PyCAMA report generated by tropl2-proc

tropl2-proc

2025-03-23 (20:45)

1 Short Introduction

1.1 The list of parameters

You may want to keep the list given in table 1 at hand when viewing the results.

2 Definitions

The averages shown here are unweighed averages:

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i \tag{1}$$

with N the number of observations in the dataset.

The spread of the measurements is indicated with the variance V(x), or rather the standard deviation $\sigma(x) = \sqrt{V(x)}$.

$$V(x) = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2$$
(2)

We also report the more robust statistics median, minimum, maximum, various percentiles and inter quartile range.

The median m is the value of parameter x for which half of the observations of x is smaller than m:

$$P(x \le m) = P(x \ge m) = \int_{-\infty}^{m} f(x) \, \mathrm{d}x = \frac{1}{2}$$
(3)

with f(x) the probability density function.

The median is a special case of a percentile. Instead of $\frac{1}{2}$ in equation 3, other threshold values can be used. We report results for 1%, 5%, 10%, 15.9%, 25%, 75%, 84.1%, 90%, 95% and 99%. The inter quartile range is the difference between the 75% and 25% percentiles. Similarly the minimum and maximum values correspond to the 0% and 100% percentiles respectively.

For normally distributed parameters the mean and median are the same, while the $\mu \pm \sigma$ values and the 15.9% and 84.1% percentiles coincide.

To get a measure for the relation of one variable $x_{(k)}$ with another $x_{(l)}$, we calculate the covariance matrix C_{kl} .

$$C_{kl} = C(x_{(k)}, x_{(l)}) = \frac{1}{N-1} \sum_{i=1}^{N} (x_{(k),i} - \overline{x_{(k)}}) (x_{(l),i} - \overline{x_{(l)}})$$
(4)

Rather than a dimensionally dependent covariance, it is often easier to interpret a correlation matrix R_{kl} , a matrix of Pearson's *r* coefficients:

$$R_{kl} = R(x_{(k)}, x_{(l)}) = \frac{C_{kl}}{\sqrt{C_{kk}C_{ll}}} = \frac{C_{kl}}{\sqrt{V(x_k)V(x_l)}}$$
(5)

The diagonal elements of the covariance matrix are the variances of the elements, $V(x_{(k)}) = C_{kk}$ and obviously $R_{kk} = 1$.

Table 1: Parameterlist and	basic statistics	for the an	alysis
----------------------------	------------------	------------	--------

	Table 1: Parameter	list and basic	statistics for the a	nalysis			
Variable	mean $\pm \sigma$	Count	Mode	IQR	Median	Minimum	Maximum
qa value [1]	0.936 ± 0.159	17025156	0.995	0.0	1.000	0.350	1.000
cloud pressure crb [hPa]	788 ± 196	17025156	1.015×10^{3}	285	846	130	1.044×10^3
cloud pressure crb precision [hPa]	2.82 ± 10.47	17025156	0.750	1.41	0.614	$2.441 imes 10^{-4}$	1.502×10^3
cloud fraction crb [1]	0.448 ± 0.382	17025156	0.996	0.784	0.348	0.0	1.000
cloud fraction crb precision [1]	$(2.137 \pm 14.565) \times 10^{-4}$	17025156	$2.500 imes 10^{-4}$	$5.812 imes 10^{-5}$	7.791×10^{-5}	1.530×10^{-9}	0.508
scene albedo [1]	0.446 ± 0.327	17025156	1.500×10^{-2}	0.583	0.414	-3.210×10^{-3}	4.55
scene albedo precision [1]	$(8.690 \pm 10.395) \times 10^{-5}$	17025156	$2.500 imes 10^{-4}$	6.563×10^{-5}	$5.255 imes10^{-5}$	1.046×10^{-5}	3.664×10^{-3}
apparent scene pressure [hPa]	823 ± 174	17025156	1.016×10^3	242	879	130	1.040×10^3
apparent scene pressure precision [hPa]	1.03 ± 1.94	17025156	0.500	0.446	0.442	0.163	58.2
chi square [1]	$(0.226 \pm 4.275) \times 10^5$	17025156	0.150	2.247×10^4	$1.488 imes 10^4$	58.4	$3.189 imes 10^8$
number of iterations [1]	3.40 ± 1.08	17025156	3.23	1.000	3.00	1.000	14.0
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(7.382 \pm 61.984) \times 10^{-10}$	17025156	2.500×10^{-10}	$4.875 imes10^{-9}$	$9.115 imes 10^{-10}$	$-2.087 imes10^{-6}$	1.640×10^{-6}
fluorescence precision [mol $s^{-1} m^{-2} nm^{-1} sr^{-1}$]	$(1.702 \pm 0.671) \times 10^{-9}$	17025156	$8.500 imes 10^{-10}$	$9.536 imes 10^{-10}$	1.635×10^{-9}	$4.163 imes 10^{-10}$	5.810×10^{-9}
chi square fluorescence [1]	$(0.511 \pm 1.006) \times 10^5$	17025156	750	$4.154 imes 10^4$	$1.182 imes 10^4$	114	$2.815 imes 10^6$
degrees of freedom fluorescence [1]	6.00 ± 0.00	17025156	5.95	0.0	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	17025156	49.7	0.0	50.0	48.0	50.0
wavelength calibration offset [nm]	$(2.861 \pm 8.481) \times 10^{-3}$	17025156	2.800×10^{-3}	5.676×10^{-3}	2.905×10^{-3}	-0.126	0.497

Table 2: Percentile ranges										
Variable	1 %	5%	10 %	15.9 %	25 %	75 %	84.1 %	90%	95 %	99 %
qa value [1]	0.500	0.500	0.500	0.900	1.000	1.000	1.000	1.000	1.000	1.000
cloud pressure crb [hPa]	260	393	488	570	663	947	977	995	1.010×10^3	1.022×10^3
cloud pressure crb precision [hPa]	0.198	0.248	0.278	0.306	0.352	1.77	3.18	5.54	10.9	35.6
cloud fraction crb [1]	0.0	$8.433 imes 10^{-3}$	$1.907 imes10^{-2}$	$3.547 imes 10^{-2}$	$7.418 imes 10^{-2}$	0.858	1.000	1.000	1.000	1.000
cloud fraction crb precision [1]	$2.012 imes 10^{-5}$	$2.293 imes10^{-5}$	$2.553 imes 10^{-5}$	$2.978 imes10^{-5}$	$4.188 imes10^{-5}$	$1.000 imes10^{-4}$	$1.244 imes10^{-4}$	$1.973 imes10^{-4}$	$5.403 imes10^{-4}$	2.629×10^{-3}
scene albedo [1]	$7.315 imes 10^{-3}$	$1.769 imes10^{-2}$	3.341×10^{-2}	$6.095 imes10^{-2}$	0.141	0.724	0.831	0.894	0.963	1.14
scene albedo precision [1]	$1.305 imes 10^{-5}$	$1.535 imes 10^{-5}$	$1.903 imes 10^{-5}$	$2.404 imes 10^{-5}$	$3.156 imes 10^{-5}$	$9.719 imes10^{-5}$	$1.361 imes 10^{-4}$	$1.868 imes10^{-4}$	$2.875 imes 10^{-4}$	$5.497 imes 10^{-4}$
apparent scene pressure [hPa]	341	464	556	624	719	961	983	998	1.011×10^{3}	1.022×10^{3}
apparent scene pressure precision [hPa]	0.214	0.250	0.275	0.297	0.328	0.773	1.33	2.21	4.06	9.55
chi square [1]	243	573	1.228×10^{3}	2.560×10^{3}	5.442×10^{3}	2.792×10^4	$3.619 imes 10^4$	4.448×10^4	$5.786 imes 10^4$	8.274×10^4
number of iterations [1]	2.00	2.00	2.00	3.00	3.00	4.00	4.00	5.00	5.00	7.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	-1.572×10^{-8}	$-7.685 imes 10^{-9}$	-4.671×10^{-9}	$-2.927 imes 10^{-9}$	-1.435×10^{-9}	3.439×10^{-9}	4.821×10^{-9}	$6.177 imes10^{-9}$	$8.176 imes10^{-9}$	$1.307 imes 10^{-8}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	7.446×10^{-10}	8.209×10^{-10}	$8.936 imes 10^{-10}$	9.843×10^{-10}	1.161×10^{-9}	2.115×10^{-9}	2.344×10^{-9}	2.630×10^{-9}	2.960×10^{-9}	3.592×10^{-9}
chi square fluorescence [1]	427	835	1.468×10^{3}	2.397×10^{3}	4.118×10^{3}	4.566×10^{4}	$8.881 imes 10^4$	1.484×10^{5}	2.545×10^{5}	5.034×10^{5}
degrees of freedom fluorescence [1]	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$-2.476 imes 10^{-2}$	$-9.598 imes 10^{-3}$	$-4.595 imes 10^{-3}$	-2.010×10^{-3}	4.657×10^{-5}	5.722×10^{-3}	7.742×10^{-3}	1.030×10^{-2}	1.521×10^{-2}	2.994×10^{-2}

Table 3. Parameterlist and basic statistics for the ana	lysis for observations in the northern hemisphere
Table 5. I drameternist and basic statistics for the and	Tysis for observations in the northern nemisphere

			2			1		
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.931 ± 0.163	8317848	0.0	1.000	0.350	1.000	1.000	1.000
cloud pressure crb [hPa]	802 ± 193	8317848	259	864	130	1.044×10^3	697	956
cloud pressure crb precision [hPa]	3.23 ± 11.83	8317848	1.69	0.736	$2.441 imes 10^{-4}$	1.502×10^3	0.354	2.04
cloud fraction crb [1]	0.447 ± 0.397	8317848	0.895	0.304	0.0	1.000	$6.727 imes 10^{-2}$	0.962
cloud fraction crb precision [1]	$(2.738 \pm 17.780) \times 10^{-4}$	8317848	$5.829 imes 10^{-5}$	$9.547 imes 10^{-5}$	1.530×10^{-9}	0.508	$4.697 imes10^{-5}$	$1.053 imes 10^{-4}$
scene albedo [1]	0.483 ± 0.332	8317848	0.596	0.469	$-2.018 imes10^{-3}$	4.55	0.183	0.778
scene albedo precision [1]	$(9.339 \pm 11.560) \times 10^{-5}$	8317848	$7.381 imes10^{-5}$	$5.348 imes 10^{-5}$	$1.051 imes 10^{-5}$	$2.183 imes 10^{-3}$	$3.125 imes 10^{-5}$	$1.050 imes 10^{-4}$
apparent scene pressure [hPa]	848 ± 160	8317848	192	903	143	1.040×10^3	777	969
apparent scene pressure precision [hPa]	0.794 ± 1.294	8317848	0.359	0.429	0.163	50.7	0.316	0.675
chi square [1]	$(0.297 \pm 6.067) \times 10^5$	8317848	$2.915 imes 10^4$	$1.788 imes10^4$	72.6	$3.189 imes 10^8$	7.428×10^{3}	$3.658 imes 10^4$
number of iterations [1]	3.72 ± 1.16	8317848	1.000	3.00	1.000	14.0	3.00	4.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.450\pm 6.650) imes 10^{-9}$	8317848	$5.183 imes10^{-9}$	$1.594 imes 10^{-9}$	$-1.781 imes10^{-6}$	$1.640 imes 10^{-6}$	-9.522×10^{-10}	4.231×10^{-9}
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.761\pm0.669)\times10^{-9}$	8317848	$9.499 imes 10^{-10}$	$1.700 imes 10^{-9}$	$4.163 imes 10^{-10}$	$5.698 imes 10^{-9}$	$1.226 imes 10^{-9}$	2.176×10^{-9}
chi square fluorescence [1]	$(0.412\pm 0.855)\times 10^5$	8317848	3.122×10^4	$1.119 imes 10^4$	114	$2.815 imes10^6$	4.836×10^{3}	3.606×10^4
degrees of freedom fluorescence [1]	6.00 ± 0.00	8317848	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	8317848	0.0	50.0	48.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(2.784 \pm 7.127) \times 10^{-3}$	8317848	4.947×10^{-3}	$2.785 imes 10^{-3}$	$-8.117 imes 10^{-2}$	9.121×10^{-2}	$2.932 imes 10^{-4}$	5.240×10^{-3}

Table	4: Parameterlist and basic st	atistics for	the analysis for	observations in	the southern hem	isphere		
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.941 ± 0.155	8707308	0.0	1.000	0.350	1.000	1.000	1.000
cloud pressure crb [hPa]	775 ± 197	8707308	297	827	130	1.036×10^{3}	638	935
cloud pressure crb precision [hPa]	2.43 ± 8.96	8707308	1.12	0.539	1.770×10^{-3}	1.193×10^{3}	0.351	1.48
cloud fraction crb [1]	0.449 ± 0.368	8707308	0.719	0.383	0.0	1.000	$8.325 imes 10^{-2}$	0.802
cloud fraction crb precision [1]	$(1.562 \pm 10.587) \times 10^{-4}$	8707308	$6.147 imes 10^{-5}$	$7.058 imes10^{-5}$	$5.657 imes10^{-9}$	0.487	$3.853 imes10^{-5}$	$1.000 imes 10^{-4}$
scene albedo [1]	0.411 ± 0.319	8707308	0.559	0.375	$-3.210 imes 10^{-3}$	3.87	0.103	0.661
scene albedo precision [1]	$(8.071 \pm 9.102) \times 10^{-5}$	8707308	$5.857 imes10^{-5}$	$5.178 imes10^{-5}$	$1.046 imes 10^{-5}$	3.664×10^{-3}	$3.189 imes10^{-5}$	$9.047 imes10^{-5}$
apparent scene pressure [hPa]	799 ± 183	8707308	279	850	130	1.036×10^{3}	669	948
apparent scene pressure precision [hPa]	1.26 ± 2.38	8707308	0.610	0.456	0.164	58.2	0.339	0.949
chi square [1]	$(0.158 \pm 0.749) \times 10^5$	8707308	$1.869 imes 10^4$	1.264×10^4	58.4	5.596×10^{7}	3.960×10^{3}	$2.265 imes 10^4$
number of iterations [1]	3.10 ± 0.91	8707308	0.0	3.00	1.000	14.0	3.00	3.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(5.837 \pm 565.137) \times 10^{-11}$	8707308	4.486×10^{-9}	3.658×10^{-10}	$-2.087 imes 10^{-6}$	$1.307 imes10^{-6}$	-1.839×10^{-9}	2.647×10^{-9}
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.646 \pm 0.668) \times 10^{-9}$	8707308	9.572×10^{-10}	$1.563 imes 10^{-9}$	5.600×10^{-10}	$5.810 imes 10^{-9}$	$1.094 imes 10^{-9}$	$2.051 imes 10^{-9}$
chi square fluorescence [1]	$(0.606 \pm 1.123) \times 10^5$	8707308	$5.543 imes 10^4$	$1.277 imes 10^4$	119	$1.921 imes 10^6$	3.307×10^{3}	$5.874 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	8707308	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	8707308	0.0	50.0	48.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(2.935 \pm 9.597) \times 10^{-3}$	8707308	6.532×10^{-3}	3.049×10^{-3}	-0.126	0.497	-2.664×10^{-4}	6.266×10^{-3}

	Table 5: Parameterlist an	d basic stati	stics for the anal	lysis for observa	tions over water			
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.968 ± 0.101	11240105	0.0	1.000	0.350	1.000	1.000	1.000
cloud pressure crb [hPa]	804 ± 195	11240105	265	869	130	1.036×10^3	693	957
cloud pressure crb precision [hPa]	2.66 ± 10.27	11240105	1.26	0.613	$7.324 imes 10^{-4}$	960	0.364	1.63
cloud fraction crb [1]	0.420 ± 0.362	11240105	0.685	0.333	0.0	1.000	$6.861 imes 10^{-2}$	0.753
cloud fraction crb precision [1]	$(1.719 \pm 12.635) \times 10^{-4}$	11240105	6.959×10^{-5}	5.835×10^{-5}	4.709×10^{-8}	0.268	$3.041 imes 10^{-5}$	$1.000 imes 10^{-4}$
scene albedo [1]	0.373 ± 0.318	11240105	0.578	0.308	-3.210×10^{-3}	4.55	$6.569 imes 10^{-2}$	0.644
scene albedo precision [1]	$(8.124 \pm 10.278) \times 10^{-5}$	11240105	6.427×10^{-5}	$4.987 imes10^{-5}$	1.046×10^{-5}	3.664×10^{-3}	$2.499 imes 10^{-5}$	$8.926 imes 10^{-5}$
apparent scene pressure [hPa]	826 ± 181	11240105	238	885	130	1.036×10^3	731	969
apparent scene pressure precision [hPa]	1.35 ± 2.32	11240105	0.895	0.545	0.163	58.2	0.359	1.25
chi square [1]	$(0.160 \pm 1.750) \times 10^5$	11240105	$1.920 imes 10^4$	$9.784 imes 10^3$	58.4	$1.428 imes 10^8$	2.785×10^3	$2.199 imes 10^4$
number of iterations [1]	3.12 ± 0.95	11240105	0.0	3.00	1.000	14.0	3.00	3.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.587 \pm 51.191) \times 10^{-10}$	11240105	$4.231 imes 10^{-9}$	$3.237 imes 10^{-10}$	-1.149×10^{-6}	$1.220 imes10^{-6}$	$-1.671 imes 10^{-9}$	2.560×10^{-9}
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.564 \pm 0.666) \times 10^{-9}$	11240105	$8.988 imes10^{-10}$	$1.427 imes10^{-9}$	$4.163 imes 10^{-10}$	$5.698 imes 10^{-9}$	$1.024 imes 10^{-9}$	1.923×10^{-9}
chi square fluorescence [1]	$(0.420 \pm 0.856) \times 10^5$	11240105	$3.541 imes 10^4$	$1.092 imes 10^4$	114	$2.815 imes10^6$	3.889×10^{3}	$3.929 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	11240105	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	11240105	0.0	50.0	48.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(2.791 \pm 9.668) \times 10^{-3}$	11240105	$6.480 imes 10^{-3}$	2.860×10^{-3}	-0.126	0.497	-4.267×10^{-4}	$6.054 imes 10^{-3}$

	Table 6: Parameterlist a	nd basic sta	tistics for the an	alysis for obser	vations over land			
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.849 ± 0.234	4338872	0.500	1.000	0.350	1.000	0.500	1.000
cloud pressure crb [hPa]	747 ± 188	4338872	281	775	130	1.044×10^3	623	904
cloud pressure crb precision [hPa]	2.81 ± 10.35	4338872	1.49	0.554	$2.441 imes 10^{-4}$	$1.283 imes 10^3$	0.324	1.81
cloud fraction crb [1]	0.539 ± 0.418	4338872	0.900	0.497	0.0	1.000	0.100	1.000
cloud fraction crb precision [1]	$(3.328 \pm 19.048) \times 10^{-4}$	4338872	3.641×10^{-5}	$1.000 imes 10^{-4}$	1.530×10^{-9}	0.508	$8.103 imes10^{-5}$	$1.174 imes10^{-4}$
scene albedo [1]	0.624 ± 0.292	4338872	0.510	0.624	1.511×10^{-2}	3.87	0.358	0.868
scene albedo precision [1]	$(1.083 \pm 1.131) \times 10^{-4}$	4338872	$8.995 imes10^{-5}$	$6.388 imes10^{-5}$	$1.353 imes 10^{-5}$	$1.667 imes 10^{-3}$	4.031×10^{-5}	$1.303 imes10^{-4}$
apparent scene pressure [hPa]	802 ± 156	4338872	257	844	130	1.040×10^3	679	936
apparent scene pressure precision [hPa]	0.385 ± 0.123	4338872	0.145	0.357	0.165	4.11	0.299	0.444
chi square [1]	$(0.362 \pm 7.197) \times 10^5$	4338872	2.357×10^4	$2.381 imes 10^4$	776	$3.189 imes 10^8$	$1.464 imes 10^4$	$3.821 imes 10^4$
number of iterations [1]	3.99 ± 1.09	4338872	1.000	4.00	1.000	14.0	3.00	4.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.868 \pm 8.024) \times 10^{-9}$	4338872	$5.188 imes10^{-9}$	2.392×10^{-9}	$-2.087 imes10^{-6}$	$1.640 imes10^{-6}$	$-3.651 imes 10^{-10}$	$4.823 imes 10^{-9}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.957 \pm 0.597) \times 10^{-9}$	4338872	$7.076 imes 10^{-10}$	$1.883 imes 10^{-9}$	5.314×10^{-10}	$5.810 imes10^{-9}$	1.559×10^{-9}	2.266×10^{-9}
chi square fluorescence [1]	$(0.635 \pm 1.174) \times 10^5$	4338872	$5.440 imes 10^4$	$1.167 imes 10^4$	140	$1.790 imes 10^{6}$	3.565×10^{3}	$5.797 imes10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	4338872	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	4338872	0.0	50.0	48.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(2.973 \pm 4.786) \times 10^{-3}$	4338872	4.271×10^{-3}	2.969×10^{-3}	-7.188×10^{-2}	6.081×10^{-2}	$8.365 imes 10^{-4}$	5.107×10^{-3}

Granule outlines

Figure 1: Outline of the granules.

4 Input data monitoring

Figure 2: Input data per granule

5 Warnings and errors

Figure 3: Fraction of pixels with specific warnings and errors during processing

6 World maps

Figure 4: Map of "Cloud pressure" for 2025-03-21 to 2025-03-21

Figure 5: Map of "Cloud fraction" for 2025-03-21 to 2025-03-21

Figure 6: Map of "Scene albedo" for 2025-03-21 to 2025-03-21

Figure 7: Map of "Apparent scene pressure" for 2025-03-21 to 2025-03-21

2025-03-21

Figure 8: Map of "Fluorescence" for 2025-03-21 to 2025-03-21

Figure 9: Map of the number of observations for 2025-03-21 to 2025-03-21

7 Zonal average

Figure 10: Zonal average of "QA value" for 2025-03-21 to 2025-03-21.

Figure 11: Zonal average of "Cloud pressure" for 2025-03-21 to 2025-03-21.

Figure 12: Zonal average of "Cloud pressure precision" for 2025-03-21 to 2025-03-21.

Figure 13: Zonal average of "Cloud fraction" for 2025-03-21 to 2025-03-21.

Figure 14: Zonal average of "Cloud fraction precision" for 2025-03-21 to 2025-03-21.

Figure 15: Zonal average of "Scene albedo" for 2025-03-21 to 2025-03-21.

Figure 16: Zonal average of "Scene albedo precision" for 2025-03-21 to 2025-03-21.

Figure 17: Zonal average of "Apparent scene pressure" for 2025-03-21 to 2025-03-21.

Figure 18: Zonal average of "Apparent scene pressure precision" for 2025-03-21 to 2025-03-21.

Figure 19: Zonal average of " χ^2 " for 2025-03-21 to 2025-03-21.

Figure 20: Zonal average of "Number of iterations" for 2025-03-21 to 2025-03-21.

Figure 21: Zonal average of "Fluorescence" for 2025-03-21 to 2025-03-21.

Figure 22: Zonal average of "Fluorescence precision" for 2025-03-21 to 2025-03-21.

Figure 23: Zonal average of " χ^2 of fluorescence retrieval" for 2025-03-21 to 2025-03-21.

Figure 24: Zonal average of "Degrees of freedom for signal of fluorescence retrieval" for 2025-03-21 to 2025-03-21.

Figure 25: Zonal average of "Number of points in the spectrum" for 2025-03-21 to 2025-03-21.

Figure 26: Zonal average of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-03-21 to 2025-03-21.

8 Histograms

The definitions of the parameters given in this section can be found in section 2.

Figure 27: Histogram of "QA value" for 2025-03-21 to 2025-03-21

Figure 28: Histogram of "Cloud pressure" for 2025-03-21 to 2025-03-21

Figure 29: Histogram of "Cloud pressure precision" for 2025-03-21 to 2025-03-21

Figure 30: Histogram of "Cloud fraction" for 2025-03-21 to 2025-03-21

Figure 31: Histogram of "Cloud fraction precision" for 2025-03-21 to 2025-03-21

Figure 32: Histogram of "Scene albedo" for 2025-03-21 to 2025-03-21

Figure 33: Histogram of "Scene albedo precision" for 2025-03-21 to 2025-03-21

Figure 34: Histogram of "Apparent scene pressure" for 2025-03-21 to 2025-03-21

Figure 35: Histogram of "Apparent scene pressure precision" for 2025-03-21 to 2025-03-21

Figure 36: Histogram of " χ^2 " for 2025-03-21 to 2025-03-21

Figure 37: Histogram of "Number of iterations" for 2025-03-21 to 2025-03-21

Figure 38: Histogram of "Fluorescence" for 2025-03-21 to 2025-03-21

Figure 39: Histogram of "Fluorescence precision" for 2025-03-21 to 2025-03-21

Figure 40: Histogram of " χ^2 of fluorescence retrieval" for 2025-03-21 to 2025-03-21

Figure 41: Histogram of "Degrees of freedom for signal of fluorescence retrieval" for 2025-03-21 to 2025-03-21

Figure 42: Histogram of "Number of points in the spectrum" for 2025-03-21 to 2025-03-21

Figure 43: Histogram of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-03-21 to 2025-03-21

9 Along track statistics

The TROPOMI instrument uses different binned detector rows for different viewing directions. In this section statistics are presented for each of the binned rows in the instrument.

Figure 44: Along track statistics of "QA value" for 2025-03-21 to 2025-03-21

Figure 45: Along track statistics of "Cloud pressure" for 2025-03-21 to 2025-03-21

Figure 46: Along track statistics of "Cloud pressure precision" for 2025-03-21 to 2025-03-21

Figure 47: Along track statistics of "Cloud fraction" for 2025-03-21 to 2025-03-21

Figure 48: Along track statistics of "Cloud fraction precision" for 2025-03-21 to 2025-03-21

Figure 49: Along track statistics of "Scene albedo" for 2025-03-21 to 2025-03-21

Figure 50: Along track statistics of "Scene albedo precision" for 2025-03-21 to 2025-03-21

Figure 51: Along track statistics of "Apparent scene pressure" for 2025-03-21 to 2025-03-21

Figure 52: Along track statistics of "Apparent scene pressure precision" for 2025-03-21 to 2025-03-21

Figure 53: Along track statistics of " χ^2 " for 2025-03-21 to 2025-03-21

Figure 54: Along track statistics of "Number of iterations" for 2025-03-21 to 2025-03-21

Figure 55: Along track statistics of "Fluorescence" for 2025-03-21 to 2025-03-21

Figure 56: Along track statistics of "Fluorescence precision" for 2025-03-21 to 2025-03-21

Figure 57: Along track statistics of " χ^2 of fluorescence retrieval" for 2025-03-21 to 2025-03-21

Figure 58: Along track statistics of "Degrees of freedom for signal of fluorescence retrieval" for 2025-03-21 to 2025-03-21

Figure 59: Along track statistics of "Number of points in the spectrum" for 2025-03-21 to 2025-03-21

Figure 60: Along track statistics of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-03-21 to 2025-03-21

10 Coincidence density

To investigate the relation between parameters scatter density plots are produced. These include some 'hidden' parameters, latitude and the solar- and viewing geometries, in addition to all configured parameters. All combinations of pairs of parameters are included *once*, in one direction alone.

Contents

1	Short Introduction	1
	1.1 The list of parameters	1
2	Definitions	1
3	Granule outlines	8
4	Input data monitoring	9
5	Warnings and errors	10
6	World maps	11
7	Zonal average	17
8	Histograms	34
9	Along track statistics	51
10	Coincidence density	68
11	Copyright information of 'PyCAMA'	68

List of Figures

1	Outline of the granules.	8
2	Input data per granule	9
3	Fraction of pixels with specific warnings and errors during processing	10
4	Map of "Cloud pressure" for 2025-03-21 to 2025-03-21	11
5	Map of "Cloud fraction" for 2025-03-21 to 2025-03-21	12
6	Map of "Scene albedo" for 2025-03-21 to 2025-03-21	13
7	Map of "Apparent scene pressure" for 2025-03-21 to 2025-03-21	14
8	Map of "Fluorescence" for 2025-03-21 to 2025-03-21	15
9	Map of the number of observations for 2025-03-21 to 2025-03-21	16
10	Zonal average of "QA value" for 2025-03-21 to 2025-03-21	17
11	Zonal average of "Cloud pressure" for 2025-03-21 to 2025-03-21.	18
12	Zonal average of "Cloud pressure precision" for 2025-03-21 to 2025-03-21.	19
13	Zonal average of "Cloud fraction" for 2025-03-21 to 2025-03-21.	20
14	Zonal average of "Cloud fraction precision" for 2025-03-21 to 2025-03-21.	21
15	Zonal average of "Scene albedo" for 2025-03-21 to 2025-03-21	22
16	Zonal average of "Scene albedo precision" for 2025-03-21 to 2025-03-21	23
17	Zonal average of "Apparent scene pressure" for 2025-03-21 to 2025-03-21.	24
18	Zonal average of "Apparent scene pressure precision" for 2025-03-21 to 2025-03-21	25
19	Zonal average of " χ^2 " for 2025-03-21 to 2025-03-21	26
20	Zonal average of "Number of iterations" for 2025-03-21 to 2025-03-21.	27
21	Zonal average of "Fluorescence" for 2025-03-21 to 2025-03-21	28
22	Zonal average of "Fluorescence precision" for 2025-03-21 to 2025-03-21	29
23	Zonal average of " χ^2 of fluorescence retrieval" for 2025-03-21 to 2025-03-21	30
24	Zonal average of "Degrees of freedom for signal of fluorescence retrieval" for 2025-03-21 to 2025-03-21.	31
25	Zonal average of "Number of points in the spectrum" for 2025-03-21 to 2025-03-21	32
26	Zonal average of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-03-21 to 2025-03-21	33
27	Histogram of "QA value" for 2025-03-21 to 2025-03-21	34
28	Histogram of "Cloud pressure" for 2025-03-21 to 2025-03-21	35
29	Histogram of "Cloud pressure precision" for 2025-03-21 to 2025-03-21	36

30	Histogram of "Cloud fraction" for 2025-03-21 to 2025-03-21	37
31	Histogram of "Cloud fraction precision" for 2025-03-21 to 2025-03-21	38
32	Histogram of "Scene albedo" for 2025-03-21 to 2025-03-21	39
33	Histogram of "Scene albedo precision" for 2025-03-21 to 2025-03-21	40
34	Histogram of "Apparent scene pressure" for 2025-03-21 to 2025-03-21	41
35	Histogram of "Apparent scene pressure precision" for 2025-03-21 to 2025-03-21	42
36	Histogram of " χ^2 " for 2025-03-21 to 2025-03-21	43
37	Histogram of "Number of iterations" for 2025-03-21 to 2025-03-21	44
38	Histogram of "Fluorescence" for 2025-03-21 to 2025-03-21	45
39	Histogram of "Fluorescence precision" for 2025-03-21 to 2025-03-21	46
40	Histogram of " χ^2 of fluorescence retrieval" for 2025-03-21 to 2025-03-21	47
41	Histogram of "Degrees of freedom for signal of fluorescence retrieval" for 2025-03-21 to 2025-03-21	48
42	Histogram of "Number of points in the spectrum" for 2025-03-21 to 2025-03-21	49
43	Histogram of "Spectral offset $(\lambda_{true} - \lambda_{nominal})$ " for 2025-03-21 to 2025-03-21	50
44	Along track statistics of "QA value" for 2025-03-21 to 2025-03-21	51
45	Along track statistics of "Cloud pressure" for 2025-03-21 to 2025-03-21	52
46	Along track statistics of "Cloud pressure precision" for 2025-03-21 to 2025-03-21	53
47	Along track statistics of "Cloud fraction" for 2025-03-21 to 2025-03-21	54
48	Along track statistics of "Cloud fraction precision" for 2025-03-21 to 2025-03-21	55
49	Along track statistics of "Scene albedo" for 2025-03-21 to 2025-03-21	56
50	Along track statistics of "Scene albedo precision" for 2025-03-21 to 2025-03-21	57
51	Along track statistics of "Apparent scene pressure" for 2025-03-21 to 2025-03-21	58
52	Along track statistics of "Apparent scene pressure precision" for 2025-03-21 to 2025-03-21	59
53	Along track statistics of " χ^2 " for 2025-03-21 to 2025-03-21	60
54	Along track statistics of "Number of iterations" for 2025-03-21 to 2025-03-21	61
55	Along track statistics of "Fluorescence" for 2025-03-21 to 2025-03-21	62
56	Along track statistics of "Fluorescence precision" for 2025-03-21 to 2025-03-21	63
57	Along track statistics of " χ^2 of fluorescence retrieval" for 2025-03-21 to 2025-03-21	64
58	Along track statistics of "Degrees of freedom for signal of fluorescence retrieval" for 2025-03-21 to 2025-03-21	65
59	Along track statistics of "Number of points in the spectrum" for 2025-03-21 to 2025-03-21	66
60	Along track statistics of "Spectral offset $(\lambda_{true} - \lambda_{nominal})$ " for 2025-03-21 to 2025-03-21	67

List of Tables

1	Parameterlist and basic statistics for the analysis
2	Percentile ranges
3	Parameterlist and basic statistics for the analysis for observations in the northern hemisphere
4	Parameterlist and basic statistics for the analysis for observations in the southern hemisphere
5	Parameterlist and basic statistics for the analysis for observations over water
6	Parameterlist and basic statistics for the analysis for observations over land

11 Copyright information of 'PyCAMA'

Copyright © 2005-2023, Maarten Sneep (KNMI).

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
- 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

This software is provided by the copyright holders and contributors "as is" and any express or implied warranties, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose are disclaimed. In no event shall the copyright holder or contributors be liable for any direct, indirect, incidental, special, exemplary, or consequential damages (including, but not limited to, procurement of substitute goods or services; loss of use, data, or profits; or business interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence or otherwise) arising in any way out of the use of this software, even if advised of the possibility of such damage.

Maarten Sneep (maarten.sneep@knmi.nl).