PyCAMA report generated by tropl2-proc

tropl2-proc

2025-04-02 (03:15)

1 Short Introduction

1.1 The list of parameters

You may want to keep the list given in table 1 at hand when viewing the results.

2 Definitions

The averages shown here are unweighed averages:

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i \tag{1}$$

with N the number of observations in the dataset.

The spread of the measurements is indicated with the variance V(x), or rather the standard deviation $\sigma(x) = \sqrt{V(x)}$.

$$V(x) = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2$$
(2)

We also report the more robust statistics median, minimum, maximum, various percentiles and inter quartile range.

The median m is the value of parameter x for which half of the observations of x is smaller than m:

$$P(x \le m) = P(x \ge m) = \int_{-\infty}^{m} f(x) \, \mathrm{d}x = \frac{1}{2}$$
(3)

with f(x) the probability density function.

The median is a special case of a percentile. Instead of $\frac{1}{2}$ in equation 3, other threshold values can be used. We report results for 1%, 5%, 10%, 15.9%, 25%, 75%, 84.1%, 90%, 95% and 99%. The inter quartile range is the difference between the 75% and 25% percentiles. Similarly the minimum and maximum values correspond to the 0% and 100% percentiles respectively.

For normally distributed parameters the mean and median are the same, while the $\mu \pm \sigma$ values and the 15.9% and 84.1% percentiles coincide.

To get a measure for the relation of one variable $x_{(k)}$ with another $x_{(l)}$, we calculate the covariance matrix C_{kl} .

$$C_{kl} = C(x_{(k)}, x_{(l)}) = \frac{1}{N-1} \sum_{i=1}^{N} (x_{(k),i} - \overline{x_{(k)}}) (x_{(l),i} - \overline{x_{(l)}})$$
(4)

Rather than a dimensionally dependent covariance, it is often easier to interpret a correlation matrix R_{kl} , a matrix of Pearson's *r* coefficients:

$$R_{kl} = R(x_{(k)}, x_{(l)}) = \frac{C_{kl}}{\sqrt{C_{kk}C_{ll}}} = \frac{C_{kl}}{\sqrt{V(x_k)V(x_l)}}$$
(5)

The diagonal elements of the covariance matrix are the variances of the elements, $V(x_{(k)}) = C_{kk}$ and obviously $R_{kk} = 1$.

Table 1: Parameterlist and basic statistics for the ana	lysi	ls
---	------	----

	Table 1: Parameterl	ist and basic s	tatistics for the an	alysis			
Variable	mean $\pm \sigma$	Count	Mode	IQR	Median	Minimum	Maximum
qa value [1]	0.929 ± 0.166	23151705	0.995	0.0	1.000	0.350	1.000
cloud pressure crb [hPa]	790 ± 195	23151705	1.005×10^3	276	849	130	1.062×10^{3}
cloud pressure crb precision [hPa]	2.45 ± 9.17	23151705	0.750	1.21	0.590	$3.052 imes 10^{-4}$	1.386×10^3
cloud fraction crb [1]	0.462 ± 0.384	23151705	0.996	0.812	0.368	0.0	1.000
cloud fraction crb precision [1]	$(2.284 \pm 15.915) \times 10^{-4}$	23151705	$2.500 imes10^{-4}$	$5.818 imes10^{-5}$	7.965×10^{-5}	$6.205 imes 10^{-9}$	0.531
scene albedo [1]	0.454 ± 0.330	23151705	$1.500 imes10^{-2}$	0.607	0.426	$-1.025 imes10^{-2}$	3.62
scene albedo precision [1]	$(8.643 \pm 10.554) \times 10^{-5}$	23151705	$2.500 imes10^{-4}$	$6.172 imes 10^{-5}$	$5.292 imes 10^{-5}$	1.060×10^{-5}	9.415×10^{-3}
apparent scene pressure [hPa]	823 ± 170	23151705	$1.008 imes 10^3$	234	877	130	1.058×10^3
apparent scene pressure precision [hPa]	0.982 ± 1.819	23151705	0.500	0.475	0.436	$9.047 imes10^{-2}$	59.9
chi square [1]	$(0.227 \pm 2.915) \times 10^5$	23151705	0.150	$2.450 imes 10^4$	$1.500 imes 10^4$	47.5	$2.150 imes 10^8$
number of iterations [1]	3.41 ± 1.06	23151705	3.23	1.000	3.00	1.000	14.0
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(9.707 \pm 56.361) \times 10^{-10}$	23151705	$2.500 imes 10^{-10}$	$5.002 imes 10^{-9}$	1.007×10^{-9}	$-1.481 imes10^{-6}$	1.736×10^{-6}
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.741\pm0.699)\times10^{-9}$	23151705	$8.500 imes 10^{-10}$	$1.032 imes 10^{-9}$	1.675×10^{-9}	$4.366 imes 10^{-10}$	5.624×10^{-9}
chi square fluorescence [1]	$(0.478 \pm 0.945) \times 10^5$	23151705	750	$3.883 imes 10^4$	$1.355 imes 10^4$	107	$2.998 imes 10^6$
degrees of freedom fluorescence [1]	6.00 ± 0.00	23151705	5.95	0.0	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	23151705	49.7	0.0	50.0	46.0	50.0
wavelength calibration offset [nm]	$(2.860 \pm 8.477) \times 10^{-3}$	23151705	2.800×10^{-3}	5.621×10^{-3}	2.887×10^{-3}	-0.246	0.200

			Table 2:	Percentile rang	es					
Variable	1 %	5 %	10 %	15.9 %	25 %	75 %	84.1 %	90 %	95 %	99 %
qa value [1]	0.500	0.500	0.500	0.900	1.000	1.000	1.000	1.000	1.000	1.000
cloud pressure crb [hPa]	247	395	494	576	670	946	975	993	$1.008 imes 10^3$	1.019×10^3
cloud pressure crb precision [hPa]	0.196	0.241	0.269	0.297	0.344	1.56	2.70	4.61	9.19	31.0
cloud fraction crb [1]	$8.088 imes10^{-4}$	$1.032 imes 10^{-2}$	$2.297 imes10^{-2}$	$4.261 imes 10^{-2}$	$8.520 imes10^{-2}$	0.898	1.000	1.000	1.000	1.000
cloud fraction crb precision [1]	$2.011 imes 10^{-5}$	$2.306 imes 10^{-5}$	$2.590 imes10^{-5}$	$2.978 imes10^{-5}$	$4.182 imes 10^{-5}$	$1.000 imes 10^{-4}$	$1.214 imes10^{-4}$	$1.866 imes10^{-4}$	$5.089 imes10^{-4}$	$3.073 imes 10^{-3}$
scene albedo [1]	8.348×10^{-3}	$1.978 imes10^{-2}$	3.621×10^{-2}	$6.372 imes 10^{-2}$	0.136	0.743	0.844	0.904	0.968	1.13
scene albedo precision [1]	1.301×10^{-5}	1.530×10^{-5}	1.862×10^{-5}	2.352×10^{-5}	3.171×10^{-5}	9.344×10^{-5}	$1.318 imes10^{-4}$	$1.849 imes 10^{-4}$	$2.879 imes10^{-4}$	$5.605 imes 10^{-4}$
apparent scene pressure [hPa]	339	471	563	635	724	958	982	997	1.009×10^{3}	1.020×10^{3}
apparent scene pressure precision [hPa]	0.214	0.245	0.268	0.289	0.319	0.794	1.30	2.11	3.72	8.44
chi square [1]	256	605	1.278×10^{3}	2.554×10^{3}	5.199×10^{3}	2.970×10^{4}	3.901×10^{4}	4.842×10^{4}	6.287×10^{4}	9.702×10^{4}
number of iterations [1]	2.00	2.00	2.00	3.00	3.00	4.00	4.00	5.00	5.00	7.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	-1.517×10^{-8}	-7.263×10^{-9}	-4.389×10^{-9}	-2.728×10^{-9}	-1.314×10^{-9}	3.688×10^{-9}	5.175×10^{-9}	6.619×10^{-9}	8.720×10^{-9}	1.354×10^{-8}
fluorescence precision [mol $s^{-1} m^{-2} nm^{-1} sr^{-1}$]	7.402×10^{-10}	8.241×10^{-10}	8.979×10^{-10}	9.876×10^{-10}	1.158×10^{-9}	2.190×10^{-9}	2.457×10^{-9}	2.698×10^{-9}	3.038×10^{-9}	3.655×10^{-9}
chi square fluorescence [1]	398	912	1.709×10^{3}	2.804×10^{3}	4.889×10^{3}	4.372×10^{4}	7.921×10^{4}	1.282×10^{5}	2.203×10^{5}	4.854×10^{5}
degrees of freedom fluorescence [1]	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0
wavelength calibration offset [nm]	-2.479×10^{-2}	-9.527×10^{-3}	-4.516×10^{-3}	-1.961×10^{-3}	5.953×10^{-5}	5.680×10^{-3}	7.674×10^{-3}	$1.024 imes 10^{-2}$	1.524×10^{-2}	$3.015 imes 10^{-2}$

Table	3: Parameterlist and basic	statistics for	the analysis for	observations in	the northern her	nisphere		
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.903 ± 0.189	12855278	0.1000	1.000	0.350	1.000	0.900	1.000
cloud pressure crb [hPa]	808 ± 187	12855278	244	866	130	1.062×10^{3}	710	954
cloud pressure crb precision [hPa]	2.38 ± 8.78	12855278	1.21	0.594	$3.052 imes 10^{-4}$	1.386×10^3	0.325	1.54
cloud fraction crb [1]	0.490 ± 0.401	12855278	0.909	0.389	0.0	1.000	$9.143 imes 10^{-2}$	1.000
cloud fraction crb precision [1]	$(2.995 \pm 19.520) \times 10^{-4}$	12855278	$5.297 imes10^{-5}$	$9.477 imes10^{-5}$	$8.575 imes10^{-9}$	0.531	$4.703 imes 10^{-5}$	$1.000 imes10^{-4}$
scene albedo [1]	0.508 ± 0.335	12855278	0.616	0.509	$-1.934 imes10^{-3}$	3.02	0.196	0.812
scene albedo precision [1]	$(9.262 \pm 11.520) \times 10^{-5}$	12855278	6.937×10^{-5}	$5.424 imes 10^{-5}$	$1.092 imes 10^{-5}$	1.711×10^{-3}	$3.211 imes 10^{-5}$	$1.015 imes10^{-4}$
apparent scene pressure [hPa]	849 ± 151	12855278	192	896	130	1.058×10^3	773	965
apparent scene pressure precision [hPa]	0.737 ± 1.143	12855278	0.352	0.400	0.151	54.0	0.302	0.654
chi square [1]	$(0.300 \pm 3.897) \times 10^5$	12855278	3.182×10^4	$2.051 imes 10^4$	72.8	$2.150 imes 10^8$	7.730×10^{3}	$3.955 imes 10^4$
number of iterations [1]	3.67 ± 1.13	12855278	1.000	3.00	1.000	14.0	3.00	4.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.671 \pm 5.822) \times 10^{-9}$	12855278	$5.625 imes 10^{-9}$	$1.766 imes 10^{-9}$	$-1.481 imes 10^{-6}$	$1.736 imes 10^{-6}$	$-9.770 imes 10^{-10}$	$4.648 imes 10^{-9}$
fluorescence precision [mol $s^{-1} m^{-2} nm^{-1} sr^{-1}$]	$(1.845 \pm 0.697) \times 10^{-9}$	12855278	$9.959 imes 10^{-10}$	$1.800 imes 10^{-9}$	$4.366 imes 10^{-10}$	$5.624 imes 10^{-9}$	1.270×10^{-9}	$2.266 imes 10^{-9}$
chi square fluorescence [1]	$(0.446 \pm 0.857) \times 10^5$	12855278	3.598×10^4	1.432×10^4	117	$2.998 imes 10^6$	6.011×10^{3}	$4.199 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	12855278	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	12855278	0.0	50.0	46.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(2.823\pm7.085)\times10^{-3}$	12855278	4.799×10^{-3}	2.814×10^{-3}	-9.634×10^{-2}	8.836×10^{-2}	4.052×10^{-4}	5.204×10^{-3}

Table	4: Parameterlist and basic st	tatistics for t	the analysis for	observations in t	he southern hem	isphere		
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.961 ± 0.125	10296427	0.0	1.000	0.350	1.000	1.000	1.000
cloud pressure crb [hPa]	767 ± 202	10296427	309	824	130	1.031×10^{3}	622	931
cloud pressure crb precision [hPa]	2.53 ± 9.64	10296427	1.22	0.585	9.582×10^{-3}	1.260×10^{3}	0.365	1.59
cloud fraction crb [1]	0.427 ± 0.358	10296427	0.677	0.349	0.0	1.000	$7.670 imes 10^{-2}$	0.753
cloud fraction crb precision [1]	$(1.396 \pm 9.612) \times 10^{-4}$	10296427	$6.282 imes 10^{-5}$	$6.998 imes10^{-5}$	$6.205 imes 10^{-9}$	0.356	$3.718 imes10^{-5}$	$1.000 imes 10^{-4}$
scene albedo [1]	0.387 ± 0.310	10296427	0.541	0.348	-1.025×10^{-2}	3.62	8.576×10^{-2}	0.626
scene albedo precision [1]	$(7.871 \pm 9.148) \times 10^{-5}$	10296427	$5.439 imes 10^{-5}$	$5.141 imes 10^{-5}$	1.060×10^{-5}	9.415×10^{-3}	$3.119 imes10^{-5}$	$8.559 imes 10^{-5}$
apparent scene pressure [hPa]	792 ± 187	10296427	286	848	130	1.031×10^3	658	944
apparent scene pressure precision [hPa]	1.29 ± 2.38	10296427	0.755	0.491	$9.047 imes10^{-2}$	59.9	0.350	1.10
chi square [1]	$(0.137 \pm 0.351) \times 10^5$	10296427	$1.693 imes 10^4$	$1.063 imes 10^4$	47.5	2.560×10^{7}	3.198×10^3	$2.012 imes 10^4$
number of iterations [1]	3.08 ± 0.86	10296427	0.0	3.00	1.000	14.0	3.00	3.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(9.643 \pm 526.621) \times 10^{-11}$	10296427	$4.122 imes 10^{-9}$	3.624×10^{-10}	$-1.105 imes10^{-6}$	$1.169 imes10^{-6}$	-1.655×10^{-9}	$2.467 imes10^{-9}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.611 \pm 0.680) \times 10^{-9}$	10296427	$9.778 imes 10^{-10}$	$1.494 imes 10^{-9}$	$5.364 imes 10^{-10}$	5.606×10^{-9}	$1.048 imes 10^{-9}$	2.026×10^{-9}
chi square fluorescence [1]	$(0.517 \pm 1.043) \times 10^5$	10296427	$4.264 imes 10^4$	$1.240 imes 10^4$	107	$2.114 imes 10^6$	3.564×10^{3}	$4.620 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	10296427	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	10296427	0.0	50.0	48.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(2.905 \pm 9.944) \times 10^{-3}$	10296427	6.950×10^{-3}	3.013×10^{-3}	-0.246	0.200	-5.344×10^{-4}	6.416×10^{-3}

	Table 5: Parameterlist and	d basic stati	stics for the anal	lysis for observa	tions over water			
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.952 ± 0.130	15931976	0.0	1.000	0.350	1.000	1.000	1.000
cloud pressure crb [hPa]	805 ± 190	15931976	263	870	130	1.039×10^{3}	689	952
cloud pressure crb precision [hPa]	2.42 ± 9.34	15931976	1.17	0.609	$4.272 imes 10^{-4}$	789	0.358	1.53
cloud fraction crb [1]	0.431 ± 0.369	15931976	0.713	0.335	0.0	1.000	7.523×10^{-2}	0.788
cloud fraction crb precision [1]	$(2.097 \pm 15.626) \times 10^{-4}$	15931976	6.901×10^{-5}	6.064×10^{-5}	8.575×10^{-9}	0.339	3.099×10^{-5}	$1.000 imes 10^{-4}$
scene albedo [1]	0.384 ± 0.325	15931976	0.594	0.312	$-1.025 imes 10^{-2}$	3.26	$7.214 imes 10^{-2}$	0.666
scene albedo precision [1]	$(8.151 \pm 10.398) \times 10^{-5}$	15931976	$6.574 imes10^{-5}$	$5.025 imes 10^{-5}$	1.060×10^{-5}	$9.415 imes 10^{-3}$	$2.492 imes 10^{-5}$	$9.065 imes10^{-5}$
apparent scene pressure [hPa]	827 ± 176	15931976	234	885	130	1.039×10^3	730	963
apparent scene pressure precision [hPa]	1.25 ± 2.14	15931976	0.832	0.545	0.164	59.9	0.353	1.19
chi square [1]	$(0.174 \pm 2.156) \times 10^5$	15931976	$1.996 imes 10^4$	9.896×10^{3}	47.5	$2.126 imes 10^8$	2.939×10^{3}	$2.290 imes 10^4$
number of iterations [1]	3.18 ± 0.99	15931976	0.0	3.00	1.000	14.0	3.00	3.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(4.751 \pm 50.258) \times 10^{-10}$	15931976	4.318×10^{-9}	$5.155 imes 10^{-10}$	-1.180×10^{-6}	1.169×10^{-6}	$-1.443 imes 10^{-9}$	2.875×10^{-9}
fluorescence precision [mol $s^{-1} m^{-2} nm^{-1} sr^{-1}$]	$(1.583 \pm 0.674) \times 10^{-9}$	15931976	9.372×10^{-10}	$1.438 imes 10^{-9}$	$4.366 imes 10^{-10}$	$5.624 imes 10^{-9}$	$1.041 imes 10^{-9}$	$1.978 imes10^{-9}$
chi square fluorescence [1]	$(0.374 \pm 0.774) \times 10^5$	15931976	3.062×10^4	$1.186 imes 10^4$	107	$2.494 imes10^6$	4.530×10^{3}	$3.515 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	15931976	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	15931976	0.0	50.0	48.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(2.837 \pm 9.592) \times 10^{-3}$	15931976	6.439×10^{-3}	2.877×10^{-3}	-0.246	0.200	-3.781×10^{-4}	6.061×10^{-3}

	Table 6: Parameterlist ar	nd basic sta	tistics for the an	alysis for obser	vations over land			
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.856 ± 0.229	5314344	0.500	1.000	0.350	1.000	0.500	1.000
cloud pressure crb [hPa]	749 ± 197	5314344	280	780	130	1.031×10^{3}	633	913
cloud pressure crb precision [hPa]	2.46 ± 8.72	5314344	1.30	0.547	$6.104 imes10^{-4}$	1.386×10^{3}	0.321	1.62
cloud fraction crb [1]	0.542 ± 0.412	5314344	0.889	0.502	0.0	1.000	0.111	1.000
cloud fraction crb precision [1]	$(2.974 \pm 17.744) \times 10^{-4}$	5314344	$3.179 imes 10^{-5}$	$1.000 imes 10^{-4}$	$6.205 imes10^{-9}$	0.531	$8.189 imes10^{-5}$	$1.137 imes10^{-4}$
scene albedo [1]	0.627 ± 0.283	5314344	0.502	0.620	$2.834 imes10^{-2}$	3.62	0.371	0.873
scene albedo precision [1]	$(1.061 \pm 1.164) \times 10^{-4}$	5314344	$7.554 imes 10^{-5}$	$6.020 imes 10^{-5}$	1.162×10^{-5}	$1.826 imes 10^{-3}$	$4.058 imes 10^{-5}$	$1.161 imes10^{-4}$
apparent scene pressure [hPa]	805 ± 156	5314344	235	841	130	1.039×10^3	700	936
apparent scene pressure precision [hPa]	0.375 ± 0.120	5314344	0.143	0.346	$9.047 imes 10^{-2}$	6.31	0.290	0.432
chi square [1]	$(0.335 \pm 3.924) \times 10^5$	5314344	$2.514 imes 10^4$	$2.490 imes 10^4$	374	$2.150 imes 10^8$	$1.518 imes10^4$	$4.032 imes 10^4$
number of iterations [1]	3.95 ± 1.02	5314344	1.000	4.00	1.000	14.0	3.00	4.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.945\pm 6.264) imes 10^{-9}$	5314344	$5.787 imes10^{-9}$	$2.417 imes 10^{-9}$	$-1.014 imes10^{-6}$	$1.149 imes10^{-6}$	$-6.925 imes 10^{-10}$	$5.095 imes 10^{-9}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(2.053 \pm 0.620) \times 10^{-9}$	5314344	$7.555 imes 10^{-10}$	2.055×10^{-9}	$5.364 imes 10^{-10}$	5.556×10^{-9}	1.664×10^{-9}	$2.420 imes 10^{-9}$
chi square fluorescence [1]	$(0.667 \pm 1.178) \times 10^5$	5314344	$6.645 imes 10^4$	$1.653 imes 10^4$	160	$2.114 imes10^6$	4.608×10^{3}	$7.106 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	5314344	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	5314344	0.0	50.0	48.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(2.899 \pm 4.578) \times 10^{-3}$	5314344	4.107×10^{-3}	2.913×10^{-3}	-5.673×10^{-2}	7.908×10^{-2}	$8.561 imes 10^{-4}$	4.963×10^{-3}

Granule outlines

Figure 1: Outline of the granules.

4 Input data monitoring

Figure 2: Input data per granule

5 Warnings and errors

Figure 3: Fraction of pixels with specific warnings and errors during processing

6 World maps

Figure 4: Map of "Cloud pressure" for 2025-03-31 to 2025-03-31

Figure 5: Map of "Cloud fraction" for 2025-03-31 to 2025-03-31

Figure 6: Map of "Scene albedo" for 2025-03-31 to 2025-03-31

Figure 7: Map of "Apparent scene pressure" for 2025-03-31 to 2025-03-31

2025-03-31

Figure 8: Map of "Fluorescence" for 2025-03-31 to 2025-03-31

Figure 9: Map of the number of observations for 2025-03-31 to 2025-03-31

7 Zonal average

Figure 10: Zonal average of "QA value" for 2025-03-31 to 2025-03-31.

Figure 11: Zonal average of "Cloud pressure" for 2025-03-31 to 2025-03-31.

Figure 12: Zonal average of "Cloud pressure precision" for 2025-03-31 to 2025-03-31.

Figure 13: Zonal average of "Cloud fraction" for 2025-03-31 to 2025-03-31.

Figure 14: Zonal average of "Cloud fraction precision" for 2025-03-31 to 2025-03-31.

Figure 15: Zonal average of "Scene albedo" for 2025-03-31 to 2025-03-31.

Figure 16: Zonal average of "Scene albedo precision" for 2025-03-31 to 2025-03-31.

Figure 17: Zonal average of "Apparent scene pressure" for 2025-03-31 to 2025-03-31.

Figure 18: Zonal average of "Apparent scene pressure precision" for 2025-03-31 to 2025-03-31.

Figure 19: Zonal average of " χ^2 " for 2025-03-31 to 2025-03-31.

Figure 20: Zonal average of "Number of iterations" for 2025-03-31 to 2025-03-31.

Figure 21: Zonal average of "Fluorescence" for 2025-03-31 to 2025-03-31.

Figure 22: Zonal average of "Fluorescence precision" for 2025-03-31 to 2025-03-31.

Figure 23: Zonal average of " χ^2 of fluorescence retrieval" for 2025-03-31 to 2025-03-31.

Figure 24: Zonal average of "Degrees of freedom for signal of fluorescence retrieval" for 2025-03-31 to 2025-03-31.

Figure 25: Zonal average of "Number of points in the spectrum" for 2025-03-31 to 2025-03-31.

Figure 26: Zonal average of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-03-31 to 2025-03-31.

8 Histograms

The definitions of the parameters given in this section can be found in section 2.

Figure 27: Histogram of "QA value" for 2025-03-31 to 2025-03-31

Figure 28: Histogram of "Cloud pressure" for 2025-03-31 to 2025-03-31

Figure 29: Histogram of "Cloud pressure precision" for 2025-03-31 to 2025-03-31

Figure 30: Histogram of "Cloud fraction" for 2025-03-31 to 2025-03-31

Figure 31: Histogram of "Cloud fraction precision" for 2025-03-31 to 2025-03-31

Figure 32: Histogram of "Scene albedo" for 2025-03-31 to 2025-03-31

Figure 33: Histogram of "Scene albedo precision" for 2025-03-31 to 2025-03-31

Figure 34: Histogram of "Apparent scene pressure" for 2025-03-31 to 2025-03-31

Figure 35: Histogram of "Apparent scene pressure precision" for 2025-03-31 to 2025-03-31

Figure 36: Histogram of " χ^2 " for 2025-03-31 to 2025-03-31

Figure 37: Histogram of "Number of iterations" for 2025-03-31 to 2025-03-31

Figure 38: Histogram of "Fluorescence" for 2025-03-31 to 2025-03-31

Figure 39: Histogram of "Fluorescence precision" for 2025-03-31 to 2025-03-31

Figure 40: Histogram of " χ^2 of fluorescence retrieval" for 2025-03-31 to 2025-03-31

Figure 41: Histogram of "Degrees of freedom for signal of fluorescence retrieval" for 2025-03-31 to 2025-03-31

Figure 42: Histogram of "Number of points in the spectrum" for 2025-03-31 to 2025-03-31

Figure 43: Histogram of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-03-31 to 2025-03-31

9 Along track statistics

The TROPOMI instrument uses different binned detector rows for different viewing directions. In this section statistics are presented for each of the binned rows in the instrument.

Figure 44: Along track statistics of "QA value" for 2025-03-31 to 2025-03-31

Figure 45: Along track statistics of "Cloud pressure" for 2025-03-31 to 2025-03-31

Figure 46: Along track statistics of "Cloud pressure precision" for 2025-03-31 to 2025-03-31

Figure 47: Along track statistics of "Cloud fraction" for 2025-03-31 to 2025-03-31

Figure 48: Along track statistics of "Cloud fraction precision" for 2025-03-31 to 2025-03-31

Figure 49: Along track statistics of "Scene albedo" for 2025-03-31 to 2025-03-31

Figure 50: Along track statistics of "Scene albedo precision" for 2025-03-31 to 2025-03-31

Figure 51: Along track statistics of "Apparent scene pressure" for 2025-03-31 to 2025-03-31

Figure 52: Along track statistics of "Apparent scene pressure precision" for 2025-03-31 to 2025-03-31

Figure 53: Along track statistics of " χ^2 " for 2025-03-31 to 2025-03-31

Figure 54: Along track statistics of "Number of iterations" for 2025-03-31 to 2025-03-31

Figure 55: Along track statistics of "Fluorescence" for 2025-03-31 to 2025-03-31

Figure 56: Along track statistics of "Fluorescence precision" for 2025-03-31 to 2025-03-31

Figure 57: Along track statistics of " χ^2 of fluorescence retrieval" for 2025-03-31 to 2025-03-31

Figure 58: Along track statistics of "Degrees of freedom for signal of fluorescence retrieval" for 2025-03-31 to 2025-03-31

Figure 59: Along track statistics of "Number of points in the spectrum" for 2025-03-31 to 2025-03-31

Figure 60: Along track statistics of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-03-31 to 2025-03-31

10 Coincidence density

To investigate the relation between parameters scatter density plots are produced. These include some 'hidden' parameters, latitude and the solar- and viewing geometries, in addition to all configured parameters. All combinations of pairs of parameters are included *once*, in one direction alone.

Contents

1	Short Introduction 1.1 The list of parameters	1 1
2	Definitions	1
3	Granule outlines	8
4	Input data monitoring	9
5	Warnings and errors	10
6	World maps	11
7	Zonal average	17
8	Histograms	34
9	Along track statistics	51
10	Coincidence density	68
11	Copyright information of 'PyCAMA'	68

List of Figures

1	Outline of the granules.	8
2	Input data per granule	9
3	Fraction of pixels with specific warnings and errors during processing	10
4	Map of "Cloud pressure" for 2025-03-31 to 2025-03-31	11
5	Map of "Cloud fraction" for 2025-03-31 to 2025-03-31	12
6	Map of "Scene albedo" for 2025-03-31 to 2025-03-31	13
7	Map of "Apparent scene pressure" for 2025-03-31 to 2025-03-31	14
8	Map of "Fluorescence" for 2025-03-31 to 2025-03-31	15
9	Map of the number of observations for 2025-03-31 to 2025-03-31	16
10	Zonal average of "QA value" for 2025-03-31 to 2025-03-31.	17
11	Zonal average of "Cloud pressure" for 2025-03-31 to 2025-03-31.	18
12	Zonal average of "Cloud pressure precision" for 2025-03-31 to 2025-03-31	19
13	Zonal average of "Cloud fraction" for 2025-03-31 to 2025-03-31.	20
14	Zonal average of "Cloud fraction precision" for 2025-03-31 to 2025-03-31.	21
15	Zonal average of "Scene albedo" for 2025-03-31 to 2025-03-31	22
16	Zonal average of "Scene albedo precision" for 2025-03-31 to 2025-03-31	23
17	Zonal average of "Apparent scene pressure" for 2025-03-31 to 2025-03-31.	24
18	Zonal average of "Apparent scene pressure precision" for 2025-03-31 to 2025-03-31	25
19	Zonal average of " χ^2 " for 2025-03-31 to 2025-03-31	26
20	Zonal average of "Number of iterations" for 2025-03-31 to 2025-03-31.	27
21	Zonal average of "Fluorescence" for 2025-03-31 to 2025-03-31.	28
22	Zonal average of "Fluorescence precision" for 2025-03-31 to 2025-03-31	29
23	Zonal average of " χ^2 of fluorescence retrieval" for 2025-03-31 to 2025-03-31	30
24	Zonal average of "Degrees of freedom for signal of fluorescence retrieval" for 2025-03-31 to 2025-03-31.	31
25	Zonal average of "Number of points in the spectrum" for 2025-03-31 to 2025-03-31.	32
26	Zonal average of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-03-31 to 2025-03-31	33
27	Histogram of "QA value" for 2025-03-31 to 2025-03-31	34
28	Histogram of "Cloud pressure" for 2025-03-31 to 2025-03-31	35
29	Histogram of "Cloud pressure precision" for 2025-03-31 to 2025-03-31	36

30	Histogram of "Cloud fraction" for 2025-03-31 to 2025-03-31	37
31	Histogram of "Cloud fraction precision" for 2025-03-31 to 2025-03-31	38
32	Histogram of "Scene albedo" for 2025-03-31 to 2025-03-31	39
33	Histogram of "Scene albedo precision" for 2025-03-31 to 2025-03-31	40
34	Histogram of "Apparent scene pressure" for 2025-03-31 to 2025-03-31	41
35	Histogram of "Apparent scene pressure precision" for 2025-03-31 to 2025-03-31	42
36	Histogram of " χ^2 " for 2025-03-31 to 2025-03-31	43
37	Histogram of "Number of iterations" for 2025-03-31 to 2025-03-31	44
38	Histogram of "Fluorescence" for 2025-03-31 to 2025-03-31	45
39	Histogram of "Fluorescence precision" for 2025-03-31 to 2025-03-31	46
40	Histogram of " χ^2 of fluorescence retrieval" for 2025-03-31 to 2025-03-31	47
41	Histogram of "Degrees of freedom for signal of fluorescence retrieval" for 2025-03-31 to 2025-03-31	48
42	Histogram of "Number of points in the spectrum" for 2025-03-31 to 2025-03-31	49
43	Histogram of "Spectral offset $(\lambda_{true} - \lambda_{nominal})$ " for 2025-03-31 to 2025-03-31	50
44	Along track statistics of "QA value" for 2025-03-31 to 2025-03-31	51
45	Along track statistics of "Cloud pressure" for 2025-03-31 to 2025-03-31	52
46	Along track statistics of "Cloud pressure precision" for 2025-03-31 to 2025-03-31	53
47	Along track statistics of "Cloud fraction" for 2025-03-31 to 2025-03-31	54
48	Along track statistics of "Cloud fraction precision" for 2025-03-31 to 2025-03-31	55
49	Along track statistics of "Scene albedo" for 2025-03-31 to 2025-03-31	56
50	Along track statistics of "Scene albedo precision" for 2025-03-31 to 2025-03-31	57
51	Along track statistics of "Apparent scene pressure" for 2025-03-31 to 2025-03-31	58
52	Along track statistics of "Apparent scene pressure precision" for 2025-03-31 to 2025-03-31	59
53	Along track statistics of " χ^2 " for 2025-03-31 to 2025-03-31	60
54	Along track statistics of "Number of iterations" for 2025-03-31 to 2025-03-31	61
55	Along track statistics of "Fluorescence" for 2025-03-31 to 2025-03-31	62
56	Along track statistics of "Fluorescence precision" for 2025-03-31 to 2025-03-31	63
57	Along track statistics of " χ^2 of fluorescence retrieval" for 2025-03-31 to 2025-03-31	64
58	Along track statistics of "Degrees of freedom for signal of fluorescence retrieval" for 2025-03-31 to 2025-03-31	65
59	Along track statistics of "Number of points in the spectrum" for 2025-03-31 to 2025-03-31	66
60	Along track statistics of "Spectral offset $(\lambda_{true} - \lambda_{nominal})$ " for 2025-03-31 to 2025-03-31	67

List of Tables

1	Parameterlist and basic statistics for the analysis
2	Percentile ranges
3	Parameterlist and basic statistics for the analysis for observations in the northern hemisphere
4	Parameterlist and basic statistics for the analysis for observations in the southern hemisphere
5	Parameterlist and basic statistics for the analysis for observations over water
6	Parameterlist and basic statistics for the analysis for observations over land

11 Copyright information of 'PyCAMA'

Copyright © 2005-2023, Maarten Sneep (KNMI).

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
- 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

This software is provided by the copyright holders and contributors "as is" and any express or implied warranties, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose are disclaimed. In no event shall the copyright holder or contributors be liable for any direct, indirect, incidental, special, exemplary, or consequential damages (including, but not limited to, procurement of substitute goods or services; loss of use, data, or profits; or business interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence or otherwise) arising in any way out of the use of this software, even if advised of the possibility of such damage.

Maarten Sneep (maarten.sneep@knmi.nl).