PyCAMA report generated by tropl2-proc

tropl2-proc

2025-03-18 (03:18)

1 Short Introduction

1.1 The list of parameters

You may want to keep the list given in table 1 at hand when viewing the results.

2 Definitions

The averages shown here are *unweighed* averages:

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i \tag{1}$$

with N the number of observations in the dataset.

The spread of the measurements is indicated with the variance V(x), or rather the standard deviation $\sigma(x) = \sqrt{V(x)}$.

$$V(x) = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2$$
(2)

We also report the more robust statistics median, minimum, maximum, various percentiles and inter quartile range.

The median m is the value of parameter x for which half of the observations of x is smaller than m:

$$P(x \le m) = P(x \ge m) = \int_{-\infty}^{m} f(x) \, \mathrm{d}x = \frac{1}{2}$$
(3)

with f(x) the probability density function.

The median is a special case of a percentile. Instead of $\frac{1}{2}$ in equation 3, other threshold values can be used. We report results for 1%, 5%, 10%, 15.9%, 25%, 75%, 84.1%, 90%, 95% and 99%. The inter quartile range is the difference between the 75% and 25% percentiles. Similarly the minimum and maximum values correspond to the 0% and 100% percentiles respectively.

For normally distributed parameters the mean and median are the same, while the $\mu \pm \sigma$ values and the 15.9% and 84.1% percentiles coincide.

To get a measure for the relation of one variable $x_{(k)}$ with another $x_{(l)}$, we calculate the covariance matrix C_{kl} .

$$C_{kl} = C(x_{(k)}, x_{(l)}) = \frac{1}{N-1} \sum_{i=1}^{N} (x_{(k),i} - \overline{x_{(k)}}) (x_{(l),i} - \overline{x_{(l)}})$$
(4)

Rather than a dimensionally dependent covariance, it is often easier to interpret a correlation matrix R_{kl} , a matrix of Pearson's *r* coefficients:

$$R_{kl} = R(x_{(k)}, x_{(l)}) = \frac{C_{kl}}{\sqrt{C_{kk}C_{ll}}} = \frac{C_{kl}}{\sqrt{V(x_k)V(x_l)}}$$
(5)

The diagonal elements of the covariance matrix are the variances of the elements, $V(x_{(k)}) = C_{kk}$ and obviously $R_{kk} = 1$.

Table 1: Parameterlist and basic statistics for the analysis	is
--	----

	Table 1: Parameter	list and basic	statistics for the a	nalysis			
Variable	mean $\pm \sigma$	Count	Mode	IQR	Median	Minimum	Maximum
qa value [1]	0.931 ± 0.163	24877376	0.995	0.0	1.000	0.350	1.000
cloud pressure crb [hPa]	796 ± 190	24877376	1.005×10^{3}	272	855	130	1.067×10^3
cloud pressure crb precision [hPa]	2.56 ± 10.13	24877376	0.750	1.23	0.574	$3.052 imes 10^{-4}$	1.279×10^3
cloud fraction crb [1]	0.466 ± 0.388	24877376	0.996	0.837	0.376	0.0	1.000
cloud fraction crb precision [1]	$(2.086 \pm 14.034) \times 10^{-4}$	24877376	$2.500 imes 10^{-4}$	6.052×10^{-5}	7.682×10^{-5}	4.911×10^{-9}	0.755
scene albedo [1]	0.453 ± 0.333	24877376	$1.500 imes10^{-2}$	0.622	0.424	-2.853×10^{-3}	4.73
scene albedo precision [1]	$(8.617 \pm 10.536) \times 10^{-5}$	24877376	$2.500 imes10^{-4}$	6.359×10^{-5}	$5.268 imes10^{-5}$	$1.063 imes10^{-5}$	2.765×10^{-3}
apparent scene pressure [hPa]	825 ± 171	24877376	1.008×10^3	237	879	130	1.067×10^{3}
apparent scene pressure precision [hPa]	0.994 ± 1.817	24877376	0.500	0.480	0.436	0.130	64.2
chi square [1]	$(0.225 \pm 2.980) \times 10^5$	24877376	0.150	2.366×10^4	$1.551 imes 10^4$	54.6	2.757×10^8
number of iterations [1]	3.38 ± 1.07	24877376	3.23	1.000	3.00	1.000	14.0
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(8.377 \pm 62.243) \times 10^{-10}$	24877376	2.500×10^{-10}	4.997×10^{-9}	$9.659 imes 10^{-10}$	-3.120×10^{-6}	1.726×10^{-6}
fluorescence precision [mol $s^{-1} m^{-2} nm^{-1} sr^{-1}$]	$(1.718 \pm 0.680) \times 10^{-9}$	24877376	$9.500 imes 10^{-10}$	$9.866 imes 10^{-10}$	1.650×10^{-9}	$4.759 imes 10^{-10}$	5.659×10^{-9}
chi square fluorescence [1]	$(0.471 \pm 0.928) \times 10^5$	24877376	750	$3.944 imes 10^4$	$1.204 imes 10^4$	98.1	$7.599 imes 10^6$
degrees of freedom fluorescence [1]	6.00 ± 0.00	24877376	5.95	0.0	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	24877376	49.7	0.0	50.0	43.0	50.0
wavelength calibration offset [nm]	$(2.866 \pm 8.718) \times 10^{-3}$	24877376	2.800×10^{-3}	$5.663 imes 10^{-3}$	2.899×10^{-3}	-0.133	0.157

			Table 2:	Percentile rang	es					
Variable	1 %	5%	10 %	15.9 %	25 %	75 %	84.1 %	90 %	95 %	99 %
qa value [1]	0.500	0.500	0.500	0.900	1.000	1.000	1.000	1.000	1.000	1.000
cloud pressure crb [hPa]	263	413	511	585	675	948	976	993	1.008×10^3	1.020×10^3
cloud pressure crb precision [hPa]	0.176	0.240	0.269	0.296	0.338	1.57	2.73	4.65	9.20	33.8
cloud fraction crb [1]	$2.850 imes10^{-4}$	$1.015 imes10^{-2}$	$2.248 imes10^{-2}$	$4.103 imes 10^{-2}$	$8.143 imes 10^{-2}$	0.919	1.000	1.000	1.000	1.000
cloud fraction crb precision [1]	$2.001 imes 10^{-5}$	$2.272 imes 10^{-5}$	$2.544 imes 10^{-5}$	$2.920 imes 10^{-5}$	$3.948 imes 10^{-5}$	$1.000 imes 10^{-4}$	$1.132 imes 10^{-4}$	$1.739 imes10^{-4}$	$4.962 imes 10^{-4}$	$2.628 imes 10^{-3}$
scene albedo [1]	$7.970 imes 10^{-3}$	$1.916 imes10^{-2}$	$3.469 imes 10^{-2}$	$5.962 imes 10^{-2}$	0.127	0.749	0.846	0.901	0.966	1.14
scene albedo precision [1]	$1.295 imes 10^{-5}$	1.506×10^{-5}	$1.808 imes10^{-5}$	2.257×10^{-5}	3.063×10^{-5}	9.422×10^{-5}	$1.329 imes 10^{-4}$	1.842×10^{-4}	2.869×10^{-4}	5.648×10^{-4}
apparent scene pressure [hPa]	341	478	563	628	723	960	983	997	1.010×10^{3}	1.021×10^{3}
apparent scene pressure precision [hPa]	0.214	0.245	0.269	0.291	0.321	0.801	1.34	2.13	3.73	8.96
chi square [1]	257	627	1.285×10^{3}	2.579×10^{3}	5.291×10^{3}	2.895×10^{4}	3.682×10^{4}	4.500×10^{4}	5.763×10^{4}	8.120×10^4
number of iterations [1]	2.00	2.00	2.00	3.00	3.00	4.00	4.00	5.00	5.00	7.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	-1.555×10^{-8}	-7.509×10^{-9}	-4.559×10^{-9}	-2.854×10^{-9}	-1.407×10^{-9}	3.590×10^{-9}	4.989×10^{-9}	6.351×10^{-9}	8.355×10^{-9}	1.319×10^{-8}
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$7.447 imes 10^{-10}$	8.290×10^{-10}	9.013×10^{-10}	9.889×10^{-10}	1.159×10^{-9}	2.145×10^{-9}	2.408×10^{-9}	2.655×10^{-9}	2.982×10^{-9}	3.615×10^{-9}
chi square fluorescence [1]	405	863	1.547×10^{3}	2.502×10^{3}	4.144×10^{3}	4.358×10^{4}	8.130×10^{4}	1.310×10^{5}	2.226×10^{5}	4.696×10^{5}
degrees of freedom fluorescence [1]	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0
wavelength calibration offset [nm]	-2.553×10^{-2}	-9.934×10^{-3}	-4.741×10^{-3}	-2.068×10^{-3}	$3.203 imes 10^{-5}$	$5.695 imes 10^{-3}$	7.746×10^{-3}	1.044×10^{-2}	$1.570 imes10^{-2}$	3.113×10^{-2}

Table	3: Parameterlist and basic s	statistics for	the analysis for	observations in	the northern hem	nisphere		
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.926 ± 0.168	13030614	0.0	1.000	0.350	1.000	1.000	1.000
cloud pressure crb [hPa]	811 ± 183	13030614	233	869	130	1.067×10^{3}	718	951
cloud pressure crb precision [hPa]	2.47 ± 9.14	13030614	1.27	0.624	$3.052 imes 10^{-4}$	1.279×10^{3}	0.341	1.61
cloud fraction crb [1]	0.479 ± 0.399	13030614	0.915	0.373	0.0	1.000	$8.503 imes 10^{-2}$	1.000
cloud fraction crb precision [1]	$(2.633 \pm 16.768) \times 10^{-4}$	13030614	$5.496 imes 10^{-5}$	9.211×10^{-5}	$4.433 imes 10^{-8}$	0.755	$4.504 imes 10^{-5}$	$1.000 imes 10^{-4}$
scene albedo [1]	0.492 ± 0.334	13030614	0.619	0.481	-1.766×10^{-3}	4.73	0.181	0.800
scene albedo precision [1]	$(9.465 \pm 11.903) \times 10^{-5}$	13030614	$7.267 imes 10^{-5}$	$5.490 imes 10^{-5}$	$1.063 imes 10^{-5}$	$1.874 imes 10^{-3}$	$3.148 imes 10^{-5}$	$1.042 imes 10^{-4}$
apparent scene pressure [hPa]	846 ± 155	13030614	184	896	130	1.067×10^{3}	779	963
apparent scene pressure precision [hPa]	0.764 ± 1.165	13030614	0.364	0.421	0.130	55.3	0.315	0.679
chi square [1]	$(0.284 \pm 4.012) \times 10^5$	13030614	2.811×10^4	1.913×10^{4}	94.6	2.757×10^{8}	7.549×10^{3}	3.566×10^{4}
number of iterations [1]	3.64 ± 1.14	13030614	1.000	3.00	1.000	14.0	3.00	4.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.426 \pm 6.447) \times 10^{-9}$	13030614	5.347×10^{-9}	1.603×10^{-9}	-3.120×10^{-6}	1.726×10^{-6}	-1.057×10^{-9}	$4.291 imes 10^{-9}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.761 \pm 0.665) \times 10^{-9}$	13030614	9.556×10^{-10}	1.701×10^{-9}	$4.759 imes 10^{-10}$	5.623×10^{-9}	1.221×10^{-9}	2.176×10^{-9}
chi square fluorescence [1]	$(0.407 \pm 0.824) \times 10^5$	13030614	3.243×10^{4}	1.050×10^{4}	117	7.599×10^{6}	4.337×10^{3}	3.676×10^{4}
degrees of freedom fluorescence [1]	6.00 ± 0.00	13030614	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	13030614	0.0	50.0	43.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(2.808 \pm 7.830) \times 10^{-3}$	13030614	5.058×10^{-3}	2.799×10^{-3}	-0.124	8.988×10^{-2}	2.417×10^{-4}	5.299×10^{-3}

Table 4. Parameterlist	and basic statisti	ics for the analys	sis for observation	ns in the southern	hemisphere
rable 4. randineternst	and basic statist	tos for the analy.	515 101 005 c 1 valio	ns m me soumern	nemisphere

Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.937 ± 0.157	11846762	0.0	1.000	0.350	1.000	1.000	1.000
cloud pressure crb [hPa]	779 ± 197	11846762	304	834	130	1.037×10^{3}	638	942
cloud pressure crb precision [hPa]	2.65 ± 11.13	11846762	1.17	0.528	$1.160 imes 10^{-3}$	896	0.336	1.51
cloud fraction crb [1]	0.452 ± 0.376	11846762	0.755	0.379	0.0	1.000	$7.686 imes10^{-2}$	0.832
cloud fraction crb precision [1]	$(1.485 \pm 10.181) imes 10^{-4}$	11846762	$6.500 imes 10^{-5}$	$6.819 imes10^{-5}$	$4.911 imes 10^{-9}$	0.549	$3.500 imes 10^{-5}$	$1.000 imes 10^{-4}$
scene albedo [1]	0.409 ± 0.327	11846762	0.593	0.368	-2.853×10^{-3}	4.48	$8.599 imes10^{-2}$	0.679
scene albedo precision [1]	$(7.684 \pm 8.695) \times 10^{-5}$	11846762	$5.478 imes10^{-5}$	$5.074 imes 10^{-5}$	$1.071 imes10^{-5}$	$2.765 imes 10^{-3}$	$2.963 imes10^{-5}$	$8.441 imes10^{-5}$
apparent scene pressure [hPa]	800 ± 184	11846762	291	854	130	1.037×10^{3}	663	954
apparent scene pressure precision [hPa]	1.25 ± 2.31	11846762	0.721	0.457	0.165	64.2	0.329	1.05
chi square [1]	$(0.160\pm 0.967)\times 10^5$	11846762	$1.959 imes 10^4$	1.244×10^4	54.6	$1.325 imes 10^8$	3.553×10^{3}	$2.314 imes 10^4$
number of iterations [1]	3.09 ± 0.90	11846762	0.0	3.00	1.000	14.0	3.00	3.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.903 \pm 59.020) \times 10^{-10}$	11846762	$4.491 imes 10^{-9}$	4.382×10^{-10}	$-2.066 imes 10^{-6}$	$1.221 imes 10^{-6}$	-1.756×10^{-9}	$2.735 imes 10^{-9}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.670\pm0.693) imes10^{-9}$	11846762	$1.024 imes 10^{-9}$	$1.575 imes 10^{-9}$	$5.233 imes 10^{-10}$	5.659×10^{-9}	$1.083 imes10^{-9}$	$2.107 imes10^{-9}$
chi square fluorescence [1]	$(0.540 \pm 1.025) \times 10^5$	11846762	$4.804 imes 10^4$	1.423×10^4	98.1	$2.401 imes 10^6$	3.786×10^3	$5.182 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	11846762	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	11846762	0.0	50.0	48.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(2.929 \pm 9.599) \times 10^{-3}$	11846762	6.436×10^{-3}	3.036×10^{-3}	-0.133	0.157	-2.540×10^{-4}	6.183×10^{-3}

	Table 5: Parameterlist an	d basic stati	stics for the ana	lysis for observa	tions over water			
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.967 ± 0.101	16941239	0.0	1.000	0.350	1.000	1.000	1.000
cloud pressure crb [hPa]	817 ± 185	16941239	237	879	130	1.051×10^{3}	721	958
cloud pressure crb precision [hPa]	2.60 ± 10.76	16941239	1.18	0.604	$3.052 imes 10^{-4}$	868	0.355	1.54
cloud fraction crb [1]	0.419 ± 0.366	16941239	0.697	0.315	0.0	1.000	6.955×10^{-2}	0.766
cloud fraction crb precision [1]	$(1.495 \pm 11.240) \times 10^{-4}$	16941239	$7.000 imes 10^{-5}$	5.555×10^{-5}	$4.433 imes 10^{-8}$	0.245	2.999×10^{-5}	$1.000 imes 10^{-4}$
scene albedo [1]	0.366 ± 0.317	16941239	0.575	0.282	-2.853×10^{-3}	3.75	$6.628 imes10^{-2}$	0.642
scene albedo precision [1]	$(7.601 \pm 10.256) \times 10^{-5}$	16941239	$5.462 imes 10^{-5}$	4.646×10^{-5}	$1.063 imes 10^{-5}$	$2.765 imes 10^{-3}$	$2.371 imes10^{-5}$	$7.833 imes10^{-5}$
apparent scene pressure [hPa]	835 ± 174	16941239	215	893	130	1.067×10^3	754	970
apparent scene pressure precision [hPa]	1.28 ± 2.14	16941239	0.878	0.550	0.130	64.2	0.351	1.23
chi square [1]	$(0.164 \pm 0.925) \times 10^5$	16941239	2.054×10^4	$1.033 imes 10^4$	54.6	$1.325 imes 10^8$	2.945×10^{3}	$2.349 imes 10^4$
number of iterations [1]	3.09 ± 0.92	16941239	0.0	3.00	1.000	14.0	3.00	3.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(2.921 \pm 58.822) \times 10^{-10}$	16941239	4.439×10^{-9}	3.613×10^{-10}	-3.120×10^{-6}	$1.719 imes10^{-6}$	-1.659×10^{-9}	2.779×10^{-9}
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.598 \pm 0.678) \times 10^{-9}$	16941239	$9.691 imes 10^{-10}$	$1.458 imes10^{-9}$	$4.759 imes 10^{-10}$	5.659×10^{-9}	$1.044 imes 10^{-9}$	2.013×10^{-9}
chi square fluorescence [1]	$(0.391 \pm 0.790) \times 10^5$	16941239	$3.368 imes 10^4$	$1.195 imes 10^4$	98.1	$7.599 imes10^6$	4.274×10^3	$3.796 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	16941239	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	16941239	0.0	50.0	46.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(2.825 \pm 9.949) \times 10^{-3}$	16941239	6.556×10^{-3}	2.862×10^{-3}	-0.133	0.157	-4.741×10^{-4}	$6.082 imes 10^{-3}$

	Table 6: Parameterlist ar	nd basic sta	tistics for the an	alysis for obser	vations over land			
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.830 ± 0.241	6023491	0.500	1.000	0.350	1.000	0.500	1.000
cloud pressure crb [hPa]	743 ± 190	6023491	287	767	130	1.057×10^{3}	617	904
cloud pressure crb precision [hPa]	2.44 ± 8.61	6023491	1.28	0.497	$6.104 imes10^{-4}$	1.279×10^{3}	0.312	1.59
cloud fraction crb [1]	0.586 ± 0.419	6023491	0.879	0.700	0.0	1.000	0.121	1.000
cloud fraction crb precision [1]	$(3.674 \pm 19.670) \times 10^{-4}$	6023491	3.479×10^{-5}	$1.000 imes 10^{-4}$	$4.911 imes 10^{-9}$	0.755	$9.035 imes 10^{-5}$	$1.251 imes 10^{-4}$
scene albedo [1]	0.660 ± 0.288	6023491	0.488	0.701	$1.253 imes10^{-2}$	4.73	0.399	0.887
scene albedo precision [1]	$(1.178 \pm 1.151) imes 10^{-4}$	6023491	$9.999 imes 10^{-5}$	$7.680 imes10^{-5}$	1.336×10^{-5}	$1.701 imes 10^{-3}$	$4.303 imes 10^{-5}$	$1.430 imes 10^{-4}$
apparent scene pressure [hPa]	789 ± 160	6023491	267	824	130	1.057×10^3	664	931
apparent scene pressure precision [hPa]	0.381 ± 0.123	6023491	0.138	0.352	0.140	10.4	0.298	0.436
chi square [1]	$(0.343 \pm 4.185) \times 10^5$	6023491	$2.163 imes 10^4$	$2.383 imes 10^4$	178	$2.757 imes 10^8$	$1.485 imes 10^4$	3.648×10^4
number of iterations [1]	4.02 ± 1.10	6023491	1.000	4.00	1.000	14.0	3.00	4.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.934\pm 6.388) imes 10^{-9}$	6023491	$4.892 imes 10^{-9}$	2.454×10^{-9}	$-1.626 imes 10^{-6}$	$1.466 imes 10^{-6}$	$-1.306 imes 10^{-10}$	4.761×10^{-9}
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.930 \pm 0.600) \times 10^{-9}$	6023491	$7.238 imes 10^{-10}$	$1.863 imes 10^{-9}$	$5.233 imes 10^{-10}$	$5.652 imes 10^{-9}$	1.523×10^{-9}	$2.247 imes 10^{-9}$
chi square fluorescence [1]	$(0.589 \pm 1.102) \times 10^5$	6023491	$5.527 imes 10^4$	$1.008 imes 10^4$	158	$2.889 imes 10^6$	3.018×10^3	$5.829 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	6023491	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	6023491	0.0	50.0	43.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(2.954 \pm 4.538) \times 10^{-3}$	6023491	$4.086 imes 10^{-3}$	2.972×10^{-3}	-6.495×10^{-2}	0.122	9.207×10^{-4}	$5.007 imes 10^{-3}$

Granule outlines

Figure 1: Outline of the granules.

4 Input data monitoring

Figure 2: Input data per granule

5 Warnings and errors

Figure 3: Fraction of pixels with specific warnings and errors during processing

6 World maps

Figure 4: Map of "Cloud pressure" for 2025-03-16 to 2025-03-17

Figure 5: Map of "Cloud fraction" for 2025-03-16 to 2025-03-17

Figure 6: Map of "Scene albedo" for 2025-03-16 to 2025-03-17

Figure 7: Map of "Apparent scene pressure" for 2025-03-16 to 2025-03-17

2025-03-16

Figure 8: Map of "Fluorescence" for 2025-03-16 to 2025-03-17

Figure 9: Map of the number of observations for 2025-03-16 to 2025-03-17

7 Zonal average

Figure 10: Zonal average of "QA value" for 2025-03-16 to 2025-03-17.

Figure 11: Zonal average of "Cloud pressure" for 2025-03-16 to 2025-03-17.

Figure 12: Zonal average of "Cloud pressure precision" for 2025-03-16 to 2025-03-17.

Figure 13: Zonal average of "Cloud fraction" for 2025-03-16 to 2025-03-17.

Figure 14: Zonal average of "Cloud fraction precision" for 2025-03-16 to 2025-03-17.

Figure 15: Zonal average of "Scene albedo" for 2025-03-16 to 2025-03-17.

Figure 16: Zonal average of "Scene albedo precision" for 2025-03-16 to 2025-03-17.

Figure 17: Zonal average of "Apparent scene pressure" for 2025-03-16 to 2025-03-17.

Figure 18: Zonal average of "Apparent scene pressure precision" for 2025-03-16 to 2025-03-17.

Figure 19: Zonal average of " χ^2 " for 2025-03-16 to 2025-03-17.

Figure 20: Zonal average of "Number of iterations" for 2025-03-16 to 2025-03-17.

Figure 21: Zonal average of "Fluorescence" for 2025-03-16 to 2025-03-17.

Figure 22: Zonal average of "Fluorescence precision" for 2025-03-16 to 2025-03-17.

Figure 23: Zonal average of " χ^2 of fluorescence retrieval" for 2025-03-16 to 2025-03-17.

Figure 24: Zonal average of "Degrees of freedom for signal of fluorescence retrieval" for 2025-03-16 to 2025-03-17.

Figure 25: Zonal average of "Number of points in the spectrum" for 2025-03-16 to 2025-03-17.

Figure 26: Zonal average of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-03-16 to 2025-03-17.

8 Histograms

The definitions of the parameters given in this section can be found in section 2.

Figure 27: Histogram of "QA value" for 2025-03-16 to 2025-03-17

Figure 28: Histogram of "Cloud pressure" for 2025-03-16 to 2025-03-17

Figure 29: Histogram of "Cloud pressure precision" for 2025-03-16 to 2025-03-17

Figure 30: Histogram of "Cloud fraction" for 2025-03-16 to 2025-03-17

Figure 31: Histogram of "Cloud fraction precision" for 2025-03-16 to 2025-03-17

Figure 32: Histogram of "Scene albedo" for 2025-03-16 to 2025-03-17

Figure 33: Histogram of "Scene albedo precision" for 2025-03-16 to 2025-03-17

Figure 34: Histogram of "Apparent scene pressure" for 2025-03-16 to 2025-03-17

Figure 35: Histogram of "Apparent scene pressure precision" for 2025-03-16 to 2025-03-17

Figure 36: Histogram of " χ^2 " for 2025-03-16 to 2025-03-17

Figure 37: Histogram of "Number of iterations" for 2025-03-16 to 2025-03-17

Figure 38: Histogram of "Fluorescence" for 2025-03-16 to 2025-03-17

Figure 39: Histogram of "Fluorescence precision" for 2025-03-16 to 2025-03-17

Figure 40: Histogram of " χ^2 of fluorescence retrieval" for 2025-03-16 to 2025-03-17

Figure 41: Histogram of "Degrees of freedom for signal of fluorescence retrieval" for 2025-03-16 to 2025-03-17

Figure 42: Histogram of "Number of points in the spectrum" for 2025-03-16 to 2025-03-17

Figure 43: Histogram of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-03-16 to 2025-03-17

9 Along track statistics

The TROPOMI instrument uses different binned detector rows for different viewing directions. In this section statistics are presented for each of the binned rows in the instrument.

Figure 44: Along track statistics of "QA value" for 2025-03-16 to 2025-03-17

Figure 45: Along track statistics of "Cloud pressure" for 2025-03-16 to 2025-03-17

Figure 46: Along track statistics of "Cloud pressure precision" for 2025-03-16 to 2025-03-17

Figure 47: Along track statistics of "Cloud fraction" for 2025-03-16 to 2025-03-17

Figure 48: Along track statistics of "Cloud fraction precision" for 2025-03-16 to 2025-03-17

Figure 49: Along track statistics of "Scene albedo" for 2025-03-16 to 2025-03-17

Figure 50: Along track statistics of "Scene albedo precision" for 2025-03-16 to 2025-03-17

Figure 51: Along track statistics of "Apparent scene pressure" for 2025-03-16 to 2025-03-17

Figure 52: Along track statistics of "Apparent scene pressure precision" for 2025-03-16 to 2025-03-17

Figure 53: Along track statistics of " χ^2 " for 2025-03-16 to 2025-03-17

Figure 54: Along track statistics of "Number of iterations" for 2025-03-16 to 2025-03-17

Figure 55: Along track statistics of "Fluorescence" for 2025-03-16 to 2025-03-17

Figure 56: Along track statistics of "Fluorescence precision" for 2025-03-16 to 2025-03-17

Figure 57: Along track statistics of " χ^2 of fluorescence retrieval" for 2025-03-16 to 2025-03-17

Figure 58: Along track statistics of "Degrees of freedom for signal of fluorescence retrieval" for 2025-03-16 to 2025-03-17

Figure 59: Along track statistics of "Number of points in the spectrum" for 2025-03-16 to 2025-03-17

Figure 60: Along track statistics of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-03-16 to 2025-03-17

10 Coincidence density

To investigate the relation between parameters scatter density plots are produced. These include some 'hidden' parameters, latitude and the solar- and viewing geometries, in addition to all configured parameters. All combinations of pairs of parameters are included *once*, in one direction alone.

Contents

1	Short Introduction	1
	1.1 The list of parameters	1
2	Definitions	1
3	Granule outlines	8
4	Input data monitoring	9
5	Warnings and errors	10
6	World maps	11
7	Zonal average	17
8	Histograms	34
9	Along track statistics	51
10	Coincidence density	68
11	Copyright information of 'PyCAMA'	68

List of Figures

1	Outline of the granules.	8
2	Input data per granule	9
3	Fraction of pixels with specific warnings and errors during processing	10
4	Map of "Cloud pressure" for 2025-03-16 to 2025-03-17	11
5	Map of "Cloud fraction" for 2025-03-16 to 2025-03-17	12
6	Map of "Scene albedo" for 2025-03-16 to 2025-03-17	13
7	Map of "Apparent scene pressure" for 2025-03-16 to 2025-03-17	14
8	Map of "Fluorescence" for 2025-03-16 to 2025-03-17	15
9	Map of the number of observations for 2025-03-16 to 2025-03-17	16
10	Zonal average of "QA value" for 2025-03-16 to 2025-03-17.	17
11	Zonal average of "Cloud pressure" for 2025-03-16 to 2025-03-17.	18
12	Zonal average of "Cloud pressure precision" for 2025-03-16 to 2025-03-17.	19
13	Zonal average of "Cloud fraction" for 2025-03-16 to 2025-03-17.	20
14	Zonal average of "Cloud fraction precision" for 2025-03-16 to 2025-03-17.	21
15	Zonal average of "Scene albedo" for 2025-03-16 to 2025-03-17.	22
16	Zonal average of "Scene albedo precision" for 2025-03-16 to 2025-03-17.	23
17	Zonal average of "Apparent scene pressure" for 2025-03-16 to 2025-03-17.	24
18	Zonal average of "Apparent scene pressure precision" for 2025-03-16 to 2025-03-17.	25
19	Zonal average of " χ^2 " for 2025-03-16 to 2025-03-17	26
20	Zonal average of "Number of iterations" for 2025-03-16 to 2025-03-17.	27
21	Zonal average of "Fluorescence" for 2025-03-16 to 2025-03-17.	28
22	Zonal average of "Fluorescence precision" for 2025-03-16 to 2025-03-17.	29
23	Zonal average of " χ^2 of fluorescence retrieval" for 2025-03-16 to 2025-03-17	30
24	Zonal average of "Degrees of freedom for signal of fluorescence retrieval" for 2025-03-16 to 2025-03-17.	31
25	Zonal average of "Number of points in the spectrum" for 2025-03-16 to 2025-03-17.	32
26	Zonal average of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-03-16 to 2025-03-17	33
27	Histogram of "QA value" for 2025-03-16 to 2025-03-17	34
28	Histogram of "Cloud pressure" for 2025-03-16 to 2025-03-17	35
29	Histogram of "Cloud pressure precision" for 2025-03-16 to 2025-03-17	36

30	Histogram of "Cloud fraction" for 2025-03-16 to 2025-03-17	37
31	Histogram of "Cloud fraction precision" for 2025-03-16 to 2025-03-17	38
32	Histogram of "Scene albedo" for 2025-03-16 to 2025-03-17	39
33	Histogram of "Scene albedo precision" for 2025-03-16 to 2025-03-17	40
34	Histogram of "Apparent scene pressure" for 2025-03-16 to 2025-03-17	41
35	Histogram of "Apparent scene pressure precision" for 2025-03-16 to 2025-03-17	42
36	Histogram of " χ^2 " for 2025-03-16 to 2025-03-17	43
37	Histogram of "Number of iterations" for 2025-03-16 to 2025-03-17	44
38	Histogram of "Fluorescence" for 2025-03-16 to 2025-03-17	45
39	Histogram of "Fluorescence precision" for 2025-03-16 to 2025-03-17	46
40	Histogram of " χ^2 of fluorescence retrieval" for 2025-03-16 to 2025-03-17	47
41	Histogram of "Degrees of freedom for signal of fluorescence retrieval" for 2025-03-16 to 2025-03-17	48
42	Histogram of "Number of points in the spectrum" for 2025-03-16 to 2025-03-17	49
43	Histogram of "Spectral offset $(\lambda_{true} - \lambda_{nominal})$ " for 2025-03-16 to 2025-03-17	50
44	Along track statistics of "QA value" for 2025-03-16 to 2025-03-17	51
45	Along track statistics of "Cloud pressure" for 2025-03-16 to 2025-03-17	52
46	Along track statistics of "Cloud pressure precision" for 2025-03-16 to 2025-03-17	53
47	Along track statistics of "Cloud fraction" for 2025-03-16 to 2025-03-17	54
48	Along track statistics of "Cloud fraction precision" for 2025-03-16 to 2025-03-17	55
49	Along track statistics of "Scene albedo" for 2025-03-16 to 2025-03-17	56
50	Along track statistics of "Scene albedo precision" for 2025-03-16 to 2025-03-17	57
51	Along track statistics of "Apparent scene pressure" for 2025-03-16 to 2025-03-17	58
52	Along track statistics of "Apparent scene pressure precision" for 2025-03-16 to 2025-03-17	59
53	Along track statistics of " χ^2 " for 2025-03-16 to 2025-03-17	60
54	Along track statistics of "Number of iterations" for 2025-03-16 to 2025-03-17	61
55	Along track statistics of "Fluorescence" for 2025-03-16 to 2025-03-17	62
56	Along track statistics of "Fluorescence precision" for 2025-03-16 to 2025-03-17	63
57	Along track statistics of " χ^2 of fluorescence retrieval" for 2025-03-16 to 2025-03-17	64
58	Along track statistics of "Degrees of freedom for signal of fluorescence retrieval" for 2025-03-16 to 2025-03-17	65
59	Along track statistics of "Number of points in the spectrum" for 2025-03-16 to 2025-03-17	66
60	Along track statistics of "Spectral offset $(\lambda_{true} - \lambda_{nominal})$ " for 2025-03-16 to 2025-03-17	67

List of Tables

1	Parameterlist and basic statistics for the analysis
2	Percentile ranges
3	Parameterlist and basic statistics for the analysis for observations in the northern hemisphere
4	Parameterlist and basic statistics for the analysis for observations in the southern hemisphere
5	Parameterlist and basic statistics for the analysis for observations over water
6	Parameterlist and basic statistics for the analysis for observations over land

11 Copyright information of 'PyCAMA'

Copyright © 2005-2023, Maarten Sneep (KNMI).

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
- 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

This software is provided by the copyright holders and contributors "as is" and any express or implied warranties, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose are disclaimed. In no event shall the copyright holder or contributors be liable for any direct, indirect, incidental, special, exemplary, or consequential damages (including, but not limited to, procurement of substitute goods or services; loss of use, data, or profits; or business interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence or otherwise) arising in any way out of the use of this software, even if advised of the possibility of such damage.

Maarten Sneep (maarten.sneep@knmi.nl).