PyCAMA report generated by tropl2-proc

tropl2-proc

2025-03-24 (10:45)

1 Short Introduction

1.1 The list of parameters

You may want to keep the list given in table 1 at hand when viewing the results.

2 Definitions

The averages shown here are unweighed averages:

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i \tag{1}$$

with N the number of observations in the dataset.

The spread of the measurements is indicated with the variance V(x), or rather the standard deviation $\sigma(x) = \sqrt{V(x)}$.

$$V(x) = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2$$
(2)

We also report the more robust statistics median, minimum, maximum, various percentiles and inter quartile range.

The median m is the value of parameter x for which half of the observations of x is smaller than m:

$$P(x \le m) = P(x \ge m) = \int_{-\infty}^{m} f(x) \, \mathrm{d}x = \frac{1}{2}$$
(3)

with f(x) the probability density function.

The median is a special case of a percentile. Instead of $\frac{1}{2}$ in equation 3, other threshold values can be used. We report results for 1%, 5%, 10%, 15.9%, 25%, 75%, 84.1%, 90%, 95% and 99%. The inter quartile range is the difference between the 75% and 25% percentiles. Similarly the minimum and maximum values correspond to the 0% and 100% percentiles respectively.

For normally distributed parameters the mean and median are the same, while the $\mu \pm \sigma$ values and the 15.9% and 84.1% percentiles coincide.

To get a measure for the relation of one variable $x_{(k)}$ with another $x_{(l)}$, we calculate the covariance matrix C_{kl} .

$$C_{kl} = C(x_{(k)}, x_{(l)}) = \frac{1}{N-1} \sum_{i=1}^{N} (x_{(k),i} - \overline{x_{(k)}}) (x_{(l),i} - \overline{x_{(l)}})$$
(4)

Rather than a dimensionally dependent covariance, it is often easier to interpret a correlation matrix R_{kl} , a matrix of Pearson's *r* coefficients:

$$R_{kl} = R(x_{(k)}, x_{(l)}) = \frac{C_{kl}}{\sqrt{C_{kk}C_{ll}}} = \frac{C_{kl}}{\sqrt{V(x_k)V(x_l)}}$$
(5)

The diagonal elements of the covariance matrix are the variances of the elements, $V(x_{(k)}) = C_{kk}$ and obviously $R_{kk} = 1$.

Table 1: Parameterlist and	basic statistics	for the an	alysis
----------------------------	------------------	------------	--------

Table 1: Parameterlist and basic statistics for the analy	ysis			
Variable mean $\pm \sigma$ Count Mode	IQR	Median	Minimum	Maximum
qa value [1] 0.938±0.156 14991729 0.995	0.0	1.000	0.350	1.000
cloud pressure crb [hPa] 789 ± 197 14991729 1.015×10^3	293	852	130	1.063×10^3
cloud pressure crb precision [hPa] 2.88 ± 10.39 14991729 0.750	1.41	0.621	$6.714 imes10^{-4}$	1.552×10^{3}
cloud fraction crb [1] 0.442 ± 0.382 14991729 0.996	0.773	0.332	0.0	1.000
cloud fraction crb precision [1] $(2.144 \pm 15.656) \times 10^{-4}$ 14991729 2.500×10^{-4} 5.	5.727×10^{-5}	7.633×10^{-5}	$2.812 imes10^{-8}$	0.548
scene albedo [1] 0.442 ± 0.319 14991729 1.500×10^{-2}	0.560	0.406	-3.588×10^{-3}	3.66
scene albedo precision [1] $(8.552 \pm 10.490) \times 10^{-5}$ 14991729 2.500×10^{-4} 6.	5.042×10^{-5}	$4.962 imes 10^{-5}$	1.067×10^{-5}	4.947×10^{-3}
apparent scene pressure [hPa] 824±173 14991729 968	247	883	130	1.055×10^3
apparent scene pressure precision [hPa] 0.998 ± 1.897 14991729 0.500	0.420	0.433	$9.416 imes 10^{-2}$	54.2
chi square [1] $(0.204 \pm 2.154) \times 10^5$ 14991729 0.150 2	$2.105 imes 10^4$	$1.512 imes 10^4$	60.2	$2.966 imes 10^8$
number of iterations [1] 3.38 ± 1.05 14991729 3.23	1.000	3.00	1.000	14.0
fluorescence [mol s ⁻¹ m ⁻² nm ⁻¹ sr ⁻¹] (5.736 \pm 59.102) \times 10 ⁻¹⁰ 14991729 2.500 \times 10 ⁻¹⁰ 5.	5.018×10^{-9}	$7.943 imes 10^{-10}$	-1.472×10^{-6}	2.046×10^{-6}
fluorescence precision [mol s ⁻¹ m ⁻² nm ⁻¹ sr ⁻¹] $(1.734 \pm 0.683) \times 10^{-9}$ 14991729 8.500×10^{-10} 9.8 $\times 10^{-10}$	$.806 \times 10^{-10}$	1.667×10^{-9}	4.434×10^{-10}	$5.905 imes 10^{-9}$
chi square fluorescence [1] $(0.574 \pm 1.042) \times 10^5$ 14991729 750 5	5.472×10^{4}	$1.428 imes 10^4$	108	$4.467 imes 10^6$
degrees of freedom fluorescence [1] 6.00 ± 0.00 14991729 5.95	0.0	6.00	6.00	6.00
number of spectral points in retrieval [1] 50.0 ± 0.1 14991729 49.7	0.0	50.0	42.0	50.0
wavelength calibration offset [nm] $(2.872 \pm 8.230) \times 10^{-3}$ 14991729 2.800×10^{-3} 5.	5.441×10^{-3}	2.922×10^{-3}	-0.196	0.209

			Table 2:	Percentile rang	jes					
Variable	1 %	5%	10 %	15.9 %	25 %	75 %	84.1 %	90%	95 %	99 %
qa value [1]	0.500	0.500	0.500	0.900	1.000	1.000	1.000	1.000	1.000	1.000
cloud pressure crb [hPa]	245	396	496	572	656	949	976	994	1.010×10^3	1.020×10^3
cloud pressure crb precision [hPa]	0.200	0.248	0.278	0.306	0.353	1.76	3.20	5.73	11.4	37.8
cloud fraction crb [1]	0.0	$8.167 imes10^{-3}$	$1.881 imes10^{-2}$	$3.607 imes 10^{-2}$	7.399×10^{-2}	0.847	1.000	1.000	1.000	1.000
cloud fraction crb precision [1]	$1.991 imes10^{-5}$	$2.285 imes10^{-5}$	$2.583 imes10^{-5}$	$3.038 imes10^{-5}$	$4.273 imes 10^{-5}$	$1.000 imes10^{-4}$	$1.150 imes10^{-4}$	$1.640 imes 10^{-4}$	$4.904 imes10^{-4}$	2.648×10^{-3}
scene albedo [1]	$7.269 imes 10^{-3}$	$1.821 imes10^{-2}$	$3.567 imes 10^{-2}$	$6.715 imes10^{-2}$	0.152	0.712	0.823	0.885	0.954	1.11
scene albedo precision [1]	$1.308 imes10^{-5}$	$1.550 imes10^{-5}$	$1.925 imes 10^{-5}$	$2.436 imes 10^{-5}$	3.160×10^{-5}	$9.202 imes 10^{-5}$	$1.366 imes 10^{-4}$	$1.871 imes10^{-4}$	$2.871 imes10^{-4}$	$5.595 imes 10^{-4}$
apparent scene pressure [hPa]	341	476	562	624	716	962	983	997	1.010×10^{3}	1.020×10^{3}
apparent scene pressure precision [hPa]	0.216	0.249	0.273	0.294	0.326	0.746	1.23	2.09	3.92	9.34
chi square [1]	248	594	1.315×10^{3}	2.818×10^3	5.817×10^{3}	2.687×10^4	3.409×10^{4}	4.121×10^{4}	5.324×10^4	8.294×10^4
number of iterations [1]	2.00	2.00	2.00	3.00	3.00	4.00	4.00	5.00	5.00	7.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	-1.572×10^{-8}	-8.068×10^{-9}	-5.098×10^{-9}	-3.281×10^{-9}	-1.679×10^{-9}	3.339×10^{-9}	4.700×10^{-9}	$6.061 imes 10^{-9}$	8.132×10^{-9}	$1.315 imes 10^{-8}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$7.505 imes 10^{-10}$	$8.267 imes 10^{-10}$	$8.995 imes 10^{-10}$	$9.963 imes 10^{-10}$	$1.183 imes10^{-9}$	2.164×10^{-9}	2.430×10^{-9}	2.670×10^{-9}	2.992×10^{-9}	3.644×10^{-9}
chi square fluorescence [1]	398	787	1.422×10^{3}	2.445×10^{3}	4.462×10^{3}	$5.918 imes 10^4$	1.089×10^{5}	1.707×10^{5}	2.733×10^{5}	5.036×10^{5}
degrees of freedom fluorescence [1]	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$-2.403 imes 10^{-2}$	-9.055×10^{-3}	-4.236×10^{-3}	-1.779×10^{-3}	$1.714 imes10^{-4}$	5.613×10^{-3}	7.504×10^{-3}	9.934×10^{-3}	$1.472 imes 10^{-2}$	2.931×10^{-2}

Table 5. I drameternist and basic statistics for the analysis for observations in the northern nemisp	erlist and basic statistics for the analysis for observations in the northern hemisphe
---	--

Table 3	: Parameterlist and basic s	tatistics for	the analysis for	observations in	the northern hen	nisphere		
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.939 ± 0.152	7328349	0.0	1.000	0.350	1.000	1.000	1.000
cloud pressure crb [hPa]	800 ± 201	7328349	279	873	130	1.063×10^{3}	681	959
cloud pressure crb precision [hPa]	3.15 ± 10.24	7328349	1.76	0.814	$6.714 imes10^{-4}$	1.552×10^3	0.376	2.14
cloud fraction crb [1]	0.415 ± 0.391	7328349	0.808	0.238	0.0	1.000	6.150×10^{-2}	0.870
cloud fraction crb precision [1]	$(2.706 \pm 18.632) \times 10^{-4}$	7328349	$5.576 imes10^{-5}$	$8.234 imes10^{-5}$	$2.812 imes10^{-8}$	0.422	$4.424 imes 10^{-5}$	$1.000 imes10^{-4}$
scene albedo [1]	0.458 ± 0.323	7328349	0.571	0.414	$-9.336 imes 10^{-4}$	3.66	0.174	0.745
scene albedo precision [1]	$(9.101 \pm 11.975) \times 10^{-5}$	7328349	$6.944 imes 10^{-5}$	4.647×10^{-5}	$1.087 imes10^{-5}$	$1.646 imes 10^{-3}$	$3.010 imes 10^{-5}$	$9.953 imes10^{-5}$
apparent scene pressure [hPa]	848 ± 165	7328349	195	911	130	1.055×10^3	775	970
apparent scene pressure precision [hPa]	0.788 ± 1.250	7328349	0.369	0.435	0.107	54.2	0.321	0.690
chi square [1]	$(0.238 \pm 2.923) \times 10^5$	7328349	$2.426 imes 10^4$	$1.636 imes 10^4$	75.0	$2.966 imes 10^8$	$6.897 imes 10^3$	$3.116 imes 10^4$
number of iterations [1]	3.66 ± 1.11	7328349	1.000	3.00	1.000	14.0	3.00	4.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.075\pm5.944)\times10^{-9}$	7328349	$5.276 imes 10^{-9}$	1.250×10^{-9}	$-1.472 imes 10^{-6}$	$2.046 imes 10^{-6}$	-1.386×10^{-9}	$3.891 imes 10^{-9}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.766 \pm 0.679) imes 10^{-9}$	7328349	$9.907 imes 10^{-10}$	$1.701 imes 10^{-9}$	4.434×10^{-10}	$5.632 imes 10^{-9}$	$1.214 imes10^{-9}$	$2.205 imes 10^{-9}$
chi square fluorescence [1]	$(0.495 \pm 0.910) \times 10^5$	7328349	$4.705 imes 10^4$	$1.351 imes 10^4$	108	$4.467 imes10^6$	$5.450 imes 10^3$	$5.250 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	7328349	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	7328349	0.0	50.0	42.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(2.830\pm6.794)\times10^{-3}$	7328349	4.734×10^{-3}	2.842×10^{-3}	-8.060×10^{-2}	$8.969 imes 10^{-2}$	4.566×10^{-4}	5.190×10^{-3}

Table	4: Parameterlist and basic st	atistics for	the analysis for	observations in	the southern hem	isphere		
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.938 ± 0.159	7663380	0.0	1.000	0.350	1.000	1.000	1.000
cloud pressure crb [hPa]	777 ± 192	7663380	293	827	130	1.036×10^{3}	641	933
cloud pressure crb precision [hPa]	2.63 ± 10.53	7663380	1.02	0.509	2.502×10^{-3}	609	0.340	1.36
cloud fraction crb [1]	0.468 ± 0.370	7663380	0.740	0.418	0.0	1.000	$9.510 imes 10^{-2}$	0.835
cloud fraction crb precision [1]	$(1.606 \pm 12.122) \times 10^{-4}$	7663380	$5.830 imes 10^{-5}$	$7.277 imes 10^{-5}$	$1.082 imes 10^{-7}$	0.548	$4.170 imes10^{-5}$	$1.000 imes 10^{-4}$
scene albedo [1]	0.427 ± 0.315	7663380	0.556	0.399	$-3.588 imes 10^{-3}$	3.59	0.126	0.683
scene albedo precision [1]	$(8.028 \pm 8.808) \times 10^{-5}$	7663380	$5.413 imes 10^{-5}$	$5.269 imes10^{-5}$	$1.067 imes10^{-5}$	$4.947 imes 10^{-3}$	$3.346 imes 10^{-5}$	$8.759 imes10^{-5}$
apparent scene pressure [hPa]	802 ± 177	7663380	276	854	130	1.036×10^{3}	671	946
apparent scene pressure precision [hPa]	1.20 ± 2.34	7663380	0.509	0.432	$9.416 imes 10^{-2}$	54.2	0.330	0.839
chi square [1]	$(0.172 \pm 0.951) \times 10^5$	7663380	$1.913 imes 10^4$	1.409×10^4	60.2	$8.303 imes 10^7$	4.886×10^{3}	$2.401 imes 10^4$
number of iterations [1]	3.11 ± 0.91	7663380	0.0	3.00	1.000	14.0	3.00	3.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(9.403 \pm 583.744) \times 10^{-11}$	7663380	$4.730 imes 10^{-9}$	4.232×10^{-10}	-1.372×10^{-6}	$1.185 imes10^{-6}$	$-1.941 imes 10^{-9}$	$2.789 imes10^{-9}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.703 \pm 0.686) \times 10^{-9}$	7663380	$9.797 imes 10^{-10}$	1.630×10^{-9}	5.502×10^{-10}	$5.905 imes 10^{-9}$	$1.144 imes10^{-9}$	$2.123 imes 10^{-9}$
chi square fluorescence [1]	$(0.650 \pm 1.150) \times 10^5$	7663380	$6.388 imes 10^4$	1.526×10^4	120	2.043×10^{6}	3.418×10^{3}	$6.730 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	7663380	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	7663380	0.0	50.0	48.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(2.913 \pm 9.399) \times 10^{-3}$	7663380	6.298×10^{-3}	$3.018 imes 10^{-3}$	-0.196	0.209	-1.887×10^{-4}	6.109×10^{-3}

	Table 5: Parameterlist and	l basic stati	stics for the ana	lysis for observa	tions over water			
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.969 ± 0.097	9599454	0.0	1.000	0.350	1.000	1.000	1.000
cloud pressure crb [hPa]	814 ± 188	9599454	249	880	130	1.039×10^3	709	958
cloud pressure crb precision [hPa]	2.78 ± 10.78	9599454	1.22	0.608	$6.714 imes10^{-4}$	540	0.360	1.58
cloud fraction crb [1]	0.422 ± 0.361	9599454	0.687	0.335	0.0	1.000	7.211×10^{-2}	0.759
cloud fraction crb precision [1]	$(1.835 \pm 14.175) \times 10^{-4}$	9599454	6.938×10^{-5}	$5.785 imes10^{-5}$	2.812×10^{-8}	0.422	3.062×10^{-5}	1.000×10^{-4}
scene albedo [1]	0.373 ± 0.314	9599454	0.577	0.308	$-3.588 imes 10^{-3}$	3.66	$6.894 imes10^{-2}$	0.646
scene albedo precision [1]	$(8.176 \pm 10.633) \times 10^{-5}$	9599454	$6.113 imes 10^{-5}$	$4.941 imes 10^{-5}$	1.067×10^{-5}	$4.947 imes 10^{-3}$	2.493×10^{-5}	$8.606 imes10^{-5}$
apparent scene pressure [hPa]	835 ± 175	9599454	220	896	130	1.039×10^3	749	969
apparent scene pressure precision [hPa]	1.33 ± 2.30	9599454	0.848	0.543	0.162	54.2	0.356	1.20
chi square [1]	$(0.156 \pm 1.153) \times 10^5$	9599454	$1.952 imes 10^4$	$1.010 imes 10^4$	60.2	$1.566 imes 10^8$	$2.913 imes 10^3$	2.244×10^4
number of iterations [1]	3.09 ± 0.92	9599454	0.0	3.00	1.000	14.0	3.00	3.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(9.617 \pm 508.401) \times 10^{-11}$	9599454	$4.308 imes 10^{-9}$	2.998×10^{-10}	-1.472×10^{-6}	$1.136 imes10^{-6}$	-1.752×10^{-9}	2.556×10^{-9}
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.571 \pm 0.656) \times 10^{-9}$	9599454	$9.349 imes 10^{-10}$	1.441×10^{-9}	$4.434 imes 10^{-10}$	$5.491 imes10^{-9}$	$1.034 imes 10^{-9}$	$1.969 imes 10^{-9}$
chi square fluorescence [1]	$(0.448 \pm 0.888) \times 10^5$	9599454	$3.998 imes 10^4$	$1.235 imes 10^4$	108	3.000×10^{6}	4.182×10^{3}	$4.417 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	9599454	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	9599454	0.0	50.0	48.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(2.823 \pm 9.466) \times 10^{-3}$	9599454	6.229×10^{-3}	2.910×10^{-3}	-0.196	0.209	-2.760×10^{-4}	5.953×10^{-3}

	Table 6: Parameterlist an	d basic stat	istics for the ana	alysis for observ	vations over land			
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.854 ± 0.230	3944210	0.500	1.000	0.350	1.000	0.500	1.000
cloud pressure crb [hPa]	732 ± 201	3944210	307	751	130	1.063×10^{3}	602	909
cloud pressure crb precision [hPa]	2.77 ± 8.99	3944210	1.57	0.598	$2.380 imes10^{-3}$	1.146×10^3	0.336	1.91
cloud fraction crb [1]	0.511 ± 0.421	3944210	0.913	0.393	0.0	1.000	8.696×10^{-2}	1.000
cloud fraction crb precision [1]	$(3.086 \pm 19.611) \times 10^{-4}$	3944210	$2.535 imes 10^{-5}$	$1.000 imes 10^{-4}$	$1.082 imes10^{-7}$	0.548	7.554×10^{-5}	$1.009 imes 10^{-4}$
scene albedo [1]	0.598 ± 0.288	3944210	0.519	0.552	$2.925 imes 10^{-2}$	3.59	0.339	0.858
scene albedo precision [1]	$(1.031 \pm 1.114) \times 10^{-4}$	3944210	$9.354 imes10^{-5}$	$5.132 imes 10^{-5}$	$1.268 imes10^{-5}$	$1.622 imes 10^{-3}$	$3.820 imes 10^{-5}$	$1.317 imes10^{-4}$
apparent scene pressure [hPa]	789 ± 165	3944210	285	827	130	1.055×10^3	652	937
apparent scene pressure precision [hPa]	0.383 ± 0.119	3944210	0.139	0.359	$9.416 imes 10^{-2}$	7.10	0.299	0.439
chi square [1]	$(0.288 \pm 3.218) \times 10^5$	3944210	$1.876 imes 10^4$	$2.163 imes 10^4$	247	$2.966 imes 10^8$	$1.411 imes 10^4$	$3.287 imes 10^4$
number of iterations [1]	3.91 ± 1.05	3944210	1.000	4.00	1.000	14.0	3.00	4.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.271 \pm 6.637) \times 10^{-9}$	3944210	$5.952 imes 10^{-9}$	$1.982 imes 10^{-9}$	$-1.322 imes10^{-6}$	$1.267 imes10^{-6}$	-1.522×10^{-9}	4.430×10^{-9}
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(2.003\pm0.638) imes10^{-9}$	3944210	$7.940 imes 10^{-10}$	$1.939 imes 10^{-9}$	$5.347 imes 10^{-10}$	$5.638 imes10^{-9}$	1.562×10^{-9}	2.356×10^{-9}
chi square fluorescence [1]	$(0.780 \pm 1.226) \times 10^5$	3944210	$1.019 imes 10^5$	$1.693 imes 10^4$	130	$3.913 imes10^6$	3.677×10^{3}	$1.055 imes 10^5$
degrees of freedom fluorescence [1]	6.00 ± 0.00	3944210	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	3944210	0.0	50.0	48.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(2.953 \pm 4.657) \times 10^{-3}$	3944210	4.103×10^{-3}	2.947×10^{-3}	$-5.889 imes 10^{-2}$	6.735×10^{-2}	$9.034 imes10^{-4}$	$5.007 imes 10^{-3}$

 \neg

Granule outlines

Figure 1: Outline of the granules.

4 Input data monitoring

Figure 2: Input data per granule

5 Warnings and errors

Figure 3: Fraction of pixels with specific warnings and errors during processing

6 World maps

Figure 4: Map of "Cloud pressure" for 2025-03-22 to 2025-03-22

Figure 5: Map of "Cloud fraction" for 2025-03-22 to 2025-03-22

Figure 6: Map of "Scene albedo" for 2025-03-22 to 2025-03-22

Figure 7: Map of "Apparent scene pressure" for 2025-03-22 to 2025-03-22

2025-03-22

Figure 8: Map of "Fluorescence" for 2025-03-22 to 2025-03-22

Figure 9: Map of the number of observations for 2025-03-22 to 2025-03-22

7 Zonal average

Figure 10: Zonal average of "QA value" for 2025-03-22 to 2025-03-22.

Figure 11: Zonal average of "Cloud pressure" for 2025-03-22 to 2025-03-22.

Figure 12: Zonal average of "Cloud pressure precision" for 2025-03-22 to 2025-03-22.

Figure 13: Zonal average of "Cloud fraction" for 2025-03-22 to 2025-03-22.

Figure 14: Zonal average of "Cloud fraction precision" for 2025-03-22 to 2025-03-22.

Figure 15: Zonal average of "Scene albedo" for 2025-03-22 to 2025-03-22.

Figure 16: Zonal average of "Scene albedo precision" for 2025-03-22 to 2025-03-22.

Figure 17: Zonal average of "Apparent scene pressure" for 2025-03-22 to 2025-03-22.

Figure 18: Zonal average of "Apparent scene pressure precision" for 2025-03-22 to 2025-03-22.

Figure 19: Zonal average of " χ^2 " for 2025-03-22 to 2025-03-22.

Figure 20: Zonal average of "Number of iterations" for 2025-03-22 to 2025-03-22.

Figure 21: Zonal average of "Fluorescence" for 2025-03-22 to 2025-03-22.

Figure 22: Zonal average of "Fluorescence precision" for 2025-03-22 to 2025-03-22.

Figure 23: Zonal average of " χ^2 of fluorescence retrieval" for 2025-03-22 to 2025-03-22.

Figure 24: Zonal average of "Degrees of freedom for signal of fluorescence retrieval" for 2025-03-22 to 2025-03-22.

Figure 25: Zonal average of "Number of points in the spectrum" for 2025-03-22 to 2025-03-22.

Figure 26: Zonal average of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-03-22 to 2025-03-22.

8 Histograms

The definitions of the parameters given in this section can be found in section 2.

Figure 27: Histogram of "QA value" for 2025-03-22 to 2025-03-22

Figure 28: Histogram of "Cloud pressure" for 2025-03-22 to 2025-03-22

Figure 29: Histogram of "Cloud pressure precision" for 2025-03-22 to 2025-03-22

Figure 30: Histogram of "Cloud fraction" for 2025-03-22 to 2025-03-22

Figure 31: Histogram of "Cloud fraction precision" for 2025-03-22 to 2025-03-22

Figure 32: Histogram of "Scene albedo" for 2025-03-22 to 2025-03-22

Figure 33: Histogram of "Scene albedo precision" for 2025-03-22 to 2025-03-22

Figure 34: Histogram of "Apparent scene pressure" for 2025-03-22 to 2025-03-22

Figure 35: Histogram of "Apparent scene pressure precision" for 2025-03-22 to 2025-03-22

Figure 36: Histogram of " χ^2 " for 2025-03-22 to 2025-03-22

Figure 37: Histogram of "Number of iterations" for 2025-03-22 to 2025-03-22

Figure 38: Histogram of "Fluorescence" for 2025-03-22 to 2025-03-22

Figure 39: Histogram of "Fluorescence precision" for 2025-03-22 to 2025-03-22

Figure 40: Histogram of " χ^2 of fluorescence retrieval" for 2025-03-22 to 2025-03-22

Figure 41: Histogram of "Degrees of freedom for signal of fluorescence retrieval" for 2025-03-22 to 2025-03-22

Figure 42: Histogram of "Number of points in the spectrum" for 2025-03-22 to 2025-03-22

Figure 43: Histogram of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-03-22 to 2025-03-22

9 Along track statistics

The TROPOMI instrument uses different binned detector rows for different viewing directions. In this section statistics are presented for each of the binned rows in the instrument.

Figure 44: Along track statistics of "QA value" for 2025-03-22 to 2025-03-22

Figure 45: Along track statistics of "Cloud pressure" for 2025-03-22 to 2025-03-22

Figure 46: Along track statistics of "Cloud pressure precision" for 2025-03-22 to 2025-03-22

Figure 47: Along track statistics of "Cloud fraction" for 2025-03-22 to 2025-03-22

Figure 48: Along track statistics of "Cloud fraction precision" for 2025-03-22 to 2025-03-22

Figure 49: Along track statistics of "Scene albedo" for 2025-03-22 to 2025-03-22

Figure 50: Along track statistics of "Scene albedo precision" for 2025-03-22 to 2025-03-22

Figure 51: Along track statistics of "Apparent scene pressure" for 2025-03-22 to 2025-03-22

Figure 52: Along track statistics of "Apparent scene pressure precision" for 2025-03-22 to 2025-03-22

Figure 53: Along track statistics of " χ^2 " for 2025-03-22 to 2025-03-22

Figure 54: Along track statistics of "Number of iterations" for 2025-03-22 to 2025-03-22

Figure 55: Along track statistics of "Fluorescence" for 2025-03-22 to 2025-03-22

Figure 56: Along track statistics of "Fluorescence precision" for 2025-03-22 to 2025-03-22

Figure 57: Along track statistics of " χ^2 of fluorescence retrieval" for 2025-03-22 to 2025-03-22

Figure 58: Along track statistics of "Degrees of freedom for signal of fluorescence retrieval" for 2025-03-22 to 2025-03-22

Figure 59: Along track statistics of "Number of points in the spectrum" for 2025-03-22 to 2025-03-22

Figure 60: Along track statistics of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-03-22 to 2025-03-22

10 Coincidence density

To investigate the relation between parameters scatter density plots are produced. These include some 'hidden' parameters, latitude and the solar- and viewing geometries, in addition to all configured parameters. All combinations of pairs of parameters are included *once*, in one direction alone.

Contents

1	Short Introduction	1
	1.1 The list of parameters	1
2	Definitions	1
3	Granule outlines	8
4	Input data monitoring	9
5	Warnings and errors	10
6	World maps	11
7	Zonal average	17
8	Histograms	34
9	Along track statistics	51
10	Coincidence density	68
11	Copyright information of 'PyCAMA'	68

List of Figures

1	Outline of the granules.	8
2	Input data per granule	9
3	Fraction of pixels with specific warnings and errors during processing	10
4	Map of "Cloud pressure" for 2025-03-22 to 2025-03-22	11
5	Map of "Cloud fraction" for 2025-03-22 to 2025-03-22	12
6	Map of "Scene albedo" for 2025-03-22 to 2025-03-22	13
7	Map of "Apparent scene pressure" for 2025-03-22 to 2025-03-22	14
8	Map of "Fluorescence" for 2025-03-22 to 2025-03-22	15
9	Map of the number of observations for 2025-03-22 to 2025-03-22	16
10	Zonal average of "QA value" for 2025-03-22 to 2025-03-22.	17
11	Zonal average of "Cloud pressure" for 2025-03-22 to 2025-03-22.	18
12	Zonal average of "Cloud pressure precision" for 2025-03-22 to 2025-03-22.	19
13	Zonal average of "Cloud fraction" for 2025-03-22 to 2025-03-22.	20
14	Zonal average of "Cloud fraction precision" for 2025-03-22 to 2025-03-22.	21
15	Zonal average of "Scene albedo" for 2025-03-22 to 2025-03-22.	22
16	Zonal average of "Scene albedo precision" for 2025-03-22 to 2025-03-22.	23
17	Zonal average of "Apparent scene pressure" for 2025-03-22 to 2025-03-22.	24
18	Zonal average of "Apparent scene pressure precision" for 2025-03-22 to 2025-03-22.	25
19	Zonal average of " χ^2 " for 2025-03-22 to 2025-03-22	26
20	Zonal average of "Number of iterations" for 2025-03-22 to 2025-03-22.	27
21	Zonal average of "Fluorescence" for 2025-03-22 to 2025-03-22.	28
22	Zonal average of "Fluorescence precision" for 2025-03-22 to 2025-03-22	29
23	Zonal average of " χ^2 of fluorescence retrieval" for 2025-03-22 to 2025-03-22	30
24	Zonal average of "Degrees of freedom for signal of fluorescence retrieval" for 2025-03-22 to 2025-03-22.	31
25	Zonal average of "Number of points in the spectrum" for 2025-03-22 to 2025-03-22.	32
26	Zonal average of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-03-22 to 2025-03-22	33
27	Histogram of "QA value" for 2025-03-22 to 2025-03-22	34
28	Histogram of "Cloud pressure" for 2025-03-22 to 2025-03-22	35
29	Histogram of "Cloud pressure precision" for 2025-03-22 to 2025-03-22	36

30	Histogram of "Cloud fraction" for 2025-03-22 to 2025-03-22	37
31	Histogram of "Cloud fraction precision" for 2025-03-22 to 2025-03-22	38
32	Histogram of "Scene albedo" for 2025-03-22 to 2025-03-22	39
33	Histogram of "Scene albedo precision" for 2025-03-22 to 2025-03-22	40
34	Histogram of "Apparent scene pressure" for 2025-03-22 to 2025-03-22	41
35	Histogram of "Apparent scene pressure precision" for 2025-03-22 to 2025-03-22	42
36	Histogram of " χ^2 " for 2025-03-22 to 2025-03-22	43
37	Histogram of "Number of iterations" for 2025-03-22 to 2025-03-22	44
38	Histogram of "Fluorescence" for 2025-03-22 to 2025-03-22	45
39	Histogram of "Fluorescence precision" for 2025-03-22 to 2025-03-22	46
40	Histogram of " χ^2 of fluorescence retrieval" for 2025-03-22 to 2025-03-22	47
41	Histogram of "Degrees of freedom for signal of fluorescence retrieval" for 2025-03-22 to 2025-03-22	48
42	Histogram of "Number of points in the spectrum" for 2025-03-22 to 2025-03-22	49
43	Histogram of "Spectral offset $(\lambda_{true} - \lambda_{nominal})$ " for 2025-03-22 to 2025-03-22	50
44	Along track statistics of "QA value" for 2025-03-22 to 2025-03-22	51
45	Along track statistics of "Cloud pressure" for 2025-03-22 to 2025-03-22	52
46	Along track statistics of "Cloud pressure precision" for 2025-03-22 to 2025-03-22	53
47	Along track statistics of "Cloud fraction" for 2025-03-22 to 2025-03-22	54
48	Along track statistics of "Cloud fraction precision" for 2025-03-22 to 2025-03-22	55
49	Along track statistics of "Scene albedo" for 2025-03-22 to 2025-03-22	56
50	Along track statistics of "Scene albedo precision" for 2025-03-22 to 2025-03-22	57
51	Along track statistics of "Apparent scene pressure" for 2025-03-22 to 2025-03-22	58
52	Along track statistics of "Apparent scene pressure precision" for 2025-03-22 to 2025-03-22	59
53	Along track statistics of " χ^2 " for 2025-03-22 to 2025-03-22	60
54	Along track statistics of "Number of iterations" for 2025-03-22 to 2025-03-22	61
55	Along track statistics of "Fluorescence" for 2025-03-22 to 2025-03-22	62
56	Along track statistics of "Fluorescence precision" for 2025-03-22 to 2025-03-22	63
57	Along track statistics of " χ^2 of fluorescence retrieval" for 2025-03-22 to 2025-03-22	64
58	Along track statistics of "Degrees of freedom for signal of fluorescence retrieval" for 2025-03-22 to 2025-03-22	65
59	Along track statistics of "Number of points in the spectrum" for 2025-03-22 to 2025-03-22	66
60	Along track statistics of "Spectral offset $(\lambda_{true} - \lambda_{nominal})$ " for 2025-03-22 to 2025-03-22	67

List of Tables

1	Parameterlist and basic statistics for the analysis
2	Percentile ranges
3	Parameterlist and basic statistics for the analysis for observations in the northern hemisphere
4	Parameterlist and basic statistics for the analysis for observations in the southern hemisphere
5	Parameterlist and basic statistics for the analysis for observations over water
6	Parameterlist and basic statistics for the analysis for observations over land

11 Copyright information of 'PyCAMA'

Copyright © 2005-2023, Maarten Sneep (KNMI).

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
- 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

This software is provided by the copyright holders and contributors "as is" and any express or implied warranties, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose are disclaimed. In no event shall the copyright holder or contributors be liable for any direct, indirect, incidental, special, exemplary, or consequential damages (including, but not limited to, procurement of substitute goods or services; loss of use, data, or profits; or business interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence or otherwise) arising in any way out of the use of this software, even if advised of the possibility of such damage.

Maarten Sneep (maarten.sneep@knmi.nl).