025-03-12 to 2025-03-13.

Figure 25: Zonal average of "Number of points in the spectrum" for 2025-03-12 to 2025-03-13.

Figure 26: Zonal average of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-03-12 to 2025-03-13.

8 Histograms

The definitions of the parameters given in this section can be found in section 2.

Figure 27: Histogram of "QA value" for 2025-03-12 to 2025-03-13

Figure 28: Histogram of "Cloud pressure" for 2025-03-12 to 2025-03-13

Figure 29: Histogram of "Cloud pressure precision" for 2025-03-12 to 2025-03-13

Figure 30: Histogram of "Cloud fraction" for 2025-03-12 to 2025-03-13

Figure 31: Histogram of "Cloud fraction precision" for 2025-03-12 to 2025-03-13

Figure 32: Histogram of "Scene albedo" for 2025-03-12 to 2025-03-13

Figure 33: Histogram of "Scene albedo precision" for 2025-03-12 to 2025-03-13

Figure 34: Histogram of "Apparent scene pressure" for 2025-03-12 to 2025-03-13

Figure 35: Histogram of "Apparent scene pressure precision" for 2025-03-12 to 2025-03-13

Figure 36: Histogram of " χ^2 " for 2025-03-12 to 2025-03-13

Figure 37: Histogram of "Number of iterations" for 2025-03-12 to 2025-03-13

Figure 38: Histogram of "Fluorescence" for 2025-03-12 to 2025-03-13

Figure 39: Histogram of "Fluorescence precision" for 2025-03-12 to 2025-03-13

Figure 40: Histogram of " χ^2 of fluorescence retrieval" for 2025-03-12 to 2025-03-13

Figure 41: Histogram of "Degrees of freedom for signal of fluorescence retrieval" for 2025-03-12 to 2025-03-13

Figure 42: Histogram of "Number of points in the spectrum" for 2025-03-12 to 2025-03-13

Figure 43: Histogram of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-03-12 to 2025-03-13

9 Along track statistics

The TROPOMI instrument uses different binned detector rows for different viewing directions. In this section statistics are presented for each of the binned rows in the instrument.

Figure 44: Along track statistics of "QA value" for 2025-03-12 to 2025-03-13

Figure 45: Along track statistics of "Cloud pressure" for 2025-03-12 to 2025-03-13

Figure 46: Along track statistics of "Cloud pressure precision" for 2025-03-12 to 2025-03-13

Figure 47: Along track statistics of "Cloud fraction" for 2025-03-12 to 2025-03-13

Figure 48: Along track statistics of "Cloud fraction precision" for 2025-03-12 to 2025-03-13

Figure 49: Along track statistics of "Scene albedo" for 2025-03-12 to 2025-03-13

Figure 50: Along track statistics of "Scene albedo precision" for 2025-03-12 to 2025-03-13

Figure 51: Along track statistics of "Apparent scene pressure" for 2025-03-12 to 2025-03-13

Figure 52: Along track statistics of "Apparent scene pressure precision" for 2025-03-12 to 2025-03-13

Figure 53: Along track statistics of " χ^2 " for 2025-03-12 to 2025-03-13

Figure 54: Along track statistics of "Number of iterations" for 2025-03-12 to 2025-03-13

Figure 55: Along track statistics of "Fluorescence" for 2025-03-12 to 2025-03-13

Figure 56: Along track statistics of "Fluorescence precision" for 2025-03-12 to 2025-03-13

Figure 57: Along track statistics of " χ^2 of fluorescence retrieval" for 2025-03-12 to 2025-03-13

Figure 58: Along track statistics of "Degrees of freedom for signal of fluorescence retrieval" for 2025-03-12 to 2025-03-13

Figure 59: Along track statistics of "Number of points in the spectrum" for 2025-03-12 to 2025-03-13

Figure 60: Along track statistics of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-03-12 to 2025-03-13

10 Coincidence density

To investigate the relation between parameters scatter density plots are produced. These include some 'hidden' parameters, latitude and the solar- and viewing geometries, in addition to all configured parameters. All combinations of pairs of parameters are included *once*, in one direction alone.

Contents

1	Short Introduction	1
	1.1 The list of parameters	1
2	Definitions	1
3	Granule outlines	8
4	Input data monitoring	9
5	Warnings and errors	10
6	World maps	11
7	Zonal average	17
8	Histograms	34
9	Along track statistics	51
10	Coincidence density	68
11	Copyright information of 'PyCAMA'	68

List of Figures

1	Outline of the granules.	8
2	Input data per granule	9
3	Fraction of pixels with specific warnings and errors during processing	10
4	Map of "Cloud pressure" for 2025-03-12 to 2025-03-13	11
5	Map of "Cloud fraction" for 2025-03-12 to 2025-03-13	12
6	Map of "Scene albedo" for 2025-03-12 to 2025-03-13	13
7	Map of "Apparent scene pressure" for 2025-03-12 to 2025-03-13	14
8	Map of "Fluorescence" for 2025-03-12 to 2025-03-13	15
9	Map of the number of observations for 2025-03-12 to 2025-03-13	16
10	Zonal average of "QA value" for 2025-03-12 to 2025-03-13.	17
11	Zonal average of "Cloud pressure" for 2025-03-12 to 2025-03-13.	18
12	Zonal average of "Cloud pressure precision" for 2025-03-12 to 2025-03-13.	19
13	Zonal average of "Cloud fraction" for 2025-03-12 to 2025-03-13.	20
14	Zonal average of "Cloud fraction precision" for 2025-03-12 to 2025-03-13.	21
15	Zonal average of "Scene albedo" for 2025-03-12 to 2025-03-13.	22
16	Zonal average of "Scene albedo precision" for 2025-03-12 to 2025-03-13.	23
17	Zonal average of "Apparent scene pressure" for 2025-03-12 to 2025-03-13.	24
18	Zonal average of "Apparent scene pressure precision" for 2025-03-12 to 2025-03-13.	25
19	Zonal average of " χ^2 " for 2025-03-12 to 2025-03-13	26
20	Zonal average of "Number of iterations" for 2025-03-12 to 2025-03-13.	27
21	Zonal average of "Fluorescence" for 2025-03-12 to 2025-03-13.	28
22	Zonal average of "Fluorescence precision" for 2025-03-12 to 2025-03-13.	29
23	Zonal average of " χ^2 of fluorescence retrieval" for 2025-03-12 to 2025-03-13	30
24	Zonal average of "Degrees of freedom for signal of fluorescence retrieval" for 2025-03-12 to 2025-03-13.	31
25	Zonal average of "Number of points in the spectrum" for 2025-03-12 to 2025-03-13.	32
26	Zonal average of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-03-12 to 2025-03-13	33
27	Histogram of "QA value" for 2025-03-12 to 2025-03-13	34
28	Histogram of "Cloud pressure" for 2025-03-12 to 2025-03-13	35
29	Histogram of "Cloud pressure precision" for 2025-03-12 to 2025-03-13	36

30	Histogram of "Cloud fraction" for 2025-03-12 to 2025-03-13	37
31	Histogram of "Cloud fraction precision" for 2025-03-12 to 2025-03-13	38
32	Histogram of "Scene albedo" for 2025-03-12 to 2025-03-13	39
33	Histogram of "Scene albedo precision" for 2025-03-12 to 2025-03-13	40
34	Histogram of "Apparent scene pressure" for 2025-03-12 to 2025-03-13	41
35	Histogram of "Apparent scene pressure precision" for 2025-03-12 to 2025-03-13	42
36	Histogram of " χ^2 " for 2025-03-12 to 2025-03-13	43
37	Histogram of "Number of iterations" for 2025-03-12 to 2025-03-13	44
38	Histogram of "Fluorescence" for 2025-03-12 to 2025-03-13	45
39	Histogram of "Fluorescence precision" for 2025-03-12 to 2025-03-13	46
40	Histogram of " χ^2 of fluorescence retrieval" for 2025-03-12 to 2025-03-13	47
41	Histogram of "Degrees of freedom for signal of fluorescence retrieval" for 2025-03-12 to 2025-03-13	48
42	Histogram of "Number of points in the spectrum" for 2025-03-12 to 2025-03-13	49
43	Histogram of "Spectral offset $(\lambda_{true} - \lambda_{nominal})$ " for 2025-03-12 to 2025-03-13	50
44	Along track statistics of "QA value" for 2025-03-12 to 2025-03-13	51
45	Along track statistics of "Cloud pressure" for 2025-03-12 to 2025-03-13	52
46	Along track statistics of "Cloud pressure precision" for 2025-03-12 to 2025-03-13	53
47	Along track statistics of "Cloud fraction" for 2025-03-12 to 2025-03-13	54
48	Along track statistics of "Cloud fraction precision" for 2025-03-12 to 2025-03-13	55
49	Along track statistics of "Scene albedo" for 2025-03-12 to 2025-03-13	56
50	Along track statistics of "Scene albedo precision" for 2025-03-12 to 2025-03-13	57
51	Along track statistics of "Apparent scene pressure" for 2025-03-12 to 2025-03-13	58
52	Along track statistics of "Apparent scene pressure precision" for 2025-03-12 to 2025-03-13	59
53	Along track statistics of " χ^2 " for 2025-03-12 to 2025-03-13	60
54	Along track statistics of "Number of iterations" for 2025-03-12 to 2025-03-13	61
55	Along track statistics of "Fluorescence" for 2025-03-12 to 2025-03-13	62
56	Along track statistics of "Fluorescence precision" for 2025-03-12 to 2025-03-13	63
57	Along track statistics of " χ^2 of fluorescence retrieval" for 2025-03-12 to 2025-03-13	64
58	Along track statistics of "Degrees of freedom for signal of fluorescence retrieval" for 2025-03-12 to 2025-03-13	65
59	Along track statistics of "Number of points in the spectrum" for 2025-03-12 to 2025-03-13	66
60	Along track statistics of "Spectral offset $(\lambda_{true} - \lambda_{nominal})$ " for 2025-03-12 to 2025-03-13	67

List of Tables

1	Parameterlist and basic statistics for the analysis
2	Percentile ranges
3	Parameterlist and basic statistics for the analysis for observations in the northern hemisphere
4	Parameterlist and basic statistics for the analysis for observations in the southern hemisphere
5	Parameterlist and basic statistics for the analysis for observations over water
6	Parameterlist and basic statistics for the analysis for observations over land

11 Copyright information of 'PyCAMA'

Copyright © 2005-2023, Maarten Sneep (KNMI).

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
- 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

This software is provided by the copyright holders and contributors "as is" and any express or implied warranties, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose are disclaimed. In no event shall the copyright holder or contributors be liable for any direct, indirect, incidental, special, exemplary, or consequential damages (including, but not limited to, procurement of substitute goods or services; loss of use, data, or profits; or business interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence or otherwise) arising in any way out of the use of this software, even if advised of the possibility of such damage.

Maarten Sneep (maarten.sneep@knmi.nl).