PyCAMA report generated by tropl2-proc

tropl2-proc

2025-03-29 (02:30)

1 Short Introduction

1.1 The list of parameters

You may want to keep the list given in table 1 at hand when viewing the results.

2 Definitions

The averages shown here are unweighed averages:

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i \tag{1}$$

with N the number of observations in the dataset.

The spread of the measurements is indicated with the variance V(x), or rather the standard deviation $\sigma(x) = \sqrt{V(x)}$.

$$V(x) = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2$$
(2)

We also report the more robust statistics median, minimum, maximum, various percentiles and inter quartile range.

The median m is the value of parameter x for which half of the observations of x is smaller than m:

$$P(x \le m) = P(x \ge m) = \int_{-\infty}^{m} f(x) \, \mathrm{d}x = \frac{1}{2}$$
(3)

with f(x) the probability density function.

The median is a special case of a percentile. Instead of $\frac{1}{2}$ in equation 3, other threshold values can be used. We report results for 1%, 5%, 10%, 15.9%, 25%, 75%, 84.1%, 90%, 95% and 99%. The inter quartile range is the difference between the 75% and 25% percentiles. Similarly the minimum and maximum values correspond to the 0% and 100% percentiles respectively.

For normally distributed parameters the mean and median are the same, while the $\mu \pm \sigma$ values and the 15.9% and 84.1% percentiles coincide.

To get a measure for the relation of one variable $x_{(k)}$ with another $x_{(l)}$, we calculate the covariance matrix C_{kl} .

$$C_{kl} = C(x_{(k)}, x_{(l)}) = \frac{1}{N-1} \sum_{i=1}^{N} (x_{(k),i} - \overline{x_{(k)}}) (x_{(l),i} - \overline{x_{(l)}})$$
(4)

Rather than a dimensionally dependent covariance, it is often easier to interpret a correlation matrix R_{kl} , a matrix of Pearson's *r* coefficients:

$$R_{kl} = R(x_{(k)}, x_{(l)}) = \frac{C_{kl}}{\sqrt{C_{kk}C_{ll}}} = \frac{C_{kl}}{\sqrt{V(x_k)V(x_l)}}$$
(5)

The diagonal elements of the covariance matrix are the variances of the elements, $V(x_{(k)}) = C_{kk}$ and obviously $R_{kk} = 1$.

	Table 1: Parameterl	ist and basic s	statistics for the ar	nalysis			
Variable	mean $\pm \sigma$	Count	Mode	IQR	Median	Minimum	Maximum
qa value [1]	0.931 ± 0.163	24970963	0.995	0.0	1.000	0.350	1.000
cloud pressure crb [hPa]	796 ± 193	24970963	1.005×10^3	277	856	130	1.062×10^{3}
cloud pressure crb precision [hPa]	2.58 ± 9.92	24970963	0.750	1.20	0.587	$2.441 imes 10^{-4}$	1.421×10^{3}
cloud fraction crb [1]	0.461 ± 0.381	24970963	0.996	0.795	0.375	0.0	1.000
cloud fraction crb precision [1]	$(2.130 \pm 14.901) \times 10^{-4}$	24970963	$2.500 imes10^{-4}$	$5.873 imes10^{-5}$	$7.821 imes 10^{-5}$	3.419×10^{-9}	0.894
scene albedo [1]	0.453 ± 0.331	24970963	1.500×10^{-2}	0.601	0.428	$-3.197 imes 10^{-3}$	4.46
scene albedo precision [1]	$(8.822 \pm 10.905) \times 10^{-5}$	24970963	$2.500 imes10^{-4}$	$6.401 imes 10^{-5}$	$5.369 imes10^{-5}$	1.047×10^{-5}	4.036×10^{-3}
apparent scene pressure [hPa]	829 ± 169	24970963	1.008×10^3	236	881	130	1.061×10^3
apparent scene pressure precision [hPa]	1.01 ± 1.92	24970963	0.500	0.471	0.440	0.102	63.2
chi square [1]	$(0.225 \pm 3.406) \times 10^5$	24970963	0.150	$2.394 imes 10^4$	$1.514 imes10^4$	53.2	$4.098 imes 10^8$
number of iterations [1]	3.38 ± 1.06	24970963	3.23	1.000	3.00	1.000	14.0
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.004 \pm 5.750) \times 10^{-9}$	24970963	2.500×10^{-10}	$5.015 imes10^{-9}$	1.037×10^{-9}	-1.760×10^{-6}	$1.829 imes 10^{-6}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.724 \pm 0.688) \times 10^{-9}$	24970963	$8.500 imes 10^{-10}$	$1.011 imes 10^{-9}$	1.652×10^{-9}	$4.162 imes 10^{-10}$	5.622×10^{-9}
chi square fluorescence [1]	$(0.467 \pm 0.904) \times 10^5$	24970963	750	$4.000 imes 10^4$	1.364×10^4	104	$2.261 imes 10^6$
degrees of freedom fluorescence [1]	6.00 ± 0.00	24970963	5.95	0.0	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	24970963	49.7	0.0	50.0	43.0	50.0
wavelength calibration offset [nm]	$(2.856 \pm 8.549) \times 10^{-3}$	24970963	2.800×10^{-3}	5.708×10^{-3}	2.873×10^{-3}	-0.133	0.168

			Table 2:	Percentile rang	es					
Variable	1 %	5%	10 %	15.9 %	25 %	75 %	84.1 %	90%	95 %	99 %
qa value [1]	0.500	0.500	0.500	0.900	1.000	1.000	1.000	1.000	1.000	1.000
cloud pressure crb [hPa]	257	406	506	584	675	952	979	997	1.010×10^3	1.020×10^3
cloud pressure crb precision [hPa]	0.200	0.243	0.271	0.299	0.346	1.54	2.68	4.66	9.58	34.6
cloud fraction crb [1]	$4.714 imes10^{-4}$	$9.738 imes10^{-3}$	$2.257 imes10^{-2}$	$4.270 imes10^{-2}$	$8.669 imes 10^{-2}$	0.882	1.000	1.000	1.000	1.000
cloud fraction crb precision [1]	$1.995 imes10^{-5}$	$2.271 imes10^{-5}$	$2.565 imes 10^{-5}$	$2.966 imes 10^{-5}$	$4.127 imes 10^{-5}$	$1.000 imes10^{-4}$	$1.216 imes10^{-4}$	$1.926 imes10^{-4}$	$5.351 imes10^{-4}$	$2.478 imes 10^{-3}$
scene albedo [1]	$7.480 imes 10^{-3}$	$1.890 imes10^{-2}$	$3.523 imes 10^{-2}$	$6.287 imes10^{-2}$	0.135	0.735	0.844	0.904	0.972	1.14
scene albedo precision [1]	$1.297 imes10^{-5}$	$1.524 imes 10^{-5}$	$1.860 imes10^{-5}$	$2.341 imes 10^{-5}$	$3.158 imes10^{-5}$	$9.560 imes 10^{-5}$	$1.359 imes 10^{-4}$	$1.892 imes 10^{-4}$	$2.962 imes 10^{-4}$	$5.769 imes10^{-4}$
apparent scene pressure [hPa]	344	486	572	640	727	963	986	1.001×10^{3}	1.010×10^{3}	1.020×10^{3}
apparent scene pressure precision [hPa]	0.214	0.246	0.269	0.291	0.323	0.794	1.30	2.13	3.86	9.21
chi square [1]	250	599	1.281×10^{3}	2.644×10^{3}	5.362×10^{3}	2.930×10^4	3.825×10^4	4.752×10^{4}	6.186×10^4	$9.305 imes 10^4$
number of iterations [1]	2.00	2.00	2.00	3.00	3.00	4.00	4.00	5.00	5.00	7.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$-1.490 imes 10^{-8}$	-7.031×10^{-9}	-4.274×10^{-9}	$-2.697 imes 10^{-9}$	-1.315×10^{-9}	3.701×10^{-9}	$5.173 imes 10^{-9}$	$6.610 imes 10^{-9}$	$8.701 imes 10^{-9}$	$1.351 imes 10^{-8}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$7.453 imes 10^{-10}$	8.251×10^{-10}	$8.982 imes 10^{-10}$	$9.874 imes 10^{-10}$	$1.155 imes 10^{-9}$	2.166×10^{-9}	2.424×10^{-9}	2.672×10^{-9}	3.002×10^{-9}	3.623×10^{-9}
chi square fluorescence [1]	455	951	1.750×10^{3}	2.858×10^{3}	4.808×10^{3}	4.481×10^{4}	$7.688 imes 10^4$	1.222×10^{5}	2.150×10^{5}	4.653×10^{5}
degrees of freedom fluorescence [1]	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0
wavelength calibration offset [nm]	-2.489×10^{-2}	-9.609×10^{-3}	-4.622×10^{-3}	-2.048×10^{-3}	1.854×10^{-6}	5.710×10^{-3}	7.750×10^{-3}	$1.035 imes 10^{-2}$	$1.537 imes10^{-2}$	$3.035 imes 10^{-2}$

Table	3: Parameterlist and basic	statistics for	the analysis for	observations in	the northern her	nisphere		
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.912 ± 0.181	13724000	0.1000	1.000	0.350	1.000	0.900	1.000
cloud pressure crb [hPa]	813 ± 189	13724000	253	875	130	1.062×10^{3}	708	961
cloud pressure crb precision [hPa]	2.41 ± 9.13	13724000	1.18	0.593	$2.441 imes 10^{-4}$	1.421×10^{3}	0.329	1.51
cloud fraction crb [1]	0.490 ± 0.396	13724000	0.905	0.400	0.0	1.000	$9.530 imes 10^{-2}$	1.000
cloud fraction crb precision [1]	$(2.771 \pm 18.303) \times 10^{-4}$	13724000	$5.314 imes10^{-5}$	$9.597 imes10^{-5}$	$1.368 imes10^{-8}$	0.894	$4.686 imes10^{-5}$	$1.000 imes 10^{-4}$
scene albedo [1]	0.508 ± 0.335	13724000	0.611	0.511	$-2.288 imes 10^{-3}$	4.13	0.196	0.808
scene albedo precision [1]	$(9.530 \pm 11.973) \times 10^{-5}$	13724000	$7.348 imes 10^{-5}$	$5.571 imes 10^{-5}$	$1.059 imes10^{-5}$	$1.782 imes 10^{-3}$	$3.217 imes 10^{-5}$	$1.056 imes10^{-4}$
apparent scene pressure [hPa]	852 ± 154	13724000	196	903	130	1.061×10^{3}	774	970
apparent scene pressure precision [hPa]	0.733 ± 1.118	13724000	0.344	0.407	0.102	63.2	0.307	0.651
chi square [1]	$(0.294 \pm 4.554) \times 10^5$	13724000	3.059×10^4	2.031×10^4	78.1	$4.098 imes 10^8$	7.876×10^{3}	$3.847 imes 10^4$
number of iterations [1]	3.63 ± 1.14	13724000	1.000	3.00	1.000	14.0	3.00	4.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.727 \pm 5.729) \times 10^{-9}$	13724000	$5.607 imes 10^{-9}$	$1.800 imes 10^{-9}$	-1.410×10^{-6}	$1.829 imes10^{-6}$	$-9.688 imes 10^{-10}$	4.639×10^{-9}
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.820 \pm 0.685) \times 10^{-9}$	13724000	$9.840 imes 10^{-10}$	$1.770 imes 10^{-9}$	4.162×10^{-10}	5.619×10^{-9}	1.259×10^{-9}	$2.243 imes 10^{-9}$
chi square fluorescence [1]	$(0.409 \pm 0.764) \times 10^5$	13724000	$3.573 imes 10^4$	$1.383 imes 10^4$	108	$2.261 imes 10^6$	5.665×10^{3}	$4.139 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	13724000	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	13724000	0.0	50.0	43.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(2.803 \pm 7.266) \times 10^{-3}$	13724000	4.937×10^{-3}	$2.783 imes 10^{-3}$	-0.124	9.169×10^{-2}	2.982×10^{-4}	$5.235 imes 10^{-3}$

Table	4: Parameterlist and basic s	statistics for	the analysis for	observations in	the southern hem	isphere		
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.955 ± 0.134	11246963	0.0	1.000	0.350	1.000	1.000	1.000
cloud pressure crb [hPa]	776 ± 196	11246963	298	832	130	1.028×10^3	638	936
cloud pressure crb precision [hPa]	2.78 ± 10.80	11246963	1.23	0.582	5.005×10^{-3}	739	0.365	1.59
cloud fraction crb [1]	0.426 ± 0.359	11246963	0.679	0.350	0.0	1.000	$7.498 imes10^{-2}$	0.754
cloud fraction crb precision [1]	$(1.348 \pm 9.117) \times 10^{-4}$	11246963	6.346×10^{-5}	$6.841 imes10^{-5}$	3.419×10^{-9}	0.428	3.654×10^{-5}	$1.000 imes 10^{-4}$
scene albedo [1]	0.386 ± 0.312	11246963	0.544	0.345	$-3.197 imes 10^{-3}$	4.46	$8.277 imes10^{-2}$	0.626
scene albedo precision [1]	$(7.959 \pm 9.367) \times 10^{-5}$	11246963	$5.498 imes 10^{-5}$	$5.154 imes10^{-5}$	$1.047 imes 10^{-5}$	4.036×10^{-3}	$3.082 imes 10^{-5}$	$8.581 imes10^{-5}$
apparent scene pressure [hPa]	800 ± 182	11246963	280	853	130	1.029×10^3	669	949
apparent scene pressure precision [hPa]	1.35 ± 2.55	11246963	0.765	0.493	0.161	59.3	0.350	1.12
chi square [1]	$(0.141 \pm 0.665) \times 10^5$	11246963	$1.736 imes 10^4$	$1.111 imes 10^4$	53.2	$1.057 imes 10^8$	3.270×10^{3}	$2.062 imes 10^4$
number of iterations [1]	3.07 ± 0.86	11246963	0.0	3.00	1.000	14.0	3.00	3.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.210\pm56.505)\times10^{-10}$	11246963	$4.189 imes10^{-9}$	3.857×10^{-10}	-1.760×10^{-6}	$1.253 imes10^{-6}$	-1.669×10^{-9}	2.519×10^{-9}
fluorescence precision [mol $s^{-1} m^{-2} nm^{-1} sr^{-1}$]	$(1.608 \pm 0.673) \times 10^{-9}$	11246963	$9.672 imes 10^{-10}$	$1.491 imes 10^{-9}$	5.457×10^{-10}	$5.622 imes 10^{-9}$	$1.054 imes 10^{-9}$	$2.021 imes 10^{-9}$
chi square fluorescence [1]	$(0.538 \pm 1.046) \times 10^5$	11246963	$4.685 imes 10^4$	1.336×10^4	104	$1.888 imes10^6$	3.589×10^{3}	$5.044 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	11246963	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	11246963	0.0	50.0	48.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(2.921 \pm 9.892) \times 10^{-3}$	11246963	6.877×10^{-3}	3.022×10^{-3}	-0.133	0.168	-4.756×10^{-4}	6.401×10^{-3}

	Table 5: Parameterlist an	d basic stati	stics for the ana	lysis for observa	tions over water			
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
a value [1]	0.958 ± 0.119	17441850	0.0	1.000	0.350	1.000	1.000	1.000
cloud pressure crb [hPa]	814 ± 188	17441850	256	878	130	1.062×10^{3}	705	960
cloud pressure crb precision [hPa]	2.52 ± 9.87	17441850	1.14	0.608	$7.324 imes 10^{-4}$	804	0.360	1.50
cloud fraction crb [1]	0.426 ± 0.363	17441850	0.685	0.338	0.0	1.000	7.693×10^{-2}	0.762
cloud fraction crb precision [1]	$(1.838 \pm 13.622) \times 10^{-4}$	17441850	$6.888 imes10^{-5}$	5.993×10^{-5}	1.368×10^{-8}	0.405	3.112×10^{-5}	$1.000 imes 10^{-4}$
scene albedo [1]	0.380 ± 0.321	17441850	0.578	0.314	-3.197×10^{-3}	4.13	$7.291 imes 10^{-2}$	0.651
scene albedo precision [1]	$(8.165 \pm 10.686) \times 10^{-5}$	17441850	$6.380 imes10^{-5}$	$4.995 imes 10^{-5}$	$1.047 imes 10^{-5}$	4.036×10^{-3}	$2.504 imes 10^{-5}$	$8.884 imes10^{-5}$
apparent scene pressure [hPa]	836 ± 172	17441850	226	892	130	1.061×10^3	745	971
apparent scene pressure precision [hPa]	1.28 ± 2.25	17441850	0.809	0.542	0.102	63.2	0.355	1.16
chi square [1]	$(0.171 \pm 2.054) \times 10^5$	17441850	$2.019 imes 10^4$	$1.046 imes 10^4$	53.2	$3.635 imes 10^8$	3.095×10^{3}	$2.329 imes 10^4$
number of iterations [1]	3.14 ± 0.97	17441850	0.0	3.00	1.000	14.0	3.00	3.00
Huorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(4.830 \pm 51.656) \times 10^{-10}$	17441850	$4.393 imes 10^{-9}$	$5.064 imes 10^{-10}$	$-1.089 imes10^{-6}$	$1.829 imes10^{-6}$	-1.505×10^{-9}	$2.888 imes10^{-9}$
fluorescence precision [mol s ⁻¹ m ⁻² nm ⁻¹ sr ⁻¹]	$(1.584 \pm 0.666) \times 10^{-9}$	17441850	$9.285 imes 10^{-10}$	1.444×10^{-9}	4.162×10^{-10}	$5.622 imes 10^{-9}$	1.049×10^{-9}	$1.977 imes10^{-9}$
chi square fluorescence [1]	$(0.383 \pm 0.745) \times 10^5$	17441850	$3.308 imes 10^4$	$1.275 imes 10^4$	104	$2.261 imes 10^6$	4.930×10^{3}	$3.801 imes 10^4$
legrees of freedom fluorescence [1]	6.00 ± 0.00	17441850	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	17441850	0.0	50.0	48.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(2.827 \pm 9.638) \times 10^{-3}$	17441850	$6.488 imes 10^{-3}$	2.855×10^{-3}	-0.133	0.168	-4.189×10^{-4}	6.069×10^{-3}

	Table 6: Parameterlist a	nd basic sta	tistics for the an	alysis for obser	vations over land			
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.845 ± 0.235	5603234	0.500	1.000	0.350	1.000	0.500	1.000
cloud pressure crb [hPa]	748 ± 193	5603234	280	774	130	1.053×10^3	630	910
cloud pressure crb precision [hPa]	2.50 ± 9.62	5603234	1.25	0.524	$3.052 imes 10^{-4}$	1.421×10^3	0.317	1.57
cloud fraction crb [1]	0.563 ± 0.413	5603234	0.879	0.576	0.0	1.000	0.121	1.000
cloud fraction crb precision [1]	$(3.087 \pm 18.800) \times 10^{-4}$	5603234	$3.115 imes 10^{-5}$	$1.000 imes 10^{-4}$	$3.419 imes 10^{-9}$	0.894	$8.593 imes10^{-5}$	$1.171 imes10^{-4}$
scene albedo [1]	0.646 ± 0.285	5603234	0.492	0.655	$1.072 imes 10^{-2}$	4.46	0.390	0.883
scene albedo precision [1]	$(1.136 \pm 1.209) \times 10^{-4}$	5603234	$9.117 imes10^{-5}$	$6.560 imes10^{-5}$	$1.140 imes10^{-5}$	$2.025 imes 10^{-3}$	4.192×10^{-5}	$1.331 imes 10^{-4}$
apparent scene pressure [hPa]	801 ± 155	5603234	251	836	130	1.052×10^3	686	937
apparent scene pressure precision [hPa]	0.378 ± 0.123	5603234	0.141	0.348	0.166	5.76	0.291	0.433
chi square [1]	$(0.347 \pm 5.683) \times 10^5$	5603234	2.445×10^4	$2.507 imes 10^4$	389	$4.098 imes 10^8$	$1.524 imes 10^4$	$3.969 imes 10^4$
number of iterations [1]	3.95 ± 1.04	5603234	1.000	4.00	1.000	14.0	3.00	4.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(2.185\pm 6.655) imes 10^{-9}$	5603234	$5.404 imes 10^{-9}$	2.607×10^{-9}	-1.760×10^{-6}	$1.253 imes10^{-6}$	$-2.345 imes 10^{-10}$	$5.170 imes 10^{-9}$
fluorescence precision [mol $s^{-1} m^{-2} nm^{-1} sr^{-1}$]	$(2.015\pm0.623)\times10^{-9}$	5603234	$7.512 imes 10^{-10}$	2.016×10^{-9}	5.410×10^{-10}	5.619×10^{-9}	1.609×10^{-9}	2.360×10^{-9}
chi square fluorescence [1]	$(0.615 \pm 1.133) \times 10^5$	5603234	$5.695 imes 10^4$	$1.343 imes 10^4$	154	$1.769 imes 10^6$	3.472×10^{3}	$6.043 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	5603234	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	5603234	0.0	50.0	48.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(2.903 \pm 4.624) \times 10^{-3}$	5603234	4.168×10^{-3}	2.904×10^{-3}	-5.626×10^{-2}	6.398×10^{-2}	$8.188 imes 10^{-4}$	4.987×10^{-3}

Granule outlines

Figure 1: Outline of the granules.

4 Input data monitoring

Figure 2: Input data per granule

5 Warnings and errors

Figure 3: Fraction of pixels with specific warnings and errors during processing

6 World maps

Figure 4: Map of "Cloud pressure" for 2025-03-27 to 2025-03-28

Figure 5: Map of "Cloud fraction" for 2025-03-27 to 2025-03-28

Figure 6: Map of "Scene albedo" for 2025-03-27 to 2025-03-28

Figure 7: Map of "Apparent scene pressure" for 2025-03-27 to 2025-03-28

2025-03-27

Figure 8: Map of "Fluorescence" for 2025-03-27 to 2025-03-28

Figure 9: Map of the number of observations for 2025-03-27 to 2025-03-28

7 Zonal average

Figure 10: Zonal average of "QA value" for 2025-03-27 to 2025-03-28.

Figure 11: Zonal average of "Cloud pressure" for 2025-03-27 to 2025-03-28.

Figure 12: Zonal average of "Cloud pressure precision" for 2025-03-27 to 2025-03-28.

Figure 13: Zonal average of "Cloud fraction" for 2025-03-27 to 2025-03-28.

Figure 14: Zonal average of "Cloud fraction precision" for 2025-03-27 to 2025-03-28.

Figure 15: Zonal average of "Scene albedo" for 2025-03-27 to 2025-03-28.

Figure 16: Zonal average of "Scene albedo precision" for 2025-03-27 to 2025-03-28.

Figure 17: Zonal average of "Apparent scene pressure" for 2025-03-27 to 2025-03-28.

Figure 18: Zonal average of "Apparent scene pressure precision" for 2025-03-27 to 2025-03-28.

Figure 19: Zonal average of " χ^2 " for 2025-03-27 to 2025-03-28.

Figure 20: Zonal average of "Number of iterations" for 2025-03-27 to 2025-03-28.

Figure 21: Zonal average of "Fluorescence" for 2025-03-27 to 2025-03-28.

Figure 22: Zonal average of "Fluorescence precision" for 2025-03-27 to 2025-03-28.

Figure 23: Zonal average of " χ^2 of fluorescence retrieval" for 2025-03-27 to 2025-03-28.

Figure 24: Zonal average of "Degrees of freedom for signal of fluorescence retrieval" for 2025-03-27 to 2025-03-28.

Figure 25: Zonal average of "Number of points in the spectrum" for 2025-03-27 to 2025-03-28.

Figure 26: Zonal average of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-03-27 to 2025-03-28.

8 Histograms

The definitions of the parameters given in this section can be found in section 2.

Figure 27: Histogram of "QA value" for 2025-03-27 to 2025-03-28

Figure 28: Histogram of "Cloud pressure" for 2025-03-27 to 2025-03-28

Figure 29: Histogram of "Cloud pressure precision" for 2025-03-27 to 2025-03-28

Figure 30: Histogram of "Cloud fraction" for 2025-03-27 to 2025-03-28

Figure 31: Histogram of "Cloud fraction precision" for 2025-03-27 to 2025-03-28

Figure 32: Histogram of "Scene albedo" for 2025-03-27 to 2025-03-28

Figure 33: Histogram of "Scene albedo precision" for 2025-03-27 to 2025-03-28

Figure 34: Histogram of "Apparent scene pressure" for 2025-03-27 to 2025-03-28

Figure 35: Histogram of "Apparent scene pressure precision" for 2025-03-27 to 2025-03-28

Figure 36: Histogram of " χ^2 " for 2025-03-27 to 2025-03-28

Figure 37: Histogram of "Number of iterations" for 2025-03-27 to 2025-03-28

Figure 38: Histogram of "Fluorescence" for 2025-03-27 to 2025-03-28

Figure 39: Histogram of "Fluorescence precision" for 2025-03-27 to 2025-03-28

Figure 40: Histogram of " χ^2 of fluorescence retrieval" for 2025-03-27 to 2025-03-28

Figure 41: Histogram of "Degrees of freedom for signal of fluorescence retrieval" for 2025-03-27 to 2025-03-28

Figure 42: Histogram of "Number of points in the spectrum" for 2025-03-27 to 2025-03-28

Figure 43: Histogram of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-03-27 to 2025-03-28

9 Along track statistics

The TROPOMI instrument uses different binned detector rows for different viewing directions. In this section statistics are presented for each of the binned rows in the instrument.

Figure 44: Along track statistics of "QA value" for 2025-03-27 to 2025-03-28

Figure 45: Along track statistics of "Cloud pressure" for 2025-03-27 to 2025-03-28

Figure 46: Along track statistics of "Cloud pressure precision" for 2025-03-27 to 2025-03-28

Figure 47: Along track statistics of "Cloud fraction" for 2025-03-27 to 2025-03-28

Figure 48: Along track statistics of "Cloud fraction precision" for 2025-03-27 to 2025-03-28

Figure 49: Along track statistics of "Scene albedo" for 2025-03-27 to 2025-03-28

Figure 50: Along track statistics of "Scene albedo precision" for 2025-03-27 to 2025-03-28

Figure 51: Along track statistics of "Apparent scene pressure" for 2025-03-27 to 2025-03-28

Figure 52: Along track statistics of "Apparent scene pressure precision" for 2025-03-27 to 2025-03-28

Figure 53: Along track statistics of " χ^2 " for 2025-03-27 to 2025-03-28

Figure 54: Along track statistics of "Number of iterations" for 2025-03-27 to 2025-03-28

Figure 55: Along track statistics of "Fluorescence" for 2025-03-27 to 2025-03-28

Figure 56: Along track statistics of "Fluorescence precision" for 2025-03-27 to 2025-03-28

Figure 57: Along track statistics of " χ^2 of fluorescence retrieval" for 2025-03-27 to 2025-03-28

Figure 58: Along track statistics of "Degrees of freedom for signal of fluorescence retrieval" for 2025-03-27 to 2025-03-28

Figure 59: Along track statistics of "Number of points in the spectrum" for 2025-03-27 to 2025-03-28

Figure 60: Along track statistics of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-03-27 to 2025-03-28

10 Coincidence density

To investigate the relation between parameters scatter density plots are produced. These include some 'hidden' parameters, latitude and the solar- and viewing geometries, in addition to all configured parameters. All combinations of pairs of parameters are included *once*, in one direction alone.

Contents

1	Short Introduction	1
	1.1 The list of parameters	1
2	Definitions	1
3	Granule outlines	8
4	Input data monitoring	9
5	Warnings and errors	10
6	World maps	11
7	Zonal average	17
8	Histograms	34
9	Along track statistics	51
10	Coincidence density	68
11	Copyright information of 'PyCAMA'	68

List of Figures

1	Outline of the granules.	8
2	Input data per granule	9
3	Fraction of pixels with specific warnings and errors during processing	10
4	Map of "Cloud pressure" for 2025-03-27 to 2025-03-28	11
5	Map of "Cloud fraction" for 2025-03-27 to 2025-03-28	12
6	Map of "Scene albedo" for 2025-03-27 to 2025-03-28	13
7	Map of "Apparent scene pressure" for 2025-03-27 to 2025-03-28	14
8	Map of "Fluorescence" for 2025-03-27 to 2025-03-28	15
9	Map of the number of observations for 2025-03-27 to 2025-03-28	16
10	Zonal average of "QA value" for 2025-03-27 to 2025-03-28	17
11	Zonal average of "Cloud pressure" for 2025-03-27 to 2025-03-28.	18
12	Zonal average of "Cloud pressure precision" for 2025-03-27 to 2025-03-28	19
13	Zonal average of "Cloud fraction" for 2025-03-27 to 2025-03-28.	20
14	Zonal average of "Cloud fraction precision" for 2025-03-27 to 2025-03-28.	21
15	Zonal average of "Scene albedo" for 2025-03-27 to 2025-03-28	22
16	Zonal average of "Scene albedo precision" for 2025-03-27 to 2025-03-28	23
17	Zonal average of "Apparent scene pressure" for 2025-03-27 to 2025-03-28	24
18	Zonal average of "Apparent scene pressure precision" for 2025-03-27 to 2025-03-28	25
19	Zonal average of " χ^2 " for 2025-03-27 to 2025-03-28	26
20	Zonal average of "Number of iterations" for 2025-03-27 to 2025-03-28.	27
21	Zonal average of "Fluorescence" for 2025-03-27 to 2025-03-28	28
22	Zonal average of "Fluorescence precision" for 2025-03-27 to 2025-03-28	29
23	Zonal average of " χ^2 of fluorescence retrieval" for 2025-03-27 to 2025-03-28	30
24	Zonal average of "Degrees of freedom for signal of fluorescence retrieval" for 2025-03-27 to 2025-03-28.	31
25	Zonal average of "Number of points in the spectrum" for 2025-03-27 to 2025-03-28	32
26	Zonal average of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-03-27 to 2025-03-28	33
27	Histogram of "QA value" for 2025-03-27 to 2025-03-28	34
28	Histogram of "Cloud pressure" for 2025-03-27 to 2025-03-28	35
29	Histogram of "Cloud pressure precision" for 2025-03-27 to 2025-03-28	36

30	Histogram of "Cloud fraction" for 2025-03-27 to 2025-03-28	37
31	Histogram of "Cloud fraction precision" for 2025-03-27 to 2025-03-28	38
32	Histogram of "Scene albedo" for 2025-03-27 to 2025-03-28	39
33	Histogram of "Scene albedo precision" for 2025-03-27 to 2025-03-28	40
34	Histogram of "Apparent scene pressure" for 2025-03-27 to 2025-03-28	41
35	Histogram of "Apparent scene pressure precision" for 2025-03-27 to 2025-03-28	42
36	Histogram of " χ^2 " for 2025-03-27 to 2025-03-28	43
37	Histogram of "Number of iterations" for 2025-03-27 to 2025-03-28	44
38	Histogram of "Fluorescence" for 2025-03-27 to 2025-03-28	45
39	Histogram of "Fluorescence precision" for 2025-03-27 to 2025-03-28	46
40	Histogram of " χ^2 of fluorescence retrieval" for 2025-03-27 to 2025-03-28	47
41	Histogram of "Degrees of freedom for signal of fluorescence retrieval" for 2025-03-27 to 2025-03-28	48
42	Histogram of "Number of points in the spectrum" for 2025-03-27 to 2025-03-28	49
43	Histogram of "Spectral offset $(\lambda_{true} - \lambda_{nominal})$ " for 2025-03-27 to 2025-03-28	50
44	Along track statistics of "QA value" for 2025-03-27 to 2025-03-28	51
45	Along track statistics of "Cloud pressure" for 2025-03-27 to 2025-03-28	52
46	Along track statistics of "Cloud pressure precision" for 2025-03-27 to 2025-03-28	53
47	Along track statistics of "Cloud fraction" for 2025-03-27 to 2025-03-28	54
48	Along track statistics of "Cloud fraction precision" for 2025-03-27 to 2025-03-28	55
49	Along track statistics of "Scene albedo" for 2025-03-27 to 2025-03-28	56
50	Along track statistics of "Scene albedo precision" for 2025-03-27 to 2025-03-28	57
51	Along track statistics of "Apparent scene pressure" for 2025-03-27 to 2025-03-28	58
52	Along track statistics of "Apparent scene pressure precision" for 2025-03-27 to 2025-03-28	59
53	Along track statistics of " χ^2 " for 2025-03-27 to 2025-03-28	60
54	Along track statistics of "Number of iterations" for 2025-03-27 to 2025-03-28	61
55	Along track statistics of "Fluorescence" for 2025-03-27 to 2025-03-28	62
56	Along track statistics of "Fluorescence precision" for 2025-03-27 to 2025-03-28	63
57	Along track statistics of " χ^2 of fluorescence retrieval" for 2025-03-27 to 2025-03-28	64
58	Along track statistics of "Degrees of freedom for signal of fluorescence retrieval" for 2025-03-27 to 2025-03-28	65
59	Along track statistics of "Number of points in the spectrum" for 2025-03-27 to 2025-03-28	66
60	Along track statistics of "Spectral offset $(\lambda_{true} - \lambda_{nominal})$ " for 2025-03-27 to 2025-03-28	67

List of Tables

1	Parameterlist and basic statistics for the analysis
2	Percentile ranges
3	Parameterlist and basic statistics for the analysis for observations in the northern hemisphere
4	Parameterlist and basic statistics for the analysis for observations in the southern hemisphere
5	Parameterlist and basic statistics for the analysis for observations over water
6	Parameterlist and basic statistics for the analysis for observations over land

11 Copyright information of 'PyCAMA'

Copyright © 2005-2023, Maarten Sneep (KNMI).

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
- 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

This software is provided by the copyright holders and contributors "as is" and any express or implied warranties, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose are disclaimed. In no event shall the copyright holder or contributors be liable for any direct, indirect, incidental, special, exemplary, or consequential damages (including, but not limited to, procurement of substitute goods or services; loss of use, data, or profits; or business interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence or otherwise) arising in any way out of the use of this software, even if advised of the possibility of such damage.

Maarten Sneep (maarten.sneep@knmi.nl).