PyCAMA report generated by tropl2-proc

tropl2-proc

2025-04-04 (03:15)

1 Short Introduction

1.1 The list of parameters

You may want to keep the list given in table 1 at hand when viewing the results.

2 Definitions

The averages shown here are *unweighed* averages:

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i \tag{1}$$

with N the number of observations in the dataset.

The spread of the measurements is indicated with the variance V(x), or rather the standard deviation $\sigma(x) = \sqrt{V(x)}$.

$$V(x) = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2$$
(2)

We also report the more robust statistics median, minimum, maximum, various percentiles and inter quartile range.

The median m is the value of parameter x for which half of the observations of x is smaller than m:

$$P(x \le m) = P(x \ge m) = \int_{-\infty}^{m} f(x) \, \mathrm{d}x = \frac{1}{2}$$
(3)

with f(x) the probability density function.

The median is a special case of a percentile. Instead of $\frac{1}{2}$ in equation 3, other threshold values can be used. We report results for 1%, 5%, 10%, 15.9%, 25%, 75%, 84.1%, 90%, 95% and 99%. The inter quartile range is the difference between the 75% and 25% percentiles. Similarly the minimum and maximum values correspond to the 0% and 100% percentiles respectively.

For normally distributed parameters the mean and median are the same, while the $\mu \pm \sigma$ values and the 15.9% and 84.1% percentiles coincide.

To get a measure for the relation of one variable $x_{(k)}$ with another $x_{(l)}$, we calculate the covariance matrix C_{kl} .

$$C_{kl} = C(x_{(k)}, x_{(l)}) = \frac{1}{N-1} \sum_{i=1}^{N} (x_{(k),i} - \overline{x_{(k)}}) (x_{(l),i} - \overline{x_{(l)}})$$
(4)

Rather than a dimensionally dependent covariance, it is often easier to interpret a correlation matrix R_{kl} , a matrix of Pearson's *r* coefficients:

$$R_{kl} = R(x_{(k)}, x_{(l)}) = \frac{C_{kl}}{\sqrt{C_{kk}C_{ll}}} = \frac{C_{kl}}{\sqrt{V(x_k)V(x_l)}}$$
(5)

The diagonal elements of the covariance matrix are the variances of the elements, $V(x_{(k)}) = C_{kk}$ and obviously $R_{kk} = 1$.

	Table 1: Parameterl	ist and basic s	tatistics for the an	alysis			
Variable	mean $\pm \sigma$	Count	Mode	IQR	Median	Minimum	Maximum
qa value [1]	0.924 ± 0.172	23449835	0.995	0.0	1.000	0.350	1.000
cloud pressure crb [hPa]	798 ± 194	23449835	$1.005 imes 10^3$	265	864	130	$1.065 imes 10^3$
cloud pressure crb precision [hPa]	2.41 ± 9.49	23449835	0.750	1.15	0.571	$1.831 imes10^{-4}$	1.377×10^3
cloud fraction crb [1]	0.473 ± 0.387	23449835	0.996	0.843	0.390	0.0	1.000
cloud fraction crb precision [1]	$(2.240 \pm 16.958) \times 10^{-4}$	23449835	$2.500 imes10^{-4}$	$5.784 imes10^{-5}$	$8.066 imes10^{-5}$	$9.031 imes 10^{-9}$	0.629
scene albedo [1]	0.464 ± 0.334	23449835	1.500×10^{-2}	0.615	0.436	$-2.526 imes 10^{-3}$	3.42
scene albedo precision [1]	$(8.962 \pm 10.944) \times 10^{-5}$	23449835	$2.500 imes10^{-4}$	6.539×10^{-5}	$5.372 imes 10^{-5}$	1.049×10^{-5}	$7.576 imes10^{-3}$
apparent scene pressure [hPa]	830 ± 169	23449835	1.008×10^3	220	886	130	1.066×10^{3}
apparent scene pressure precision [hPa]	0.968 ± 1.777	23449835	0.500	0.453	0.435	0.161	58.6
chi square [1]	$(0.234 \pm 2.898) \times 10^5$	23449835	0.150	$2.513 imes 10^4$	$1.531 imes 10^4$	47.7	$3.107 imes 10^8$
number of iterations [1]	3.42 ± 1.08	23449835	3.23	1.000	3.00	1.000	14.0
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(9.964 \pm 57.469) \times 10^{-10}$	23449835	$2.500 imes 10^{-10}$	$5.165 imes10^{-9}$	$1.054 imes10^{-9}$	-1.688×10^{-6}	$1.534 imes10^{-6}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.741\pm0.697) imes10^{-9}$	23449835	$9.500 imes 10^{-10}$	1.035×10^{-9}	$1.672 imes 10^{-9}$	$4.449 imes 10^{-10}$	$5.736 imes10^{-9}$
chi square fluorescence [1]	$(0.488 \pm 0.974) \times 10^5$	23449835	750	$3.835 imes 10^4$	1.336×10^4	111	$2.727 imes 10^6$
degrees of freedom fluorescence [1]	6.00 ± 0.00	23449835	5.95	0.0	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	23449835	49.7	0.0	50.0	48.0	50.0
wavelength calibration offset [nm]	$(2.891 \pm 8.525) \times 10^{-3}$	23449835	$2.800 imes 10^{-3}$	5.656×10^{-3}	2.920×10^{-3}	-0.170	0.132

			Table 2:	Percentile rang	es					
Variable	1 %	5%	10 %	15.9 %	25 %	75 %	84.1 %	90 %	95 %	99 %
qa value [1]	0.500	0.500	0.500	0.900	1.000	1.000	1.000	1.000	1.000	1.000
cloud pressure crb [hPa]	249	400	498	579	685	950	976	994	1.009×10^{3}	1.020×10^3
cloud pressure crb precision [hPa]	0.201	0.244	0.270	0.299	0.345	1.49	2.60	4.40	8.65	30.5
cloud fraction crb [1]	$1.562 imes 10^{-5}$	$1.098 imes10^{-2}$	$2.422 imes 10^{-2}$	$4.459 imes10^{-2}$	$8.927 imes10^{-2}$	0.932	1.000	1.000	1.000	1.000
cloud fraction crb precision [1]	$2.015 imes 10^{-5}$	$2.305 imes 10^{-5}$	$2.607 imes10^{-5}$	$3.021 imes 10^{-5}$	$4.216 imes 10^{-5}$	$1.000 imes 10^{-4}$	$1.192 imes 10^{-4}$	$1.758 imes10^{-4}$	$4.474 imes10^{-4}$	2.765×10^{-3}
scene albedo [1]	$8.246 imes 10^{-3}$	$1.995 imes 10^{-2}$	$3.656 imes 10^{-2}$	$6.526 imes 10^{-2}$	0.144	0.760	0.858	0.912	0.974	1.15
scene albedo precision [1]	1.307×10^{-5}	1.542×10^{-5}	$1.885 imes10^{-5}$	$2.383 imes 10^{-5}$	3.209×10^{-5}	$9.748 imes 10^{-5}$	1.391×10^{-4}	$1.958 imes10^{-4}$	$3.038 imes 10^{-4}$	5.786×10^{-4}
apparent scene pressure [hPa]	343	477	565	642	740	960	982	997	1.010×10^{3}	1.020×10^{3}
apparent scene pressure precision [hPa]	0.215	0.246	0.268	0.289	0.320	0.774	1.26	2.08	3.65	8.36
chi square [1]	256	617	1.300×10^{3}	2.674×10^{3}	5.406×10^{3}	3.054×10^{4}	4.108×10^{4}	5.242×10^{4}	6.923×10^{4}	9.530×10^{4}
number of iterations [1]	2.00	2.00	2.00	3.00	3.00	4.00	4.00	5.00	5.00	6.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	-1.530×10^{-8}	-7.380×10^{-9}	-4.479×10^{-9}	-2.814×10^{-9}	-1.368×10^{-9}	$3.797 imes 10^{-9}$	5.302×10^{-9}	$6.747 imes 10^{-9}$	$8.829 imes 10^{-9}$	1.359×10^{-8}
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$7.468 imes 10^{-10}$	$8.299 imes 10^{-10}$	$9.028 imes 10^{-10}$	$9.915 imes 10^{-10}$	1.161×10^{-9}	2.196×10^{-9}	2.455×10^{-9}	$2.689 imes 10^{-9}$	3.011×10^{-9}	3.678×10^{-9}
chi square fluorescence [1]	409	970	1.813×10^{3}	2.929×10^{3}	5.048×10^{3}	4.340×10^{4}	7.884×10^4	1.307×10^{5}	2.355×10^{5}	4.890×10^{5}
degrees of freedom fluorescence [1]	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0
wavelength calibration offset [nm]	-2.488×10^{-2}	-9.588×10^{-3}	-4.548×10^{-3}	-1.966×10^{-3}	$7.569 imes 10^{-5}$	5.732×10^{-3}	7.736×10^{-3}	1.032×10^{-2}	$1.536 imes10^{-2}$	3.035×10^{-2}

Table 3	3: Parameterlist and basic s	tatistics for	the analysis for	observations in	the northern hen	nisphere		
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.892 ± 0.197	13259900	0.1000	1.000	0.350	1.000	0.900	1.000
cloud pressure crb [hPa]	817 ± 187	13259900	232	881	130	1.065×10^{3}	727	958
cloud pressure crb precision [hPa]	2.18 ± 8.44	13259900	1.07	0.555	$1.831 imes 10^{-4}$	1.377×10^{3}	0.326	1.39
cloud fraction crb [1]	0.510 ± 0.404	13259900	0.900	0.433	0.0	1.000	$9.993 imes 10^{-2}$	1.000
cloud fraction crb precision [1]	$(2.914 \pm 21.034) \times 10^{-4}$	13259900	$5.313 imes 10^{-5}$	$9.897 imes10^{-5}$	$1.562 imes10^{-8}$	0.629	$4.687 imes 10^{-5}$	$1.000 imes10^{-4}$
scene albedo [1]	0.523 ± 0.341	13259900	0.630	0.527	-1.500×10^{-3}	3.42	0.206	0.836
scene albedo precision [1]	$(9.776 \pm 12.102) \times 10^{-5}$	13259900	$7.591 imes10^{-5}$	$5.556 imes 10^{-5}$	$1.067 imes10^{-5}$	$1.714 imes 10^{-3}$	$3.240 imes 10^{-5}$	$1.083 imes10^{-4}$
apparent scene pressure [hPa]	855 ± 150	13259900	180	904	130	1.066×10^{3}	787	966
apparent scene pressure precision [hPa]	0.717 ± 1.115	13259900	0.330	0.399	0.165	49.6	0.304	0.634
chi square [1]	$(0.310 \pm 3.837) \times 10^5$	13259900	$3.389 imes 10^4$	2.142×10^4	69.3	$3.107 imes 10^8$	8.169×10^{3}	$4.206 imes 10^4$
number of iterations [1]	3.70 ± 1.15	13259900	1.000	3.00	1.000	14.0	3.00	4.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.729 \pm 5.802) \times 10^{-9}$	13259900	$5.906 imes 10^{-9}$	1.910×10^{-9}	$-1.455 imes 10^{-6}$	$1.534 imes 10^{-6}$	$-1.076 imes 10^{-9}$	4.830×10^{-9}
fluorescence precision [mol $s^{-1} m^{-2} nm^{-1} sr^{-1}$]	$(1.847 \pm 0.698) \times 10^{-9}$	13259900	1.000×10^{-9}	$1.801 imes 10^{-9}$	$4.449 imes 10^{-10}$	$5.711 imes 10^{-9}$	$1.271 imes10^{-9}$	$2.271 imes10^{-9}$
chi square fluorescence [1]	$(0.444 \pm 0.831) \times 10^5$	13259900	$3.566 imes 10^4$	$1.392 imes 10^4$	116	$2.727 imes 10^6$	6.236×10^{3}	$4.189 imes10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	13259900	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	13259900	0.0	50.0	48.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(2.854\pm 6.999) \times 10^{-3}$	13259900	4.827×10^{-3}	2.845×10^{-3}	$-7.965 imes 10^{-2}$	8.603×10^{-2}	4.201×10^{-4}	5.247×10^{-3}

Table	4: Parameterlist and basic st	tatistics for t	he analysis for o	observations in t	he southern hem	isphere		
Variable	$ $ mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.965 ± 0.118	10189935	0.0	1.000	0.350	1.000	1.000	1.000
cloud pressure crb [hPa]	773 ± 200	10189935	306	839	130	1.032×10^3	628	934
cloud pressure crb precision [hPa]	2.70 ± 10.70	10189935	1.29	0.592	$7.507 imes 10^{-3}$	922	0.368	1.65
cloud fraction crb [1]	0.426 ± 0.358	10189935	0.680	0.351	0.0	1.000	7.390×10^{-2}	0.754
cloud fraction crb precision [1]	$(1.363 \pm 9.205) \times 10^{-4}$	10189935	$6.189 imes10^{-5}$	$7.077 imes 10^{-5}$	9.031×10^{-9}	0.429	$3.811 imes 10^{-5}$	$1.000 imes 10^{-4}$
scene albedo [1]	0.386 ± 0.308	10189935	0.542	0.348	$-2.526 imes 10^{-3}$	3.34	8.447×10^{-2}	0.627
scene albedo precision [1]	$(7.904 \pm 9.112) \times 10^{-5}$	10189935	$5.518 imes10^{-5}$	$5.194 imes 10^{-5}$	1.049×10^{-5}	$7.576 imes 10^{-3}$	3.167×10^{-5}	$8.684 imes10^{-5}$
apparent scene pressure [hPa]	798 ± 186	10189935	281	859	130	1.032×10^3	666	947
apparent scene pressure precision [hPa]	1.30 ± 2.34	10189935	0.777	0.495	0.161	58.6	0.353	1.13
chi square [1]	$(0.136 \pm 0.386) \times 10^5$	10189935	$1.664 imes 10^4$	$1.054 imes 10^4$	47.7	$4.370 imes 10^7$	3.182×10^3	$1.983 imes10^4$
number of iterations [1]	3.06 ± 0.86	10189935	0.0	3.00	1.000	14.0	3.00	3.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(4.262 \pm 553.080) \times 10^{-11}$	10189935	4.080×10^{-9}	3.704×10^{-10}	$-1.688 imes10^{-6}$	$1.270 imes10^{-6}$	$-1.673 imes 10^{-9}$	2.407×10^{-9}
fluorescence precision [mol $s^{-1} m^{-2} nm^{-1} sr^{-1}$]	$(1.604 \pm 0.671) \times 10^{-9}$	10189935	9.772×10^{-10}	$1.489 imes 10^{-9}$	5.324×10^{-10}	$5.736 imes 10^{-9}$	1.043×10^{-9}	$2.020 imes 10^{-9}$
chi square fluorescence [1]	$(0.544 \pm 1.130) \times 10^5$	10189935	$4.212 imes 10^4$	$1.235 imes 10^4$	111	$2.017 imes10^6$	3.607×10^{3}	$4.573 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	10189935	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	10189935	0.0	50.0	48.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(2.940 \pm 10.174) \times 10^{-3}$	10189935	7.071×10^{-3}	$3.057 imes 10^{-3}$	-0.170	0.132	-5.439×10^{-4}	6.527×10^{-3}

	Table 5: Parameterlist an	d basic stati	stics for the anal	lysis for observa	tions over water			
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.944 ± 0.141	16261747	0.0	1.000	0.350	1.000	1.000	1.000
cloud pressure crb [hPa]	813 ± 189	16261747	244	881	130	1.042×10^{3}	712	956
cloud pressure crb precision [hPa]	2.45 ± 10.20	16261747	1.09	0.578	$1.831 imes 10^{-4}$	790	0.358	1.45
cloud fraction crb [1]	0.448 ± 0.375	16261747	0.747	0.363	0.0	1.000	$7.927 imes 10^{-2}$	0.826
cloud fraction crb precision [1]	$(2.040 \pm 16.982) \times 10^{-4}$	16261747	6.827×10^{-5}	6.201×10^{-5}	1.562×10^{-8}	0.629	$3.173 imes10^{-5}$	$1.000 imes 10^{-4}$
scene albedo [1]	0.398 ± 0.333	16261747	0.614	0.333	-2.526×10^{-3}	3.17	7.531×10^{-2}	0.690
scene albedo precision [1]	$(8.519 \pm 10.721) \times 10^{-5}$	16261747	$7.130 imes 10^{-5}$	$5.128 imes 10^{-5}$	1.049×10^{-5}	7.576×10^{-3}	2.546×10^{-5}	$9.676 imes 10^{-5}$
apparent scene pressure [hPa]	834 ± 174	16261747	217	893	130	1.066×10^{3}	748	965
apparent scene pressure precision [hPa]	1.23 ± 2.08	16261747	0.790	0.530	0.165	58.6	0.353	1.14
chi square [1]	$(0.185 \pm 2.525) \times 10^5$	16261747	$2.109 imes 10^4$	1.046×10^4	47.7	$2.910 imes 10^8$	3.112×10^3	2.420×10^4
number of iterations [1]	3.21 ± 1.02	16261747	0.0	3.00	1.000	14.0	3.00	3.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(5.156 \pm 51.337) \times 10^{-10}$	16261747	4.513×10^{-9}	$5.636 imes 10^{-10}$	-1.269×10^{-6}	$1.495 imes10^{-6}$	$-1.496 imes 10^{-9}$	3.017×10^{-9}
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.582 \pm 0.661) \times 10^{-9}$	16261747	$9.192 imes 10^{-10}$	1.441×10^{-9}	$4.449 imes 10^{-10}$	$5.711 imes 10^{-9}$	$1.051 imes 10^{-9}$	1.970×10^{-9}
chi square fluorescence [1]	$(0.371 \pm 0.739) \times 10^5$	16261747	$3.019 imes 10^4$	$1.158 imes 10^4$	111	$2.727 imes 10^6$	4.532×10^{3}	3.472×10^4
degrees of freedom fluorescence [1]	6.00 ± 0.00	16261747	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	16261747	0.0	50.0	48.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(2.858 \pm 9.604) \times 10^{-3}$	16261747	6.362×10^{-3}	2.901×10^{-3}	-0.170	0.132	-3.186×10^{-4}	6.044×10^{-3}

	Table 6: Parameterlist ar	nd basic sta	tistics for the an	alysis for obser	vations over land			
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.858 ± 0.229	5272477	0.500	1.000	0.350	1.000	0.500	1.000
cloud pressure crb [hPa]	759 ± 195	5272477	278	800	130	1.060×10^{3}	642	920
cloud pressure crb precision [hPa]	2.20 ± 7.35	5272477	1.26	0.552	$9.766 imes10^{-4}$	1.377×10^{3}	0.317	1.58
cloud fraction crb [1]	0.544 ± 0.411	5272477	0.885	0.508	0.0	1.000	0.115	1.000
cloud fraction crb precision [1]	$(2.926 \pm 17.864) \times 10^{-4}$	5272477	$3.059 imes 10^{-5}$	$1.000 imes 10^{-4}$	$9.031 imes 10^{-9}$	0.616	$8.122 imes 10^{-5}$	$1.118 imes10^{-4}$
scene albedo [1]	0.630 ± 0.284	5272477	0.504	0.622	2.679×10^{-2}	3.42	0.371	0.876
scene albedo precision [1]	$(1.084 \pm 1.219) \times 10^{-4}$	5272477	$7.346 imes 10^{-5}$	$6.115 imes10^{-5}$	$1.477 imes 10^{-5}$	1.462×10^{-3}	$4.040 imes10^{-5}$	$1.139 imes10^{-4}$
apparent scene pressure [hPa]	814 ± 154	5272477	225	856	130	1.060×10^3	716	941
apparent scene pressure precision [hPa]	0.377 ± 0.124	5272477	0.145	0.347	0.165	4.33	0.287	0.433
chi square [1]	$(0.339 \pm 3.629) \times 10^5$	5272477	$2.723 imes 10^4$	$2.500 imes 10^4$	495	$3.107 imes 10^8$	$1.518 imes 10^4$	4.241×10^4
number of iterations [1]	3.94 ± 1.03	5272477	1.000	4.00	1.000	14.0	3.00	4.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.960\pm 6.744) imes 10^{-9}$	5272477	$6.030 imes 10^{-9}$	2.449×10^{-9}	$-1.688 imes10^{-6}$	$1.534 imes 10^{-6}$	$-7.946 imes 10^{-10}$	5.236×10^{-9}
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(2.071 \pm 0.632) \times 10^{-9}$	5272477	$7.530 imes 10^{-10}$	$2.079 imes 10^{-9}$	$5.324 imes 10^{-10}$	5.731×10^{-9}	$1.690 imes 10^{-9}$	2.443×10^{-9}
chi square fluorescence [1]	$(0.717 \pm 1.292) \times 10^5$	5272477	$6.543 imes 10^4$	$1.684 imes 10^4$	149	$2.007 imes 10^6$	5.556×10^{3}	$7.099 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	5272477	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	5272477	0.0	50.0	48.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(2.944 \pm 4.681) \times 10^{-3}$	5272477	4.277×10^{-3}	2.948×10^{-3}	-5.277×10^{-2}	6.081×10^{-2}	8.167×10^{-4}	5.094×10^{-3}

Granule outlines

Figure 1: Outline of the granules.

4 Input data monitoring

Figure 2: Input data per granule

5 Warnings and errors

Figure 3: Fraction of pixels with specific warnings and errors during processing

6 World maps

Figure 4: Map of "Cloud pressure" for 2025-04-02 to 2025-04-03

2025-04-02

Figure 5: Map of "Cloud fraction" for 2025-04-02 to 2025-04-03

Figure 6: Map of "Scene albedo" for 2025-04-02 to 2025-04-03

Figure 7: Map of "Apparent scene pressure" for 2025-04-02 to 2025-04-03

2025-04-02

Figure 8: Map of "Fluorescence" for 2025-04-02 to 2025-04-03

Figure 9: Map of the number of observations for 2025-04-02 to 2025-04-03

7 Zonal average

Figure 10: Zonal average of "QA value" for 2025-04-02 to 2025-04-03.

Figure 11: Zonal average of "Cloud pressure" for 2025-04-02 to 2025-04-03.

Figure 12: Zonal average of "Cloud pressure precision" for 2025-04-02 to 2025-04-03.

Figure 13: Zonal average of "Cloud fraction" for 2025-04-02 to 2025-04-03.

Figure 14: Zonal average of "Cloud fraction precision" for 2025-04-02 to 2025-04-03.

Figure 15: Zonal average of "Scene albedo" for 2025-04-02 to 2025-04-03.

Figure 16: Zonal average of "Scene albedo precision" for 2025-04-02 to 2025-04-03.

Figure 17: Zonal average of "Apparent scene pressure" for 2025-04-02 to 2025-04-03.

Figure 18: Zonal average of "Apparent scene pressure precision" for 2025-04-02 to 2025-04-03.

Figure 19: Zonal average of " χ^2 " for 2025-04-02 to 2025-04-03.

Figure 20: Zonal average of "Number of iterations" for 2025-04-02 to 2025-04-03.

Figure 21: Zonal average of "Fluorescence" for 2025-04-02 to 2025-04-03.

Figure 22: Zonal average of "Fluorescence precision" for 2025-04-02 to 2025-04-03.

Figure 23: Zonal average of " χ^2 of fluorescence retrieval" for 2025-04-02 to 2025-04-03.

Figure 24: Zonal average of "Degrees of freedom for signal of fluorescence retrieval" for 2025-04-02 to 2025-04-03.

Figure 25: Zonal average of "Number of points in the spectrum" for 2025-04-02 to 2025-04-03.

Figure 26: Zonal average of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-04-02 to 2025-04-03.

8 Histograms

The definitions of the parameters given in this section can be found in section 2.

Figure 27: Histogram of "QA value" for 2025-04-02 to 2025-04-03

Figure 28: Histogram of "Cloud pressure" for 2025-04-02 to 2025-04-03

Figure 29: Histogram of "Cloud pressure precision" for 2025-04-02 to 2025-04-03

Figure 30: Histogram of "Cloud fraction" for 2025-04-02 to 2025-04-03

Figure 31: Histogram of "Cloud fraction precision" for 2025-04-02 to 2025-04-03

Figure 32: Histogram of "Scene albedo" for 2025-04-02 to 2025-04-03

Figure 33: Histogram of "Scene albedo precision" for 2025-04-02 to 2025-04-03

Figure 34: Histogram of "Apparent scene pressure" for 2025-04-02 to 2025-04-03

Figure 35: Histogram of "Apparent scene pressure precision" for 2025-04-02 to 2025-04-03

Figure 36: Histogram of " χ^2 " for 2025-04-02 to 2025-04-03

Figure 37: Histogram of "Number of iterations" for 2025-04-02 to 2025-04-03

Figure 38: Histogram of "Fluorescence" for 2025-04-02 to 2025-04-03

Figure 39: Histogram of "Fluorescence precision" for 2025-04-02 to 2025-04-03

Figure 40: Histogram of " χ^2 of fluorescence retrieval" for 2025-04-02 to 2025-04-03

Figure 41: Histogram of "Degrees of freedom for signal of fluorescence retrieval" for 2025-04-02 to 2025-04-03

Figure 42: Histogram of "Number of points in the spectrum" for 2025-04-02 to 2025-04-03

Figure 43: Histogram of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-04-02 to 2025-04-03

9 Along track statistics

The TROPOMI instrument uses different binned detector rows for different viewing directions. In this section statistics are presented for each of the binned rows in the instrument.

Figure 44: Along track statistics of "QA value" for 2025-04-02 to 2025-04-03

Figure 45: Along track statistics of "Cloud pressure" for 2025-04-02 to 2025-04-03

Figure 46: Along track statistics of "Cloud pressure precision" for 2025-04-02 to 2025-04-03

Figure 47: Along track statistics of "Cloud fraction" for 2025-04-02 to 2025-04-03

Figure 48: Along track statistics of "Cloud fraction precision" for 2025-04-02 to 2025-04-03

Figure 49: Along track statistics of "Scene albedo" for 2025-04-02 to 2025-04-03

Figure 50: Along track statistics of "Scene albedo precision" for 2025-04-02 to 2025-04-03

Figure 51: Along track statistics of "Apparent scene pressure" for 2025-04-02 to 2025-04-03

Figure 52: Along track statistics of "Apparent scene pressure precision" for 2025-04-02 to 2025-04-03

Figure 53: Along track statistics of " χ^2 " for 2025-04-02 to 2025-04-03

Figure 54: Along track statistics of "Number of iterations" for 2025-04-02 to 2025-04-03

Figure 55: Along track statistics of "Fluorescence" for 2025-04-02 to 2025-04-03

Figure 56: Along track statistics of "Fluorescence precision" for 2025-04-02 to 2025-04-03

Figure 57: Along track statistics of " χ^2 of fluorescence retrieval" for 2025-04-02 to 2025-04-03

Figure 58: Along track statistics of "Degrees of freedom for signal of fluorescence retrieval" for 2025-04-02 to 2025-04-03

Figure 59: Along track statistics of "Number of points in the spectrum" for 2025-04-02 to 2025-04-03

Figure 60: Along track statistics of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-04-02 to 2025-04-03

10 Coincidence density

To investigate the relation between parameters scatter density plots are produced. These include some 'hidden' parameters, latitude and the solar- and viewing geometries, in addition to all configured parameters. All combinations of pairs of parameters are included *once*, in one direction alone.

Contents

1	Short Introduction 1.1 The list of parameters	1 1
2	Definitions	1
3	Granule outlines	8
4	Input data monitoring	9
5	Warnings and errors	10
6	World maps	11
7	Zonal average	17
8	Histograms	34
9	Along track statistics	51
10	Coincidence density	68
11	Copyright information of 'PyCAMA'	68

List of Figures

1	Outline of the grouples	0
1		0
2		9
3	Fraction of pixels with specific warnings and errors during processing	10
4	Map of "Cloud pressure" for 2025-04-02 to 2025-04-03	11
5	Map of "Cloud fraction" for 2025-04-02 to 2025-04-03	12
6	Map of "Scene albedo" for 2025-04-02 to 2025-04-03	13
7	Map of "Apparent scene pressure" for 2025-04-02 to 2025-04-03	14
8	Map of "Fluorescence" for 2025-04-02 to 2025-04-03	15
9	Map of the number of observations for 2025-04-02 to 2025-04-03	16
10	Zonal average of "QA value" for 2025-04-02 to 2025-04-03.	17
11	Zonal average of "Cloud pressure" for 2025-04-02 to 2025-04-03.	18
12	Zonal average of "Cloud pressure precision" for 2025-04-02 to 2025-04-03.	19
13	Zonal average of "Cloud fraction" for 2025-04-02 to 2025-04-03.	20
14	Zonal average of "Cloud fraction precision" for 2025-04-02 to 2025-04-03.	21
15	Zonal average of "Scene albedo" for 2025-04-02 to 2025-04-03.	22
16	Zonal average of "Scene albedo precision" for 2025-04-02 to 2025-04-03.	23
17	Zonal average of "Apparent scene pressure" for 2025-04-02 to 2025-04-03.	24
18	Zonal average of "Apparent scene pressure precision" for 2025-04-02 to 2025-04-03.	25
19	Zonal average of " χ^2 " for 2025-04-02 to 2025-04-03	26
20	Zonal average of "Number of iterations" for 2025-04-02 to 2025-04-03.	27
21	Zonal average of "Fluorescence" for 2025-04-02 to 2025-04-03.	28
22	Zonal average of "Fluorescence precision" for 2025-04-02 to 2025-04-03.	29
23	Zonal average of " χ^2 of fluorescence retrieval" for 2025-04-02 to 2025-04-03	30
24	Zonal average of "Degrees of freedom for signal of fluorescence retrieval" for 2025-04-02 to 2025-04-03.	31
25	Zonal average of "Number of points in the spectrum" for 2025-04-02 to 2025-04-03.	32
26	Zonal average of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-04-02 to 2025-04-03	33
27	Histogram of "QA value" for 2025-04-02 to 2025-04-03	34
28	Histogram of "Cloud pressure" for 2025-04-02 to 2025-04-03	35
29	Histogram of "Cloud pressure precision" for 2025-04-02 to 2025-04-03	36

30	Histogram of "Cloud fraction" for 2025-04-02 to 2025-04-03	37
31	Histogram of "Cloud fraction precision" for 2025-04-02 to 2025-04-03	38
32	Histogram of "Scene albedo" for 2025-04-02 to 2025-04-03	39
33	Histogram of "Scene albedo precision" for 2025-04-02 to 2025-04-03	40
34	Histogram of "Apparent scene pressure" for 2025-04-02 to 2025-04-03	41
35	Histogram of "Apparent scene pressure precision" for 2025-04-02 to 2025-04-03	42
36	Histogram of " χ^2 " for 2025-04-02 to 2025-04-03	43
37	Histogram of "Number of iterations" for 2025-04-02 to 2025-04-03	44
38	Histogram of "Fluorescence" for 2025-04-02 to 2025-04-03	45
39	Histogram of "Fluorescence precision" for 2025-04-02 to 2025-04-03	46
40	Histogram of " χ^2 of fluorescence retrieval" for 2025-04-02 to 2025-04-03	47
41	Histogram of "Degrees of freedom for signal of fluorescence retrieval" for 2025-04-02 to 2025-04-03	48
42	Histogram of "Number of points in the spectrum" for 2025-04-02 to 2025-04-03	49
43	Histogram of "Spectral offset $(\lambda_{true} - \lambda_{nominal})$ " for 2025-04-02 to 2025-04-03	50
44	Along track statistics of "QA value" for 2025-04-02 to 2025-04-03	51
45	Along track statistics of "Cloud pressure" for 2025-04-02 to 2025-04-03	52
46	Along track statistics of "Cloud pressure precision" for 2025-04-02 to 2025-04-03	53
47	Along track statistics of "Cloud fraction" for 2025-04-02 to 2025-04-03	54
48	Along track statistics of "Cloud fraction precision" for 2025-04-02 to 2025-04-03	55
49	Along track statistics of "Scene albedo" for 2025-04-02 to 2025-04-03	56
50	Along track statistics of "Scene albedo precision" for 2025-04-02 to 2025-04-03	57
51	Along track statistics of "Apparent scene pressure" for 2025-04-02 to 2025-04-03	58
52	Along track statistics of "Apparent scene pressure precision" for 2025-04-02 to 2025-04-03	59
53	Along track statistics of " χ^2 " for 2025-04-02 to 2025-04-03	60
54	Along track statistics of "Number of iterations" for 2025-04-02 to 2025-04-03	61
55	Along track statistics of "Fluorescence" for 2025-04-02 to 2025-04-03	62
56	Along track statistics of "Fluorescence precision" for 2025-04-02 to 2025-04-03	63
57	Along track statistics of " χ^2 of fluorescence retrieval" for 2025-04-02 to 2025-04-03	64
58	Along track statistics of "Degrees of freedom for signal of fluorescence retrieval" for 2025-04-02 to 2025-04-03	65
59	Along track statistics of "Number of points in the spectrum" for 2025-04-02 to 2025-04-03	66
60	Along track statistics of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-04-02 to 2025-04-03	67

List of Tables

1	Parameterlist and basic statistics for the analysis
2	Percentile ranges
3	Parameterlist and basic statistics for the analysis for observations in the northern hemisphere
4	Parameterlist and basic statistics for the analysis for observations in the southern hemisphere
5	Parameterlist and basic statistics for the analysis for observations over water
6	Parameterlist and basic statistics for the analysis for observations over land

11 Copyright information of 'PyCAMA'

Copyright © 2005-2023, Maarten Sneep (KNMI).

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
- 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

This software is provided by the copyright holders and contributors "as is" and any express or implied warranties, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose are disclaimed. In no event shall the copyright holder or contributors be liable for any direct, indirect, incidental, special, exemplary, or consequential damages (including, but not limited to, procurement of substitute goods or services; loss of use, data, or profits; or business interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence or otherwise) arising in any way out of the use of this software, even if advised of the possibility of such damage.

Maarten Sneep (maarten.sneep@knmi.nl).