PyCAMA report generated by tropl2-proc

tropl2-proc

2025-04-10 (03:15)

1 Short Introduction

1.1 The list of parameters

You may want to keep the list given in table 1 at hand when viewing the results.

2 Definitions

The averages shown here are *unweighed* averages:

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i \tag{1}$$

with N the number of observations in the dataset.

The spread of the measurements is indicated with the variance V(x), or rather the standard deviation $\sigma(x) = \sqrt{V(x)}$.

$$V(x) = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2$$
(2)

We also report the more robust statistics median, minimum, maximum, various percentiles and inter quartile range.

The median m is the value of parameter x for which half of the observations of x is smaller than m:

$$P(x \le m) = P(x \ge m) = \int_{-\infty}^{m} f(x) \, \mathrm{d}x = \frac{1}{2}$$
(3)

with f(x) the probability density function.

The median is a special case of a percentile. Instead of $\frac{1}{2}$ in equation 3, other threshold values can be used. We report results for 1%, 5%, 10%, 15.9%, 25%, 75%, 84.1%, 90%, 95% and 99%. The inter quartile range is the difference between the 75% and 25% percentiles. Similarly the minimum and maximum values correspond to the 0% and 100% percentiles respectively.

For normally distributed parameters the mean and median are the same, while the $\mu \pm \sigma$ values and the 15.9% and 84.1% percentiles coincide.

To get a measure for the relation of one variable $x_{(k)}$ with another $x_{(l)}$, we calculate the covariance matrix C_{kl} .

$$C_{kl} = C(x_{(k)}, x_{(l)}) = \frac{1}{N-1} \sum_{i=1}^{N} (x_{(k),i} - \overline{x_{(k)}}) (x_{(l),i} - \overline{x_{(l)}})$$
(4)

Rather than a dimensionally dependent covariance, it is often easier to interpret a correlation matrix R_{kl} , a matrix of Pearson's *r* coefficients:

$$R_{kl} = R(x_{(k)}, x_{(l)}) = \frac{C_{kl}}{\sqrt{C_{kk}C_{ll}}} = \frac{C_{kl}}{\sqrt{V(x_k)V(x_l)}}$$
(5)

The diagonal elements of the covariance matrix are the variances of the elements, $V(x_{(k)}) = C_{kk}$ and obviously $R_{kk} = 1$.

	Table 1: Parameterl	ist and basic s	statistics for the an	alysis			
Variable	mean $\pm \sigma$	Count	Mode	IQR	Median	Minimum	Maximum
qa value [1]	0.915 ± 0.180	23248017	0.995	0.0	1.000	0.350	1.000
cloud pressure crb [hPa]	805 ± 193	23248017	1.005×10^3	262	871	130	1.054×10^3
cloud pressure crb precision [hPa]	2.49 ± 9.10	23248017	0.750	1.26	0.589	$9.766 imes10^{-4}$	$1.581 imes 10^3$
cloud fraction crb [1]	0.466 ± 0.388	23248017	0.996	0.842	0.373	0.0	1.000
cloud fraction crb precision [1]	$(2.153 \pm 17.880) \times 10^{-4}$	23248017	$2.500 imes 10^{-4}$	$5.742 imes 10^{-5}$	8.099×10^{-5}	$1.549 imes10^{-8}$	1.000
scene albedo [1]	0.456 ± 0.333	23248017	$1.500 imes10^{-2}$	0.614	0.420	-2.662×10^{-3}	4.53
scene albedo precision [1]	$(8.781 \pm 10.645) \times 10^{-5}$	23248017	$2.500 imes10^{-4}$	6.353×10^{-5}	5.399×10^{-5}	1.071×10^{-5}	8.581×10^{-3}
apparent scene pressure [hPa]	836 ± 168	23248017	1.008×10^3	217	894	130	1.054×10^3
apparent scene pressure precision [hPa]	1.02 ± 1.92	23248017	0.500	0.473	0.440	0.151	64.5
chi square [1]	$(0.229 \pm 3.025) \times 10^5$	23248017	0.150	$2.556 imes 10^4$	$1.492 imes 10^4$	54.0	$3.214 imes10^8$
number of iterations [1]	3.40 ± 1.06	23248017	3.23	1.000	3.00	1.000	14.0
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.052\pm 6.069) \times 10^{-9}$	23248017	$2.500 imes 10^{-10}$	$5.186 imes10^{-9}$	1.031×10^{-9}	$-1.875 imes10^{-6}$	1.826×10^{-6}
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.745 \pm 0.695) \times 10^{-9}$	23248017	$9.500 imes 10^{-10}$	1.049×10^{-9}	1.689×10^{-9}	$4.830 imes 10^{-10}$	5.628×10^{-9}
chi square fluorescence [1]	$(0.503 \pm 0.915) \times 10^5$	23248017	750	$4.475 imes 10^4$	$1.555 imes 10^4$	104	$2.169 imes10^6$
degrees of freedom fluorescence [1]	6.00 ± 0.00	23248017	5.95	0.0	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	23248017	49.7	0.0	50.0	43.0	50.0
wavelength calibration offset [nm]	$(2.938 \pm 8.567) \times 10^{-3}$	23248017	2.800×10^{-3}	5.624×10^{-3}	2.954×10^{-3}	-0.366	0.253

			Table 2:	Percentile rang	jes					
Variable	1 %	5 %	10 %	15.9 %	25 %	75 %	84.1 %	90%	95 %	99 %
qa value [1]	0.500	0.500	0.500	0.900	1.000	1.000	1.000	1.000	1.000	1.000
cloud pressure crb [hPa]	252	405	507	590	694	956	982	998	1.009×10^{3}	1.021×10^3
cloud pressure crb precision [hPa]	0.199	0.243	0.269	0.298	0.345	1.60	2.80	4.72	9.55	31.6
cloud fraction crb [1]	1.332×10^{-3}	$1.005 imes 10^{-2}$	$2.264 imes10^{-2}$	$4.144 imes10^{-2}$	$8.293 imes10^{-2}$	0.925	1.000	1.000	1.000	1.000
cloud fraction crb precision [1]	$2.017 imes10^{-5}$	$2.302 imes 10^{-5}$	$2.600 imes 10^{-5}$	$3.028 imes 10^{-5}$	$4.258 imes 10^{-5}$	$1.000 imes 10^{-4}$	$1.176 imes10^{-4}$	$1.703 imes 10^{-4}$	$3.845 imes 10^{-4}$	2.623×10^{-3}
scene albedo [1]	$7.616 imes 10^{-3}$	$1.903 imes 10^{-2}$	$3.574 imes10^{-2}$	$6.299 imes 10^{-2}$	0.140	0.754	0.857	0.912	0.971	1.13
scene albedo precision [1]	1.301×10^{-5}	1.526×10^{-5}	1.883×10^{-5}	2.394×10^{-5}	3.212×10^{-5}	$9.565 imes 10^{-5}$	1.341×10^{-4}	$1.870 imes10^{-4}$	$2.930 imes 10^{-4}$	5.607×10^{-4}
apparent scene pressure [hPa]	344	486	574	650	748	965	987	1000	1.010×10^{3}	1.021×10^{3}
apparent scene pressure precision [hPa]	0.216	0.246	0.268	0.289	0.321	0.794	1.32	2.14	3.87	9.57
chi square [1]	237	583	1.241×10^{3}	2.463×10^{3}	5.104×10^{3}	3.066×10^{4}	4.137×10^{4}	5.234×10^{4}	$6.688 imes 10^4$	9.117×10^{4}
number of iterations [1]	2.00	2.00	2.00	3.00	3.00	4.00	4.00	5.00	5.00	6.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	-1.502×10^{-8}	-7.363×10^{-9}	-4.487×10^{-9}	-2.812×10^{-9}	-1.340×10^{-9}	3.845×10^{-9}	5.434×10^{-9}	6.942×10^{-9}	9.101×10^{-9}	1.401×10^{-8}
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$7.377 imes 10^{-10}$	8.232×10^{-10}	8.979×10^{-10}	9.870×10^{-10}	1.155×10^{-9}	2.205×10^{-9}	2.468×10^{-9}	2.696×10^{-9}	2.992×10^{-9}	3.630×10^{-9}
chi square fluorescence [1]	446	1.048×10^{3}	1.929×10^{3}	3.191×10^{3}	5.527×10^{3}	5.027×10^{4}	$8.870 imes 10^4$	1.381×10^{5}	2.260×10^{5}	4.636×10^{5}
degrees of freedom fluorescence [1]	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$-2.508 imes 10^{-2}$	-9.593×10^{-3}	-4.494×10^{-3}	-1.896×10^{-3}	$1.412 imes 10^{-4}$	5.766×10^{-3}	$7.788 imes 10^{-3}$	1.039×10^{-2}	$1.548 imes10^{-2}$	3.054×10^{-2}

Table	3: Parameterlist and basic s	statistics for	the analysis for	observations in	the northern hem	nisphere		
Variable	$ $ mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.872 ± 0.210	13386607	0.1000	1.000	0.350	1.000	0.900	1.000
cloud pressure crb [hPa]	818 ± 188	13386607	240	881	130	1.054×10^3	724	964
cloud pressure crb precision [hPa]	2.02 ± 7.22	13386607	1.09	0.531	$9.766 imes 10^{-4}$	$1.581 imes 10^3$	0.314	1.41
cloud fraction crb [1]	0.521 ± 0.408	13386607	0.900	0.465	0.0	1.000	$9.985 imes10^{-2}$	1.000
cloud fraction crb precision [1]	$(2.844 \pm 21.390) \times 10^{-4}$	13386607	$5.181 imes10^{-5}$	$9.850 imes10^{-5}$	$2.040 imes10^{-8}$	1.000	$4.819 imes10^{-5}$	$1.000 imes 10^{-4}$
scene albedo [1]	0.528 ± 0.340	13386607	0.628	0.535	$-1.487 imes 10^{-3}$	3.43	0.215	0.843
scene albedo precision [1]	$(9.358 \pm 11.522) \times 10^{-5}$	13386607	$7.077 imes10^{-5}$	$5.519 imes10^{-5}$	$1.071 imes10^{-5}$	$1.720 imes 10^{-3}$	$3.231 imes 10^{-5}$	$1.031 imes 10^{-4}$
apparent scene pressure [hPa]	854 ± 155	13386607	189	906	130	1.054×10^3	783	971
apparent scene pressure precision [hPa]	0.675 ± 0.949	13386607	0.311	0.389	0.151	55.6	0.298	0.609
chi square [1]	$(0.308 \pm 3.980) \times 10^5$	13386607	3.413×10^4	$2.206 imes 10^4$	67.7	$3.214 imes 10^8$	8.492×10^{3}	4.262×10^4
number of iterations [1]	3.68 ± 1.11	13386607	1.000	3.00	1.000	14.0	3.00	4.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.820 \pm 6.485) \times 10^{-9}$	13386607	$6.157 imes 10^{-9}$	$1.979 imes10^{-9}$	$-1.875 imes 10^{-6}$	$1.826 imes10^{-6}$	-1.109×10^{-9}	$5.048 imes 10^{-9}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.892 \pm 0.690) \times 10^{-9}$	13386607	$9.721 imes 10^{-10}$	$1.850 imes 10^{-9}$	$4.830 imes 10^{-10}$	$5.592 imes 10^{-9}$	1.339×10^{-9}	2.311×10^{-9}
chi square fluorescence [1]	$(0.488 \pm 0.869) \times 10^5$	13386607	4.266×10^{4}	$1.620 imes 10^4$	120	2.169×10^{6}	6.597×10^{3}	$4.925 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	13386607	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	13386607	0.0	50.0	43.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(2.867 \pm 6.859) \times 10^{-3}$	13386607	4.614×10^{-3}	2.861×10^{-3}	-8.389×10^{-2}	8.553×10^{-2}	$5.502 imes 10^{-4}$	5.164×10^{-3}

Table	4: Parameterlist and basic st	atistics for	the analysis for	observations in	the southern hem	isphere		
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.974 ± 0.100	9861410	0.0	1.000	0.350	1.000	1.000	1.000
cloud pressure crb [hPa]	787 ± 198	9861410	291	857	130	1.037×10^{3}	651	943
cloud pressure crb precision [hPa]	3.13 ± 11.13	9861410	1.53	0.672	6.653×10^{-3}	1.543×10^{3}	0.393	1.93
cloud fraction crb [1]	0.392 ± 0.346	9861410	0.626	0.299	0.0	1.000	$6.265 imes10^{-2}$	0.689
cloud fraction crb precision [1]	$(1.215 \pm 11.449) \times 10^{-4}$	9861410	$6.282 imes 10^{-5}$	$6.992 imes10^{-5}$	$1.549 imes10^{-8}$	0.773	$3.718 imes10^{-5}$	$1.000 imes 10^{-4}$
scene albedo [1]	0.358 ± 0.298	9861410	0.502	0.310	-2.662×10^{-3}	4.53	$7.449 imes10^{-2}$	0.576
scene albedo precision [1]	$(7.998 \pm 9.265) \times 10^{-5}$	9861410	$5.570 imes10^{-5}$	$5.256 imes 10^{-5}$	$1.089 imes10^{-5}$	$8.581 imes 10^{-3}$	$3.187 imes10^{-5}$	$8.757 imes10^{-5}$
apparent scene pressure [hPa]	812 ± 181	9861410	265	876	130	1.037×10^{3}	689	954
apparent scene pressure precision [hPa]	1.48 ± 2.66	9861410	0.900	0.539	0.166	64.5	0.371	1.27
chi square [1]	$(0.122 \pm 0.226) \times 10^5$	9861410	$1.556 imes 10^4$	9.400×10^{3}	54.0	$1.480 imes 10^7$	$2.678 imes 10^3$	$1.824 imes 10^4$
number of iterations [1]	3.02 ± 0.84	9861410	0.0	3.00	1.000	14.0	3.00	3.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.065 \pm 527.863) \times 10^{-11}$	9861410	3.777×10^{-9}	$3.381 imes 10^{-10}$	$-1.776 imes10^{-6}$	$1.241 imes 10^{-6}$	-1.582×10^{-9}	2.195×10^{-9}
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.547 \pm 0.651) \times 10^{-9}$	9861410	$9.230 imes 10^{-10}$	$1.433 imes 10^{-9}$	$5.357 imes 10^{-10}$	5.628×10^{-9}	$9.956 imes 10^{-10}$	1.919×10^{-9}
chi square fluorescence [1]	$(0.523 \pm 0.972) \times 10^5$	9861410	$4.793 imes 10^4$	$1.455 imes 10^4$	104	$1.675 imes 10^6$	3.926×10^3	$5.186 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	9861410	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	9861410	0.0	50.0	48.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(3.035 \pm 10.448) \times 10^{-3}$	9861410	7.541×10^{-3}	$3.149 imes 10^{-3}$	-0.366	0.253	-6.894×10^{-4}	6.851×10^{-3}

S

	Table 5: Parameterlist an	d basic stati	stics for the anal	lysis for observa	tions over water			
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.929 ± 0.161	16255624	0.0	1.000	0.350	1.000	1.000	1.000
cloud pressure crb [hPa]	821 ± 186	16255624	239	888	130	1.040×10^3	723	962
cloud pressure crb precision [hPa]	2.47 ± 9.51	16255624	1.14	0.580	$1.038 imes 10^{-3}$	1.266×10^{3}	0.353	1.49
cloud fraction crb [1]	0.452 ± 0.378	16255624	0.762	0.372	0.0	1.000	$7.771 imes 10^{-2}$	0.840
cloud fraction crb precision [1]	$(2.097 \pm 17.638) \times 10^{-4}$	16255624	$6.804 imes10^{-5}$	$6.384 imes10^{-5}$	$2.040 imes 10^{-8}$	0.343	3.196×10^{-5}	$1.000 imes 10^{-4}$
scene albedo [1]	0.398 ± 0.334	16255624	0.621	0.334	-2.662×10^{-3}	4.47	$7.377 imes 10^{-2}$	0.694
scene albedo precision [1]	$(8.570 \pm 10.544) \times 10^{-5}$	16255624	$7.296 imes10^{-5}$	$5.340 imes 10^{-5}$	$1.071 imes 10^{-5}$	$8.581 imes10^{-3}$	2.589×10^{-5}	$9.886 imes10^{-5}$
apparent scene pressure [hPa]	840 ± 172	16255624	213	900	130	1.040×10^3	758	971
apparent scene pressure precision [hPa]	1.29 ± 2.24	16255624	0.831	0.539	0.166	64.5	0.351	1.18
chi square [1]	$(0.183 \pm 1.552) \times 10^5$	16255624	$2.165 imes 10^4$	$1.016 imes 10^4$	54.0	$1.635 imes 10^8$	2.925×10^3	$2.458 imes 10^4$
number of iterations [1]	3.19 ± 1.01	16255624	0.0	3.00	1.000	14.0	3.00	3.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(6.550\pm53.714)\times10^{-10}$	16255624	$4.454 imes10^{-9}$	$6.385 imes 10^{-10}$	$-1.875 imes10^{-6}$	$1.303 imes10^{-6}$	-1.364×10^{-9}	3.089×10^{-9}
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.583 \pm 0.664) \times 10^{-9}$	16255624	$9.424 imes 10^{-10}$	1.450×10^{-9}	$4.830 imes 10^{-10}$	$5.628 imes 10^{-9}$	$1.041 imes 10^{-9}$	$1.983 imes10^{-9}$
chi square fluorescence [1]	$(0.377 \pm 0.705) \times 10^5$	16255624	$3.373 imes 10^4$	1.262×10^4	104	$2.169 imes10^6$	4.758×10^{3}	3.849×10^4
degrees of freedom fluorescence [1]	6.00 ± 0.00	16255624	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	16255624	0.0	50.0	48.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(2.906 \pm 9.589) \times 10^{-3}$	16255624	$6.213 imes 10^{-3}$	$2.921 imes 10^{-3}$	-0.366	0.253	$-1.852 imes10^{-4}$	$6.028 imes10^{-3}$
	•							

	Table 6: Parameterlist an	d basic stat	istics for the an	alysis for observ	vations over land			
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.867 ± 0.225	5071048	0.500	1.000	0.350	1.000	0.500	1.000
cloud pressure crb [hPa]	760 ± 201	5071048	296	802	130	1.052×10^3	633	930
cloud pressure crb precision [hPa]	2.47 ± 7.93	5071048	1.49	0.609	$9.766 imes10^{-4}$	1.522×10^3	0.318	1.81
cloud fraction crb [1]	0.512 ± 0.413	5071048	0.903	0.403	0.0	1.000	$9.739 imes10^{-2}$	1.000
cloud fraction crb precision [1]	$(2.453 \pm 20.597) \times 10^{-4}$	5071048	$3.120 imes 10^{-5}$	$1.000 imes 10^{-4}$	$1.549 imes10^{-8}$	1.000	$7.826 imes 10^{-5}$	$1.095 imes10^{-4}$
scene albedo [1]	0.610 ± 0.290	5071048	0.521	0.576	$2.879 imes 10^{-2}$	4.53	0.349	0.870
scene albedo precision [1]	$(1.005 \pm 1.167) \times 10^{-4}$	5071048	$5.764 imes 10^{-5}$	$5.698 imes10^{-5}$	$1.385 imes10^{-5}$	$1.584 imes10^{-3}$	$3.942 imes 10^{-5}$	$9.705 imes 10^{-5}$
apparent scene pressure [hPa]	816 ± 158	5071048	233	860	130	1.052×10^3	714	947
apparent scene pressure precision [hPa]	0.377 ± 0.124	5071048	0.152	0.349	0.151	5.62	0.285	0.438
chi square [1]	$(0.323 \pm 3.761) \times 10^5$	5071048	$2.651 imes 10^4$	$2.420 imes 10^4$	454	$3.214 imes 10^8$	1.454×10^4	$4.104 imes 10^4$
number of iterations [1]	3.92 ± 0.99	5071048	1.000	4.00	1.000	14.0	3.00	4.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.794 \pm 7.282) \times 10^{-9}$	5071048	6.643×10^{-9}	$2.273 imes 10^{-9}$	$-1.776 imes 10^{-6}$	$1.826 imes10^{-6}$	$-1.364 imes 10^{-9}$	$5.279 imes 10^{-9}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(2.109 \pm 0.620) \times 10^{-9}$	5071048	$7.675 imes 10^{-10}$	2.109×10^{-9}	$5.357 imes 10^{-10}$	$5.592 imes 10^{-9}$	$1.726 imes 10^{-9}$	$2.493 imes 10^{-9}$
chi square fluorescence [1]	$(0.777 \pm 1.193) \times 10^5$	5071048	$8.858 imes10^4$	$2.551 imes 10^4$	175	$1.606 imes 10^6$	7.573×10^{3}	$9.615 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	5071048	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	5071048	0.0	50.0	43.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(2.985 \pm 4.796) \times 10^{-3}$	5071048	4.370×10^{-3}	3.005×10^{-3}	-5.514×10^{-2}	6.310×10^{-2}	8.194×10^{-4}	$5.189 imes 10^{-3}$

Granule outlines

Figure 1: Outline of the granules.

4 Input data monitoring

Figure 2: Input data per granule

5 Warnings and errors

Figure 3: Fraction of pixels with specific warnings and errors during processing

6 World maps

Figure 4: Map of "Cloud pressure" for 2025-04-08 to 2025-04-09

Figure 5: Map of "Cloud fraction" for 2025-04-08 to 2025-04-09

Figure 6: Map of "Scene albedo" for 2025-04-08 to 2025-04-09

Figure 7: Map of "Apparent scene pressure" for 2025-04-08 to 2025-04-09

Figure 8: Map of "Fluorescence" for 2025-04-08 to 2025-04-09

Figure 9: Map of the number of observations for 2025-04-08 to 2025-04-09

7 Zonal average

Figure 10: Zonal average of "QA value" for 2025-04-08 to 2025-04-09.

Figure 11: Zonal average of "Cloud pressure" for 2025-04-08 to 2025-04-09.

Figure 12: Zonal average of "Cloud pressure precision" for 2025-04-08 to 2025-04-09.

Figure 13: Zonal average of "Cloud fraction" for 2025-04-08 to 2025-04-09.

Figure 14: Zonal average of "Cloud fraction precision" for 2025-04-08 to 2025-04-09.

Figure 15: Zonal average of "Scene albedo" for 2025-04-08 to 2025-04-09.

Figure 16: Zonal average of "Scene albedo precision" for 2025-04-08 to 2025-04-09.

Figure 17: Zonal average of "Apparent scene pressure" for 2025-04-08 to 2025-04-09.

Figure 18: Zonal average of "Apparent scene pressure precision" for 2025-04-08 to 2025-04-09.

Figure 19: Zonal average of " χ^2 " for 2025-04-08 to 2025-04-09.

Figure 20: Zonal average of "Number of iterations" for 2025-04-08 to 2025-04-09.

Figure 21: Zonal average of "Fluorescence" for 2025-04-08 to 2025-04-09.

Figure 22: Zonal average of "Fluorescence precision" for 2025-04-08 to 2025-04-09.

Figure 23: Zonal average of " χ^2 of fluorescence retrieval" for 2025-04-08 to 2025-04-09.

Figure 24: Zonal average of "Degrees of freedom for signal of fluorescence retrieval" for 2025-04-08 to 2025-04-09.

Figure 25: Zonal average of "Number of points in the spectrum" for 2025-04-08 to 2025-04-09.

Figure 26: Zonal average of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-04-08 to 2025-04-09.

8 Histograms

The definitions of the parameters given in this section can be found in section 2.

Figure 27: Histogram of "QA value" for 2025-04-08 to 2025-04-09

Figure 28: Histogram of "Cloud pressure" for 2025-04-08 to 2025-04-09

Figure 29: Histogram of "Cloud pressure precision" for 2025-04-08 to 2025-04-09

Figure 30: Histogram of "Cloud fraction" for 2025-04-08 to 2025-04-09

Figure 31: Histogram of "Cloud fraction precision" for 2025-04-08 to 2025-04-09

Figure 32: Histogram of "Scene albedo" for 2025-04-08 to 2025-04-09

Figure 33: Histogram of "Scene albedo precision" for 2025-04-08 to 2025-04-09

Figure 34: Histogram of "Apparent scene pressure" for 2025-04-08 to 2025-04-09

Figure 35: Histogram of "Apparent scene pressure precision" for 2025-04-08 to 2025-04-09

Figure 36: Histogram of " χ^2 " for 2025-04-08 to 2025-04-09

Figure 37: Histogram of "Number of iterations" for 2025-04-08 to 2025-04-09

Figure 38: Histogram of "Fluorescence" for 2025-04-08 to 2025-04-09

Figure 39: Histogram of "Fluorescence precision" for 2025-04-08 to 2025-04-09

Figure 40: Histogram of " χ^2 of fluorescence retrieval" for 2025-04-08 to 2025-04-09

Figure 41: Histogram of "Degrees of freedom for signal of fluorescence retrieval" for 2025-04-08 to 2025-04-09

Figure 42: Histogram of "Number of points in the spectrum" for 2025-04-08 to 2025-04-09

Figure 43: Histogram of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-04-08 to 2025-04-09

9 Along track statistics

The TROPOMI instrument uses different binned detector rows for different viewing directions. In this section statistics are presented for each of the binned rows in the instrument.

Figure 44: Along track statistics of "QA value" for 2025-04-08 to 2025-04-09

Figure 45: Along track statistics of "Cloud pressure" for 2025-04-08 to 2025-04-09

Figure 46: Along track statistics of "Cloud pressure precision" for 2025-04-08 to 2025-04-09

Figure 47: Along track statistics of "Cloud fraction" for 2025-04-08 to 2025-04-09

Figure 48: Along track statistics of "Cloud fraction precision" for 2025-04-08 to 2025-04-09

Figure 49: Along track statistics of "Scene albedo" for 2025-04-08 to 2025-04-09

Figure 50: Along track statistics of "Scene albedo precision" for 2025-04-08 to 2025-04-09

Figure 51: Along track statistics of "Apparent scene pressure" for 2025-04-08 to 2025-04-09

Figure 52: Along track statistics of "Apparent scene pressure precision" for 2025-04-08 to 2025-04-09

Figure 53: Along track statistics of " χ^2 " for 2025-04-08 to 2025-04-09

Figure 54: Along track statistics of "Number of iterations" for 2025-04-08 to 2025-04-09

Figure 55: Along track statistics of "Fluorescence" for 2025-04-08 to 2025-04-09

Figure 56: Along track statistics of "Fluorescence precision" for 2025-04-08 to 2025-04-09

Figure 57: Along track statistics of " χ^2 of fluorescence retrieval" for 2025-04-08 to 2025-04-09

Figure 58: Along track statistics of "Degrees of freedom for signal of fluorescence retrieval" for 2025-04-08 to 2025-04-09

Figure 59: Along track statistics of "Number of points in the spectrum" for 2025-04-08 to 2025-04-09

Figure 60: Along track statistics of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-04-08 to 2025-04-09

10 Coincidence density

To investigate the relation between parameters scatter density plots are produced. These include some 'hidden' parameters, latitude and the solar- and viewing geometries, in addition to all configured parameters. All combinations of pairs of parameters are included *once*, in one direction alone.

Contents

1	Short Introduction	1
	1.1 The list of parameters	1
2	Definitions	1
3	Granule outlines	8
4	Input data monitoring	9
5	Warnings and errors	10
6	World maps	11
7	Zonal average	17
8	Histograms	34
9	Along track statistics	51
10	Coincidence density	68
11	Copyright information of 'PyCAMA'	68

List of Figures

1	Outline of the granules.	8
2	Input data per granule	9
3	Fraction of pixels with specific warnings and errors during processing	10
4	Map of "Cloud pressure" for 2025-04-08 to 2025-04-09	11
5	Map of "Cloud fraction" for 2025-04-08 to 2025-04-09	12
6	Map of "Scene albedo" for 2025-04-08 to 2025-04-09	13
7	Map of "Apparent scene pressure" for 2025-04-08 to 2025-04-09	14
8	Map of "Fluorescence" for 2025-04-08 to 2025-04-09	15
9	Map of the number of observations for 2025-04-08 to 2025-04-09	16
10	Zonal average of "QA value" for 2025-04-08 to 2025-04-09.	17
11	Zonal average of "Cloud pressure" for 2025-04-08 to 2025-04-09.	18
12	Zonal average of "Cloud pressure precision" for 2025-04-08 to 2025-04-09.	19
13	Zonal average of "Cloud fraction" for 2025-04-08 to 2025-04-09.	20
14	Zonal average of "Cloud fraction precision" for 2025-04-08 to 2025-04-09.	21
15	Zonal average of "Scene albedo" for 2025-04-08 to 2025-04-09.	22
16	Zonal average of "Scene albedo precision" for 2025-04-08 to 2025-04-09.	23
17	Zonal average of "Apparent scene pressure" for 2025-04-08 to 2025-04-09.	24
18	Zonal average of "Apparent scene pressure precision" for 2025-04-08 to 2025-04-09.	25
19	Zonal average of " χ^2 " for 2025-04-08 to 2025-04-09	26
20	Zonal average of "Number of iterations" for 2025-04-08 to 2025-04-09.	27
21	Zonal average of "Fluorescence" for 2025-04-08 to 2025-04-09.	28
22	Zonal average of "Fluorescence precision" for 2025-04-08 to 2025-04-09.	29
23	Zonal average of " χ^2 of fluorescence retrieval" for 2025-04-08 to 2025-04-09	30
24	Zonal average of "Degrees of freedom for signal of fluorescence retrieval" for 2025-04-08 to 2025-04-09.	31
25	Zonal average of "Number of points in the spectrum" for 2025-04-08 to 2025-04-09.	32
26	Zonal average of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-04-08 to 2025-04-09	33
27	Histogram of "QA value" for 2025-04-08 to 2025-04-09	34
28	Histogram of "Cloud pressure" for 2025-04-08 to 2025-04-09	35
29	Histogram of "Cloud pressure precision" for 2025-04-08 to 2025-04-09	36

30	Histogram of "Cloud fraction" for 2025-04-08 to 2025-04-09	37
31	Histogram of "Cloud fraction precision" for 2025-04-08 to 2025-04-09.	38
32	Histogram of "Scene albedo" for 2025-04-08 to 2025-04-09	39
33	Histogram of "Scene albedo precision" for 2025-04-08 to 2025-04-09	40
34	Histogram of "Apparent scene pressure" for 2025-04-08 to 2025-04-09	41
35	Histogram of "Apparent scene pressure precision" for 2025-04-08 to 2025-04-09	42
36	Histogram of " χ^2 " for 2025-04-08 to 2025-04-09	43
37	Histogram of "Number of iterations" for 2025-04-08 to 2025-04-09	44
38	Histogram of "Fluorescence" for 2025-04-08 to 2025-04-09	45
39	Histogram of "Fluorescence precision" for 2025-04-08 to 2025-04-09	46
40	Histogram of " χ^2 of fluorescence retrieval" for 2025-04-08 to 2025-04-09	47
41	Histogram of "Degrees of freedom for signal of fluorescence retrieval" for 2025-04-08 to 2025-04-09	48
42	Histogram of "Number of points in the spectrum" for 2025-04-08 to 2025-04-09	49
43	Histogram of "Spectral offset $(\lambda_{true} - \lambda_{nominal})$ " for 2025-04-08 to 2025-04-09	50
44	Along track statistics of "QA value" for 2025-04-08 to 2025-04-09	51
45	Along track statistics of "Cloud pressure" for 2025-04-08 to 2025-04-09	52
46	Along track statistics of "Cloud pressure precision" for 2025-04-08 to 2025-04-09	53
47	Along track statistics of "Cloud fraction" for 2025-04-08 to 2025-04-09	54
48	Along track statistics of "Cloud fraction precision" for 2025-04-08 to 2025-04-09	55
49	Along track statistics of "Scene albedo" for 2025-04-08 to 2025-04-09	56
50	Along track statistics of "Scene albedo precision" for 2025-04-08 to 2025-04-09	57
51	Along track statistics of "Apparent scene pressure" for 2025-04-08 to 2025-04-09	58
52	Along track statistics of "Apparent scene pressure precision" for 2025-04-08 to 2025-04-09	59
53	Along track statistics of " χ^2 " for 2025-04-08 to 2025-04-09	60
54	Along track statistics of "Number of iterations" for 2025-04-08 to 2025-04-09	61
55	Along track statistics of "Fluorescence" for 2025-04-08 to 2025-04-09	62
56	Along track statistics of "Fluorescence precision" for 2025-04-08 to 2025-04-09	63
57	Along track statistics of " χ^2 of fluorescence retrieval" for 2025-04-08 to 2025-04-09	64
58	Along track statistics of "Degrees of freedom for signal of fluorescence retrieval" for 2025-04-08 to 2025-04-09	65
59	Along track statistics of "Number of points in the spectrum" for 2025-04-08 to 2025-04-09	66
60	Along track statistics of "Spectral offset $(\lambda_{true} - \lambda_{nominal})$ " for 2025-04-08 to 2025-04-09	67

List of Tables

1	Parameterlist and basic statistics for the analysis
2	Percentile ranges
3	Parameterlist and basic statistics for the analysis for observations in the northern hemisphere
4	Parameterlist and basic statistics for the analysis for observations in the southern hemisphere
5	Parameterlist and basic statistics for the analysis for observations over water
6	Parameterlist and basic statistics for the analysis for observations over land

11 Copyright information of 'PyCAMA'

Copyright © 2005-2023, Maarten Sneep (KNMI).

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
- 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

This software is provided by the copyright holders and contributors "as is" and any express or implied warranties, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose are disclaimed. In no event shall the copyright holder or contributors be liable for any direct, indirect, incidental, special, exemplary, or consequential damages (including, but not limited to, procurement of substitute goods or services; loss of use, data, or profits; or business interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence or otherwise) arising in any way out of the use of this software, even if advised of the possibility of such damage.

Maarten Sneep (maarten.sneep@knmi.nl).