PyCAMA report generated by tropl2-proc

tropl2-proc

2025-04-01 (06:00)

1 Short Introduction

1.1 The list of parameters

You may want to keep the list given in table 1 at hand when viewing the results.

2 Definitions

The averages shown here are *unweighed* averages:

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i \tag{1}$$

with N the number of observations in the dataset.

The spread of the measurements is indicated with the variance V(x), or rather the standard deviation $\sigma(x) = \sqrt{V(x)}$.

$$V(x) = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2$$
(2)

We also report the more robust statistics median, minimum, maximum, various percentiles and inter quartile range.

The median m is the value of parameter x for which half of the observations of x is smaller than m:

$$P(x \le m) = P(x \ge m) = \int_{-\infty}^{m} f(x) \, \mathrm{d}x = \frac{1}{2}$$
(3)

with f(x) the probability density function.

The median is a special case of a percentile. Instead of $\frac{1}{2}$ in equation 3, other threshold values can be used. We report results for 1%, 5%, 10%, 15.9%, 25%, 75%, 84.1%, 90%, 95% and 99%. The inter quartile range is the difference between the 75% and 25% percentiles. Similarly the minimum and maximum values correspond to the 0% and 100% percentiles respectively.

For normally distributed parameters the mean and median are the same, while the $\mu \pm \sigma$ values and the 15.9% and 84.1% percentiles coincide.

To get a measure for the relation of one variable $x_{(k)}$ with another $x_{(l)}$, we calculate the covariance matrix C_{kl} .

$$C_{kl} = C(x_{(k)}, x_{(l)}) = \frac{1}{N-1} \sum_{i=1}^{N} (x_{(k),i} - \overline{x_{(k)}}) (x_{(l),i} - \overline{x_{(l)}})$$
(4)

Rather than a dimensionally dependent covariance, it is often easier to interpret a correlation matrix R_{kl} , a matrix of Pearson's *r* coefficients:

$$R_{kl} = R(x_{(k)}, x_{(l)}) = \frac{C_{kl}}{\sqrt{C_{kk}C_{ll}}} = \frac{C_{kl}}{\sqrt{V(x_k)V(x_l)}}$$
(5)

The diagonal elements of the covariance matrix are the variances of the elements, $V(x_{(k)}) = C_{kk}$ and obviously $R_{kk} = 1$.

Table 1: Parameterlist and basic statistics for t	he ana	lysis
---	--------	-------

	Table 1: Parameter	list and basic	statistics for the a	nalysis			
Variable	mean $\pm \sigma$	Count	Mode	IQR	Median	Minimum	Maximum
qa value [1]	0.932 ± 0.164	20078777	0.995	0.0	1.000	0.350	1.000
cloud pressure crb [hPa]	790 ± 193	20078777	1.005×10^{3}	272	848	130	1.062×10^{3}
cloud pressure crb precision [hPa]	2.31 ± 8.18	20078777	0.750	1.20	0.589	$4.883 imes10^{-4}$	1.441×10^{3}
cloud fraction crb [1]	0.458 ± 0.380	20078777	0.996	0.786	0.365	0.0	1.000
cloud fraction crb precision [1]	$(2.082 \pm 14.627) \times 10^{-4}$	20078777	$2.500 imes 10^{-4}$	$5.505 imes10^{-5}$	8.170×10^{-5}	7.042×10^{-9}	1.17
scene albedo [1]	0.456 ± 0.324	20078777	1.500×10^{-2}	0.578	0.426	-2.019×10^{-3}	3.76
scene albedo precision [1]	$(8.480 \pm 10.128) \times 10^{-5}$	20078777	$2.500 imes 10^{-4}$	$5.909 imes10^{-5}$	$5.306 imes10^{-5}$	1.060×10^{-5}	$2.817 imes10^{-3}$
apparent scene pressure [hPa]	824 ± 169	20078777	1.008×10^3	230	876	130	1.063×10^{3}
apparent scene pressure precision [hPa]	0.923 ± 1.636	20078777	0.500	0.426	0.429	0.140	60.7
chi square [1]	$(0.233 \pm 3.476) \times 10^5$	20078777	0.150	$2.384 imes 10^4$	$1.570 imes 10^4$	50.2	3.102×10^8
number of iterations [1]	3.39 ± 1.06	20078777	3.23	1.000	3.00	1.000	14.0
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(8.196 \pm 60.054) \times 10^{-10}$	20078777	2.500×10^{-10}	$5.068 imes 10^{-9}$	9.286×10^{-10}	-2.072×10^{-6}	$1.494 imes 10^{-6}$
fluorescence precision [mol $s^{-1} m^{-2} nm^{-1} sr^{-1}$]	$(1.757 \pm 0.691) \times 10^{-9}$	20078777	$8.500 imes 10^{-10}$	$9.983 imes 10^{-10}$	1.695×10^{-9}	$4.453 imes 10^{-10}$	$5.812 imes 10^{-9}$
chi square fluorescence [1]	$(0.521 \pm 1.004) \times 10^5$	20078777	750	4.349×10^4	$1.398 imes 10^4$	115	$3.280 imes 10^6$
degrees of freedom fluorescence [1]	6.00 ± 0.00	20078777	5.95	0.0	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	20078777	49.7	0.0	50.0	44.0	50.0
wavelength calibration offset [nm]	$(2.868 \pm 8.419) \times 10^{-3}$	20078777	2.800×10^{-3}	5.668×10^{-3}	2.887×10^{-3}	-0.154	0.199

			Table 2:	Percentile rang	jes					
Variable	1 %	5%	10 %	15.9 %	25 %	75 %	84.1 %	90 %	95 %	99 %
qa value [1]	0.500	0.500	0.500	0.900	1.000	1.000	1.000	1.000	1.000	1.000
cloud pressure crb [hPa]	250	399	498	577	672	945	974	993	1.009×10^{3}	1.020×10^3
cloud pressure crb precision [hPa]	0.203	0.243	0.271	0.300	0.348	1.55	2.67	4.49	8.91	28.2
cloud fraction crb [1]	$1.149 imes 10^{-3}$	$1.098 imes10^{-2}$	$2.426 imes 10^{-2}$	4.451×10^{-2}	$8.851 imes10^{-2}$	0.875	1.000	1.000	1.000	1.000
cloud fraction crb precision [1]	$2.011 imes10^{-5}$	$2.324 imes10^{-5}$	$2.636 imes10^{-5}$	$3.095 imes10^{-5}$	$4.495 imes10^{-5}$	$1.000 imes 10^{-4}$	$1.233 imes10^{-4}$	$1.834 imes10^{-4}$	$4.630 imes10^{-4}$	$2.526 imes 10^{-3}$
scene albedo [1]	$8.948 imes 10^{-3}$	$2.128 imes10^{-2}$	$3.959 imes10^{-2}$	$7.124 imes 10^{-2}$	0.155	0.733	0.842	0.905	0.971	1.13
scene albedo precision [1]	1.299×10^{-5}	1.543×10^{-5}	$1.912 imes 10^{-5}$	2.424×10^{-5}	3.262×10^{-5}	9.171×10^{-5}	$1.279 imes 10^{-4}$	1.776×10^{-4}	$2.777 imes 10^{-4}$	5.441×10^{-4}
apparent scene pressure [hPa]	343	478	566	638	728	957	981	997	1.010×10^{3}	1.020×10^{3}
apparent scene pressure precision [hPa]	0.214	0.245	0.268	0.289	0.320	0.746	1.20	1.93	3.41	8.04
chi square [1]	278	673	1.455×10^{3}	2.901×10^{3}	5.783×10^{3}	2.962×10^{4}	3.850×10^{4}	4.760×10^{4}	6.183×10^{4}	1.013×10^{5}
number of iterations [1]	2.00	2.00	2.00	3.00	3.00	4.00	4.00	5.00	5.00	7.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	-1.545×10^{-8}	-7.684×10^{-9}	-4.724×10^{-9}	-2.988×10^{-9}	-1.489×10^{-9}	3.580×10^{-9}	5.060×10^{-9}	6.499×10^{-9}	$8.603 imes 10^{-9}$	1.350×10^{-8}
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$7.488 imes 10^{-10}$	8.372×10^{-10}	9.146×10^{-10}	1.014×10^{-9}	1.194×10^{-9}	2.192×10^{-9}	2.454×10^{-9}	2.696×10^{-9}	3.036×10^{-9}	3.675×10^{-9}
chi square fluorescence [1]	392	924	1.746×10^{3}	2.821×10^{3}	4.849×10^{3}	4.834×10^{4}	8.997×10^{4}	1.446×10^{5}	2.481×10^{5}	5.046×10^{5}
degrees of freedom fluorescence [1]	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0
wavelength calibration offset [nm]	-2.450×10^{-2}	-9.418×10^{-3}	-4.515×10^{-3}	-1.974×10^{-3}	4.756×10^{-5}	5.715×10^{-3}	7.724×10^{-3}	$1.028 imes 10^{-2}$	$1.518 imes10^{-2}$	2.979×10^{-2}

Table	3: Parameterlist and basic s	statistics for	the analysis for	observations in	the northern hen	nisphere		
Variable	$ $ mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.909 ± 0.184	10797942	0.1000	1.000	0.350	1.000	0.900	1.000
cloud pressure crb [hPa]	811 ± 186	10797942	241	868	130	1.062×10^3	715	956
cloud pressure crb precision [hPa]	2.46 ± 8.48	10797942	1.34	0.637	$4.883 imes10^{-4}$	1.344×10^3	0.332	1.67
cloud fraction crb [1]	0.472 ± 0.401	10797942	0.915	0.344	0.0	1.000	$8.497 imes10^{-2}$	1.000
cloud fraction crb precision [1]	$(2.649 \pm 17.666) \times 10^{-4}$	10797942	$5.068 imes10^{-5}$	$9.687 imes10^{-5}$	$1.051 imes 10^{-8}$	0.538	$4.932 imes 10^{-5}$	$1.000 imes 10^{-4}$
scene albedo [1]	0.503 ± 0.334	10797942	0.607	0.491	$-1.925 imes 10^{-3}$	3.76	0.201	0.808
scene albedo precision [1]	$(8.874 \pm 10.830) \times 10^{-5}$	10797942	$6.454 imes10^{-5}$	5.356×10^{-5}	1.067×10^{-5}	$1.740 imes 10^{-3}$	$3.249 imes 10^{-5}$	$9.703 imes10^{-5}$
apparent scene pressure [hPa]	853 ± 149	10797942	190	900	130	1.063×10^3	778	967
apparent scene pressure precision [hPa]	0.734 ± 1.145	10797942	0.342	0.397	0.140	60.7	0.302	0.644
chi square [1]	$(0.308 \pm 4.726) \times 10^5$	10797942	$3.119 imes 10^4$	$2.110 imes 10^4$	74.7	3.102×10^8	$8.140 imes 10^3$	$3.933 imes 10^4$
number of iterations [1]	3.67 ± 1.12	10797942	1.000	3.00	1.000	14.0	3.00	4.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.466 \pm 6.510) \times 10^{-9}$	10797942	$5.749 imes10^{-9}$	1.597×10^{-9}	$-2.072 imes10^{-6}$	$1.494 imes10^{-6}$	-1.203×10^{-9}	4.545×10^{-9}
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.860 \pm 0.699) \times 10^{-9}$	10797942	$9.770 imes 10^{-10}$	$1.815 imes 10^{-9}$	$4.453 imes 10^{-10}$	$5.812 imes 10^{-9}$	1.295×10^{-9}	$2.272 imes 10^{-9}$
chi square fluorescence [1]	$(0.497 \pm 0.964) \times 10^5$	10797942	$4.074 imes 10^4$	1.448×10^4	115	3.280×10^{6}	5.931×10^{3}	$4.667 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	10797942	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	10797942	0.0	50.0	44.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(2.831 \pm 7.174) \times 10^{-3}$	10797942	4.870×10^{-3}	2.796×10^{-3}	-8.300×10^{-2}	$9.278 imes 10^{-2}$	$3.670 imes 10^{-4}$	$5.237 imes 10^{-3}$

Table	4: Parameterlist and basic st	atistics for	the analysis for	observations in	the southern hem	isphere		
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.958 ± 0.130	9280835	0.0	1.000	0.350	1.000	1.000	1.000
cloud pressure crb [hPa]	766 ± 198	9280835	300	821	130	1.034×10^{3}	625	926
cloud pressure crb precision [hPa]	2.14 ± 7.83	9280835	1.03	0.554	5.005×10^{-3}	1.441×10^{3}	0.364	1.39
cloud fraction crb [1]	0.441 ± 0.354	9280835	0.666	0.383	0.0	1.000	$9.396 imes 10^{-2}$	0.760
cloud fraction crb precision [1]	$(1.421 \pm 9.950) \times 10^{-4}$	9280835	$5.897 imes10^{-5}$	$7.251 imes 10^{-5}$	$7.042 imes 10^{-9}$	1.17	$4.103 imes 10^{-5}$	$1.000 imes 10^{-4}$
scene albedo [1]	0.402 ± 0.304	9280835	0.519	0.370	$-2.019 imes10^{-3}$	3.72	0.113	0.632
scene albedo precision [1]	$(8.022 \pm 9.224) \times 10^{-5}$	9280835	$5.393 imes 10^{-5}$	$5.255 imes 10^{-5}$	1.060×10^{-5}	2.817×10^{-3}	3.276×10^{-5}	$8.669 imes10^{-5}$
apparent scene pressure [hPa]	791 ± 183	9280835	277	845	130	1.034×10^{3}	661	938
apparent scene pressure precision [hPa]	1.14 ± 2.04	9280835	0.573	0.470	0.162	59.3	0.348	0.921
chi square [1]	$(0.145 \pm 0.371) \times 10^5$	9280835	$1.686 imes 10^4$	$1.177 imes 10^4$	50.2	$2.705 imes 10^7$	4.033×10^{3}	$2.089 imes 10^4$
number of iterations [1]	3.07 ± 0.88	9280835	0.0	3.00	1.000	14.0	3.00	3.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(6.697 \pm 525.935) \times 10^{-11}$	9280835	$4.274 imes 10^{-9}$	3.829×10^{-10}	$-1.136 imes 10^{-6}$	$1.050 imes 10^{-6}$	-1.764×10^{-9}	2.511×10^{-9}
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.636 \pm 0.661) \times 10^{-9}$	9280835	9.434×10^{-10}	$1.539 imes 10^{-9}$	$5.629 imes 10^{-10}$	$5.718 imes10^{-9}$	1.093×10^{-9}	$2.036 imes 10^{-9}$
chi square fluorescence [1]	$(0.548 \pm 1.048) \times 10^5$	9280835	$4.687 imes 10^4$	1.324×10^4	116	2.031×10^6	3.629×10^{3}	$5.050 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	9280835	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	9280835	0.0	50.0	48.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(2.911 \pm 9.667) \times 10^{-3}$	9280835	6.845×10^{-3}	3.030×10^{-3}	-0.154	0.199	$-4.569 imes 10^{-4}$	$6.388 imes 10^{-3}$

	Table 5: Parameterlist and	d basic stati	stics for the anal	ysis for observa	tions over water			
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.957 ± 0.123	13220421	0.0	1.000	0.350	1.000	1.000	1.000
cloud pressure crb [hPa]	806 ± 190	13220421	258	870	130	1.062×10^{3}	695	952
cloud pressure crb precision [hPa]	2.23 ± 8.27	13220421	1.13	0.601	$4.883 imes10^{-4}$	1.344×10^3	0.364	1.49
cloud fraction crb [1]	0.428 ± 0.362	13220421	0.686	0.342	0.0	1.000	7.918×10^{-2}	0.766
cloud fraction crb precision [1]	$(1.852 \pm 13.771) \times 10^{-4}$	13220421	$6.824 imes10^{-5}$	6.210×10^{-5}	$1.051 imes 10^{-8}$	0.538	3.176×10^{-5}	$1.000 imes 10^{-4}$
scene albedo [1]	0.381 ± 0.320	13220421	0.574	0.316	$-2.019 imes 10^{-3}$	2.88	$7.582 imes 10^{-2}$	0.650
scene albedo precision [1]	$(8.000 \pm 9.955) \times 10^{-5}$	13220421	$6.391 imes10^{-5}$	$5.089 imes10^{-5}$	1.060×10^{-5}	$2.817 imes10^{-3}$	2.515×10^{-5}	$8.906 imes 10^{-5}$
apparent scene pressure [hPa]	828 ± 174	13220421	228	884	130	1.063×10^{3}	735	964
apparent scene pressure precision [hPa]	1.21 ± 1.95	13220421	0.790	0.542	0.163	60.7	0.358	1.15
chi square [1]	$(0.174 \pm 2.560) \times 10^5$	13220421	$1.949 imes 10^4$	$1.015 imes 10^4$	50.2	$1.843 imes 10^8$	$3.093 imes 10^3$	$2.258 imes 10^4$
number of iterations [1]	3.14 ± 0.98	13220421	0.0	3.00	1.000	14.0	3.00	3.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(3.375 \pm 54.298) \times 10^{-10}$	13220421	$4.302 imes 10^{-9}$	4.401×10^{-10}	-2.072×10^{-6}	$1.480 imes10^{-6}$	-1.576×10^{-9}	2.726×10^{-9}
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.579 \pm 0.654) \times 10^{-9}$	13220421	$8.762 imes 10^{-10}$	$1.447 imes 10^{-9}$	$4.453 imes 10^{-10}$	$5.645 imes 10^{-9}$	$1.058 imes10^{-9}$	1.935×10^{-9}
chi square fluorescence [1]	$(0.389 \pm 0.809) \times 10^5$	13220421	3.209×10^4	$1.203 imes 10^4$	115	$3.280 imes 10^6$	4.517×10^{3}	3.661×10^{4}
degrees of freedom fluorescence [1]	6.00 ± 0.00	13220421	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	13220421	0.0	50.0	47.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(2.842 \pm 9.639) \times 10^{-3}$	13220421	6.529×10^{-3}	2.885×10^{-3}	-0.154	0.199	-4.124×10^{-4}	6.117×10^{-3}

	Table 6: Parameterlist an	d basic stat	tistics for the ana	alysis for observ	vations over land			
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.863 ± 0.226	5037019	0.500	1.000	0.350	1.000	0.500	1.000
cloud pressure crb [hPa]	752 ± 191	5037019	271	783	130	1.054×10^{3}	638	909
cloud pressure crb precision [hPa]	2.46 ± 8.02	5037019	1.36	0.570	$6.714 imes10^{-4}$	1.441×10^{3}	0.325	1.68
cloud fraction crb [1]	0.525 ± 0.411	5037019	0.894	0.443	0.0	1.000	0.106	1.000
cloud fraction crb precision [1]	$(2.730 \pm 16.027) \times 10^{-4}$	5037019	$3.110 imes 10^{-5}$	$1.000 imes 10^{-4}$	$7.042 imes 10^{-9}$	0.592	$8.003 imes 10^{-5}$	$1.111 imes10^{-4}$
scene albedo [1]	0.617 ± 0.283	5037019	0.508	0.591	$1.715 imes10^{-2}$	3.76	0.360	0.869
scene albedo precision [1]	$(1.025\pm1.130)\times10^{-4}$	5037019	7.214×10^{-5}	$5.733 imes 10^{-5}$	$1.371 imes 10^{-5}$	$1.374 imes 10^{-3}$	$4.003 imes 10^{-5}$	1.122×10^{-4}
apparent scene pressure [hPa]	805 ± 156	5037019	233	842	130	1.053×10^{3}	702	936
apparent scene pressure precision [hPa]	0.375 ± 0.119	5037019	0.141	0.348	0.140	4.51	0.290	0.431
chi square [1]	$(0.329 \pm 4.445) \times 10^5$	5037019	$2.379 imes 10^4$	$2.458 imes 10^4$	676	3.102×10^{8}	1.540×10^{4}	$3.919 imes 10^4$
number of iterations [1]	3.91 ± 1.02	5037019	1.000	4.00	1.000	14.0	3.00	4.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.632\pm 6.553) imes 10^{-9}$	5037019	$5.990 imes 10^{-9}$	$2.223 imes 10^{-9}$	$-1.374 imes 10^{-6}$	$1.426 imes 10^{-6}$	-1.112×10^{-9}	$4.878 imes10^{-9}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(2.057\pm0.618) imes10^{-9}$	5037019	$7.243 imes 10^{-10}$	$2.051 imes 10^{-9}$	$5.637 imes 10^{-10}$	$5.718 imes10^{-9}$	$1.678 imes10^{-9}$	$2.402 imes 10^{-9}$
chi square fluorescence [1]	$(0.721 \pm 1.212) \times 10^5$	5037019	$7.697 imes 10^4$	$1.774 imes 10^4$	152	$2.808 imes 10^6$	4.441×10^3	$8.140 imes10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	5037019	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	5037019	0.0	50.0	48.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(2.905 \pm 4.653) \times 10^{-3}$	5037019	4.210×10^{-3}	2.889×10^{-3}	-8.964×10^{-2}	7.692×10^{-2}	7.984×10^{-4}	$5.008 imes 10^{-3}$

Granule outlines

Figure 1: Outline of the granules.

4 Input data monitoring

Figure 2: Input data per granule

5 Warnings and errors

Figure 3: Fraction of pixels with specific warnings and errors during processing

6 World maps

Figure 4: Map of "Cloud pressure" for 2025-03-30 to 2025-03-30

Figure 5: Map of "Cloud fraction" for 2025-03-30 to 2025-03-30

Figure 6: Map of "Scene albedo" for 2025-03-30 to 2025-03-30

Figure 7: Map of "Apparent scene pressure" for 2025-03-30 to 2025-03-30

2025-03-30

Figure 8: Map of "Fluorescence" for 2025-03-30 to 2025-03-30

Figure 9: Map of the number of observations for 2025-03-30 to 2025-03-30

7 Zonal average

Figure 10: Zonal average of "QA value" for 2025-03-30 to 2025-03-30.

Figure 11: Zonal average of "Cloud pressure" for 2025-03-30 to 2025-03-30.

Figure 12: Zonal average of "Cloud pressure precision" for 2025-03-30 to 2025-03-30.

Figure 13: Zonal average of "Cloud fraction" for 2025-03-30 to 2025-03-30.

Figure 14: Zonal average of "Cloud fraction precision" for 2025-03-30 to 2025-03-30.

Figure 15: Zonal average of "Scene albedo" for 2025-03-30 to 2025-03-30.

Figure 16: Zonal average of "Scene albedo precision" for 2025-03-30 to 2025-03-30.

Figure 17: Zonal average of "Apparent scene pressure" for 2025-03-30 to 2025-03-30.

Figure 18: Zonal average of "Apparent scene pressure precision" for 2025-03-30 to 2025-03-30.

Figure 19: Zonal average of " χ^2 " for 2025-03-30 to 2025-03-30.

Figure 20: Zonal average of "Number of iterations" for 2025-03-30 to 2025-03-30.

Figure 21: Zonal average of "Fluorescence" for 2025-03-30 to 2025-03-30.

Figure 22: Zonal average of "Fluorescence precision" for 2025-03-30 to 2025-03-30.

Figure 23: Zonal average of " χ^2 of fluorescence retrieval" for 2025-03-30 to 2025-03-30.

Figure 24: Zonal average of "Degrees of freedom for signal of fluorescence retrieval" for 2025-03-30 to 2025-03-30.

Figure 25: Zonal average of "Number of points in the spectrum" for 2025-03-30 to 2025-03-30.

Figure 26: Zonal average of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-03-30 to 2025-03-30.

8 Histograms

The definitions of the parameters given in this section can be found in section 2.

Figure 27: Histogram of "QA value" for 2025-03-30 to 2025-03-30

Figure 28: Histogram of "Cloud pressure" for 2025-03-30 to 2025-03-30

Figure 29: Histogram of "Cloud pressure precision" for 2025-03-30 to 2025-03-30

Figure 30: Histogram of "Cloud fraction" for 2025-03-30 to 2025-03-30

Figure 31: Histogram of "Cloud fraction precision" for 2025-03-30 to 2025-03-30

Figure 32: Histogram of "Scene albedo" for 2025-03-30 to 2025-03-30

Figure 33: Histogram of "Scene albedo precision" for 2025-03-30 to 2025-03-30

Figure 34: Histogram of "Apparent scene pressure" for 2025-03-30 to 2025-03-30

Figure 35: Histogram of "Apparent scene pressure precision" for 2025-03-30 to 2025-03-30

Figure 36: Histogram of " χ^2 " for 2025-03-30 to 2025-03-30

Figure 37: Histogram of "Number of iterations" for 2025-03-30 to 2025-03-30

Figure 38: Histogram of "Fluorescence" for 2025-03-30 to 2025-03-30

Figure 39: Histogram of "Fluorescence precision" for 2025-03-30 to 2025-03-30

Figure 40: Histogram of " χ^2 of fluorescence retrieval" for 2025-03-30 to 2025-03-30

Figure 41: Histogram of "Degrees of freedom for signal of fluorescence retrieval" for 2025-03-30 to 2025-03-30

Figure 42: Histogram of "Number of points in the spectrum" for 2025-03-30 to 2025-03-30

Figure 43: Histogram of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-03-30 to 2025-03-30

9 Along track statistics

The TROPOMI instrument uses different binned detector rows for different viewing directions. In this section statistics are presented for each of the binned rows in the instrument.

Figure 44: Along track statistics of "QA value" for 2025-03-30 to 2025-03-30

Figure 45: Along track statistics of "Cloud pressure" for 2025-03-30 to 2025-03-30

Figure 46: Along track statistics of "Cloud pressure precision" for 2025-03-30 to 2025-03-30

Figure 47: Along track statistics of "Cloud fraction" for 2025-03-30 to 2025-03-30

Figure 48: Along track statistics of "Cloud fraction precision" for 2025-03-30 to 2025-03-30

Figure 49: Along track statistics of "Scene albedo" for 2025-03-30 to 2025-03-30

Figure 50: Along track statistics of "Scene albedo precision" for 2025-03-30 to 2025-03-30

Figure 51: Along track statistics of "Apparent scene pressure" for 2025-03-30 to 2025-03-30

Figure 52: Along track statistics of "Apparent scene pressure precision" for 2025-03-30 to 2025-03-30

Figure 53: Along track statistics of " χ^2 " for 2025-03-30 to 2025-03-30

Figure 54: Along track statistics of "Number of iterations" for 2025-03-30 to 2025-03-30

Figure 55: Along track statistics of "Fluorescence" for 2025-03-30 to 2025-03-30

Figure 56: Along track statistics of "Fluorescence precision" for 2025-03-30 to 2025-03-30

Figure 57: Along track statistics of " χ^2 of fluorescence retrieval" for 2025-03-30 to 2025-03-30

Figure 58: Along track statistics of "Degrees of freedom for signal of fluorescence retrieval" for 2025-03-30 to 2025-03-30

Figure 59: Along track statistics of "Number of points in the spectrum" for 2025-03-30 to 2025-03-30

Figure 60: Along track statistics of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-03-30 to 2025-03-30

10 Coincidence density

To investigate the relation between parameters scatter density plots are produced. These include some 'hidden' parameters, latitude and the solar- and viewing geometries, in addition to all configured parameters. All combinations of pairs of parameters are included *once*, in one direction alone.

Contents

1	Short Introduction	1
	1.1 The list of parameters	1
2	Definitions	1
3	Granule outlines	8
4	Input data monitoring	9
5	Warnings and errors	10
6	World maps	11
7	Zonal average	17
8	Histograms	34
9	Along track statistics	51
10	Coincidence density	68
11	Copyright information of 'PyCAMA'	68

List of Figures

1	Outline of the granules	8
2	Input data ner granule	9
3	Fraction of nivels with specific warnings and errors during processing	10
4	Map of "Cloud pressure" for 2025-03-30 to 2025-03-30	11
5	Map of "Cloud frection" for 2025-03-30 to 2025-03-30	12
6	Map of "Scene albedo" for 2025-03-30 to 2025-03-30	12
7	Map of "Sector about 101 $2025-05-50$ to $2025-03-50$ to $2025-03-30$	14
8	Map of "Fluorescence" for 2025-03-00 to 2025-05-50	15
0	Map of Thublescence for $2025-05-50$ to $2025-05-50$.	15
9 10	Topol average of " OA value" for 2025 03 20 to 2025 03 20	17
10	Zonal average of "Cloud processor" for 2025-03-00 to 2025-03-00.	10
11	Zonal average of Cloud pressure no civica? for 2025-05-50 to 2025-05-50.	10
12	Zonal average of Cloud pressure precision for 2025-05-50 to 2025-05-50.	19
15	Zonal average of Cloud fraction for 2025-05-50 to 2025-05-50.	20
14	Zonal average of "Cloud fraction precision" for 2025-03-30 to 2025-03-30.	21
15	Zonal average of "Scene albedo" for 2025-03-30 to 2025-03-30.	22
16	Zonal average of "Scene albedo precision" for 2025-03-30 to 2025-03-30.	23
17	Zonal average of "Apparent scene pressure" for 2025-03-30 to 2025-03-30.	24
18	Zonal average of "Apparent scene pressure precision" for 2025-03-30 to 2025-03-30.	25
19	Zonal average of " χ^2 " for 2025-03-30 to 2025-03-30	26
20	Zonal average of "Number of iterations" for 2025-03-30 to 2025-03-30.	27
21	Zonal average of "Fluorescence" for 2025-03-30 to 2025-03-30.	28
22	Zonal average of "Fluorescence precision" for 2025-03-30 to 2025-03-30.	29
23	Zonal average of " χ^2 of fluorescence retrieval" for 2025-03-30 to 2025-03-30	30
24	Zonal average of "Degrees of freedom for signal of fluorescence retrieval" for 2025-03-30 to 2025-03-30.	31
25	Zonal average of "Number of points in the spectrum" for 2025-03-30 to 2025-03-30.	32
26	Zonal average of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-03-30 to 2025-03-30.	33
27	Histogram of "QA value" for 2025-03-30 to 2025-03-30	34
28	Histogram of "Cloud pressure" for 2025-03-30 to 2025-03-30	35
29	Histogram of "Cloud pressure precision" for 2025-03-30 to 2025-03-30	36

30	Histogram of "Cloud fraction" for 2025-03-30 to 2025-03-30	37
31	Histogram of "Cloud fraction precision" for 2025-03-30 to 2025-03-30	38
32	Histogram of "Scene albedo" for 2025-03-30 to 2025-03-30	39
33	Histogram of "Scene albedo precision" for 2025-03-30 to 2025-03-30	40
34	Histogram of "Apparent scene pressure" for 2025-03-30 to 2025-03-30	41
35	Histogram of "Apparent scene pressure precision" for 2025-03-30 to 2025-03-30	42
36	Histogram of " χ^2 " for 2025-03-30 to 2025-03-30	43
37	Histogram of "Number of iterations" for 2025-03-30 to 2025-03-30	44
38	Histogram of "Fluorescence" for 2025-03-30 to 2025-03-30	45
39	Histogram of "Fluorescence precision" for 2025-03-30 to 2025-03-30	46
40	Histogram of " χ^2 of fluorescence retrieval" for 2025-03-30 to 2025-03-30	47
41	Histogram of "Degrees of freedom for signal of fluorescence retrieval" for 2025-03-30 to 2025-03-30	48
42	Histogram of "Number of points in the spectrum" for 2025-03-30 to 2025-03-30	49
43	Histogram of "Spectral offset $(\lambda_{true} - \lambda_{nominal})$ " for 2025-03-30 to 2025-03-30	50
44	Along track statistics of "QA value" for 2025-03-30 to 2025-03-30	51
45	Along track statistics of "Cloud pressure" for 2025-03-30 to 2025-03-30	52
46	Along track statistics of "Cloud pressure precision" for 2025-03-30 to 2025-03-30	53
47	Along track statistics of "Cloud fraction" for 2025-03-30 to 2025-03-30	54
48	Along track statistics of "Cloud fraction precision" for 2025-03-30 to 2025-03-30	55
49	Along track statistics of "Scene albedo" for 2025-03-30 to 2025-03-30	56
50	Along track statistics of "Scene albedo precision" for 2025-03-30 to 2025-03-30	57
51	Along track statistics of "Apparent scene pressure" for 2025-03-30 to 2025-03-30	58
52	Along track statistics of "Apparent scene pressure precision" for 2025-03-30 to 2025-03-30	59
53	Along track statistics of " χ^2 " for 2025-03-30 to 2025-03-30	60
54	Along track statistics of "Number of iterations" for 2025-03-30 to 2025-03-30	61
55	Along track statistics of "Fluorescence" for 2025-03-30 to 2025-03-30	62
56	Along track statistics of "Fluorescence precision" for 2025-03-30 to 2025-03-30	63
57	Along track statistics of " χ^2 of fluorescence retrieval" for 2025-03-30 to 2025-03-30	64
58	Along track statistics of "Degrees of freedom for signal of fluorescence retrieval" for 2025-03-30 to 2025-03-30	65
59	Along track statistics of "Number of points in the spectrum" for 2025-03-30 to 2025-03-30	66
60	Along track statistics of "Spectral offset $(\lambda_{true} - \lambda_{nominal})$ " for 2025-03-30 to 2025-03-30	67

List of Tables

1	Parameterlist and basic statistics for the analysis
2	Percentile ranges
3	Parameterlist and basic statistics for the analysis for observations in the northern hemisphere
4	Parameterlist and basic statistics for the analysis for observations in the southern hemisphere
5	Parameterlist and basic statistics for the analysis for observations over water
6	Parameterlist and basic statistics for the analysis for observations over land

11 Copyright information of 'PyCAMA'

Copyright © 2005-2023, Maarten Sneep (KNMI).

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
- 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

This software is provided by the copyright holders and contributors "as is" and any express or implied warranties, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose are disclaimed. In no event shall the copyright holder or contributors be liable for any direct, indirect, incidental, special, exemplary, or consequential damages (including, but not limited to, procurement of substitute goods or services; loss of use, data, or profits; or business interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence or otherwise) arising in any way out of the use of this software, even if advised of the possibility of such damage.

Maarten Sneep (maarten.sneep@knmi.nl).