PyCAMA report generated by tropl2-proc

tropl2-proc

2025-04-13 (03:17)

1 Short Introduction

1.1 The list of parameters

You may want to keep the list given in table 1 at hand when viewing the results.

2 Definitions

The averages shown here are unweighed averages:

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i \tag{1}$$

with N the number of observations in the dataset.

The spread of the measurements is indicated with the variance V(x), or rather the standard deviation $\sigma(x) = \sqrt{V(x)}$.

$$V(x) = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2$$
(2)

We also report the more robust statistics median, minimum, maximum, various percentiles and inter quartile range.

The median m is the value of parameter x for which half of the observations of x is smaller than m:

$$P(x \le m) = P(x \ge m) = \int_{-\infty}^{m} f(x) \, \mathrm{d}x = \frac{1}{2}$$
(3)

with f(x) the probability density function.

The median is a special case of a percentile. Instead of $\frac{1}{2}$ in equation 3, other threshold values can be used. We report results for 1%, 5%, 10%, 15.9%, 25%, 75%, 84.1%, 90%, 95% and 99%. The inter quartile range is the difference between the 75% and 25% percentiles. Similarly the minimum and maximum values correspond to the 0% and 100% percentiles respectively.

For normally distributed parameters the mean and median are the same, while the $\mu \pm \sigma$ values and the 15.9% and 84.1% percentiles coincide.

To get a measure for the relation of one variable $x_{(k)}$ with another $x_{(l)}$, we calculate the covariance matrix C_{kl} .

$$C_{kl} = C(x_{(k)}, x_{(l)}) = \frac{1}{N-1} \sum_{i=1}^{N} (x_{(k),i} - \overline{x_{(k)}}) (x_{(l),i} - \overline{x_{(l)}})$$
(4)

Rather than a dimensionally dependent covariance, it is often easier to interpret a correlation matrix R_{kl} , a matrix of Pearson's *r* coefficients:

$$R_{kl} = R(x_{(k)}, x_{(l)}) = \frac{C_{kl}}{\sqrt{C_{kk}C_{ll}}} = \frac{C_{kl}}{\sqrt{V(x_k)V(x_l)}}$$
(5)

The diagonal elements of the covariance matrix are the variances of the elements, $V(x_{(k)}) = C_{kk}$ and obviously $R_{kk} = 1$.

Table 1: Parameterlist and	basic statistics	for the anal	ysi
----------------------------	------------------	--------------	-----

	Table 1: Parameterl	ist and basic s	statistics for the ar	nalysis			
Variable	mean $\pm \sigma$	Count	Mode	IQR	Median	Minimum	Maximum
qa value [1]	0.914 ± 0.182	23188414	0.995	0.0	1.000	0.350	1.000
cloud pressure crb [hPa]	802 ± 195	23188414	$1.015 imes 10^3$	269	866	130	1.055×10^3
cloud pressure crb precision [hPa]	2.66 ± 10.07	23188414	0.750	1.27	0.584	$4.272 imes 10^{-4}$	1.366×10^3
cloud fraction crb [1]	0.465 ± 0.388	23188414	0.996	0.848	0.370	0.0	1.000
cloud fraction crb precision [1]	$(2.264 \pm 16.187) \times 10^{-4}$	23188414	$2.500 imes10^{-4}$	$5.770 imes10^{-5}$	$8.024 imes 10^{-5}$	$2.924 imes 10^{-9}$	0.746
scene albedo [1]	0.454 ± 0.335	23188414	1.500×10^{-2}	0.619	0.417	-3.342×10^{-3}	4.50
scene albedo precision [1]	$(8.645 \pm 10.385) \times 10^{-5}$	23188414	$2.500 imes10^{-4}$	$6.401 imes 10^{-5}$	$5.328 imes 10^{-5}$	1.068×10^{-5}	4.200×10^{-3}
apparent scene pressure [hPa]	832 ± 171	23188414	1.008×10^3	226	888	130	1.055×10^3
apparent scene pressure precision [hPa]	1.05 ± 2.00	23188414	0.500	0.499	0.439	0.156	61.2
chi square [1]	$(0.228 \pm 3.254) \times 10^5$	23188414	0.150	$2.538 imes 10^4$	1.444×10^4	50.4	$4.427 imes 10^8$
number of iterations [1]	3.41 ± 1.06	23188414	3.23	1.000	3.00	1.000	14.0
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.137 \pm 5.708) \times 10^{-9}$	23188414	$2.500 imes 10^{-10}$	$5.167 imes10^{-9}$	1.069×10^{-9}	-1.591×10^{-6}	1.457×10^{-6}
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.753 \pm 0.713) \times 10^{-9}$	23188414	$8.500 imes 10^{-10}$	$1.073 imes 10^{-9}$	$1.688 imes 10^{-9}$	4.427×10^{-10}	5.906×10^{-9}
chi square fluorescence [1]	$(0.476 \pm 0.863) \times 10^5$	23188414	750	$4.184 imes 10^4$	$1.530 imes 10^4$	93.4	$2.931 imes 10^6$
degrees of freedom fluorescence [1]	6.00 ± 0.00	23188414	5.95	0.0	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	23188414	49.7	0.0	50.0	46.0	50.0
wavelength calibration offset [nm]	$(2.907 \pm 8.822) \times 10^{-3}$	23188414	2.800×10^{-3}	$5.710 imes10^{-3}$	2.919×10^{-3}	-0.489	0.151

Table 2: Percentile ranges										
Variable	1 %	5 %	10 %	15.9 %	25 %	75 %	84.1 %	90 %	95 %	99 %
qa value [1]	0.500	0.500	0.500	0.900	1.000	1.000	1.000	1.000	1.000	1.000
cloud pressure crb [hPa]	252	402	498	583	687	956	983	999	1.011×10^{3}	1.022×10^3
cloud pressure crb precision [hPa]	0.182	0.240	0.266	0.294	0.340	1.61	2.87	4.95	10.2	34.9
cloud fraction crb [1]	$6.224 imes10^{-4}$	$9.408 imes10^{-3}$	$2.144 imes10^{-2}$	$4.026 imes 10^{-2}$	$8.240 imes10^{-2}$	0.930	1.000	1.000	1.000	1.000
cloud fraction crb precision [1]	$2.035 imes 10^{-5}$	$2.331 imes 10^{-5}$	$2.631 imes 10^{-5}$	$3.050 imes 10^{-5}$	4.230×10^{-5}	$1.000 imes 10^{-4}$	$1.217 imes10^{-4}$	$1.771 imes 10^{-4}$	$4.279 imes 10^{-4}$	$3.291 imes 10^{-3}$
scene albedo [1]	$7.807 imes 10^{-3}$	$1.853 imes10^{-2}$	$3.352 imes 10^{-2}$	$6.022 imes 10^{-2}$	0.134	0.753	0.857	0.911	0.972	1.14
scene albedo precision [1]	1.314×10^{-5}	1.562×10^{-5}	$1.919 imes10^{-5}$	2.413×10^{-5}	$3.195 imes 10^{-5}$	9.596×10^{-5}	$1.314 imes 10^{-4}$	$1.806 imes10^{-4}$	$2.810 imes 10^{-4}$	$5.568 imes10^{-4}$
apparent scene pressure [hPa]	340	471	564	642	740	966	988	1.001×10^{3}	1.012×10^{3}	1.022×10^{3}
apparent scene pressure precision [hPa]	0.214	0.245	0.266	0.286	0.317	0.817	1.40	2.30	4.07	9.68
chi square [1]	228	549	1.153×10^{3}	2.341×10^{3}	4.905×10^{3}	3.029×10^{4}	4.125×10^{4}	5.321×10^{4}	$6.728 imes 10^4$	8.735×10^{4}
number of iterations [1]	2.00	2.00	2.00	3.00	3.00	4.00	4.00	5.00	5.00	6.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	-1.496×10^{-8}	-7.191×10^{-9}	-4.364×10^{-9}	-2.709×10^{-9}	-1.264×10^{-9}	3.903×10^{-9}	5.544×10^{-9}	7.106×10^{-9}	9.314×10^{-9}	1.424×10^{-8}
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	7.334×10^{-10}	$8.170 imes 10^{-10}$	$8.908 imes 10^{-10}$	$9.818 imes 10^{-10}$	1.151×10^{-9}	2.224×10^{-9}	2.499×10^{-9}	2.718×10^{-9}	3.036×10^{-9}	3.723×10^{-9}
chi square fluorescence [1]	395	938	1.796×10^{3}	3.002×10^{3}	5.342×10^{3}	4.719×10^{4}	8.289×10^{4}	1.291×10^{5}	2.125×10^{5}	4.450×10^{5}
degrees of freedom fluorescence [1]	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0
wavelength calibration offset [nm]	-2.592×10^{-2}	-1.006×10^{-2}	-4.749×10^{-3}	-2.047×10^{-3}	$5.169 imes 10^{-5}$	5.762×10^{-3}	7.864×10^{-3}	$1.061 imes10^{-2}$	$1.596 imes10^{-2}$	3.144×10^{-2}

Table 3. Parameterlist and basic statistics for the anal	lysis for observations in the northern hemisphere
Tuble 5. I diameternist and busic statistics for the and	i ysis for observations in the northern nemisphere

Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.867 ± 0.214	13454015	0.1000	1.000	0.350	1.000	0.900	1.000
cloud pressure crb [hPa]	822 ± 186	13454015	236	885	130	1.055×10^3	730	966
cloud pressure crb precision [hPa]	2.11 ± 7.76	13454015	1.08	0.515	$4.272 imes 10^{-4}$	1.366×10^{3}	0.308	1.39
cloud fraction crb [1]	0.519 ± 0.407	13454015	0.899	0.459	0.0	1.000	0.101	1.000
cloud fraction crb precision [1]	$(3.044 \pm 19.755) \times 10^{-4}$	13454015	$5.234 imes 10^{-5}$	$9.801 imes 10^{-5}$	$2.924 imes10^{-9}$	0.650	$4.766 imes10^{-5}$	$1.000 imes 10^{-4}$
scene albedo [1]	0.525 ± 0.341	13454015	0.630	0.529	$-1.957 imes 10^{-3}$	3.92	0.210	0.840
scene albedo precision [1]	$(9.034 \pm 11.060) \times 10^{-5}$	13454015	$6.852 imes 10^{-5}$	$5.445 imes 10^{-5}$	$1.068 imes10^{-5}$	$1.759 imes 10^{-3}$	$3.207 imes 10^{-5}$	$1.006 imes 10^{-4}$
apparent scene pressure [hPa]	857 ± 152	13454015	190	908	130	1.055×10^{3}	782	973
apparent scene pressure precision [hPa]	0.695 ± 1.017	13454015	0.324	0.384	0.163	51.5	0.295	0.619
chi square [1]	$(0.310 \pm 4.267) \times 10^5$	13454015	3.413×10^4	2.202×10^4	83.1	4.427×10^{8}	8.355×10^{3}	$4.248 imes 10^4$
number of iterations [1]	3.68 ± 1.13	13454015	1.000	3.00	1.000	14.0	3.00	4.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.877 \pm 6.066) \times 10^{-9}$	13454015	$6.191 imes 10^{-9}$	$1.979 imes 10^{-9}$	$-1.591 imes 10^{-6}$	$1.457 imes10^{-6}$	-1.069×10^{-9}	$5.121 imes 10^{-9}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.909 \pm 0.707) imes 10^{-9}$	13454015	1.013×10^{-9}	$1.869 imes 10^{-9}$	$4.427 imes 10^{-10}$	5.906×10^{-9}	1.341×10^{-9}	$2.354 imes10^{-9}$
chi square fluorescence [1]	$(0.469 \pm 0.817) \times 10^5$	13454015	$4.071 imes 10^4$	$1.721 imes 10^4$	116	$2.931 imes 10^6$	6.907×10^{3}	$4.762 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	13454015	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	13454015	0.0	50.0	46.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(2.861 \pm 7.383) \times 10^{-3}$	13454015	4.759×10^{-3}	2.843×10^{-3}	-7.903×10^{-2}	8.662×10^{-2}	4.436×10^{-4}	5.202×10^{-3}

Table 4	4: Parameterlist and basic s	tatistics for	the analysis for	observations in	the southern hem	isphere		
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.979 ± 0.091	9734399	0.0	1.000	0.350	1.000	1.000	1.000
cloud pressure crb [hPa]	773 ± 203	9734399	308	841	130	1.032×10^{3}	627	935
cloud pressure crb precision [hPa]	3.42 ± 12.54	9734399	1.60	0.678	1.349×10^{-2}	884	0.399	2.00
cloud fraction crb [1]	0.390 ± 0.348	9734399	0.629	0.292	0.0	1.000	$6.035 imes10^{-2}$	0.689
cloud fraction crb precision [1]	$(1.187 \pm 9.098) \times 10^{-4}$	9734399	$6.226 imes 10^{-5}$	$6.880 imes10^{-5}$	$3.375 imes 10^{-8}$	0.746	$3.774 imes 10^{-5}$	$1.000 imes 10^{-4}$
scene albedo [1]	0.356 ± 0.300	9734399	0.508	0.304	-3.342×10^{-3}	4.50	7.055×10^{-2}	0.579
scene albedo precision [1]	$(8.107 \pm 9.347) \times 10^{-5}$	9734399	$5.874 imes10^{-5}$	$5.184 imes10^{-5}$	$1.083 imes10^{-5}$	$4.200 imes 10^{-3}$	3.176×10^{-5}	$9.050 imes 10^{-5}$
apparent scene pressure [hPa]	798 ± 189	9734399	286	861	130	1.032×10^3	664	950
apparent scene pressure precision [hPa]	1.54 ± 2.77	9734399	0.958	0.544	0.156	61.2	0.375	1.33
chi square [1]	$(0.115 \pm 0.168) \times 10^5$	9734399	$1.457 imes 10^4$	8.691×10^{3}	50.4	$6.991 imes 10^6$	2.472×10^{3}	$1.704 imes 10^4$
number of iterations [1]	3.04 ± 0.80	9734399	0.0	3.00	1.000	14.0	3.00	3.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.126 \pm 49.938) \times 10^{-10}$	9734399	3.720×10^{-9}	$3.940 imes 10^{-10}$	-9.195×10^{-7}	$1.337 imes 10^{-6}$	$-1.471 imes 10^{-9}$	$2.249 imes 10^{-9}$
fluorescence precision [mol $s^{-1} m^{-2} nm^{-1} sr^{-1}$]	$(1.537 \pm 0.663) \times 10^{-9}$	9734399	$9.092 imes 10^{-10}$	1.409×10^{-9}	5.285×10^{-10}	$5.747 imes 10^{-9}$	$9.877 imes 10^{-10}$	$1.897 imes10^{-9}$
chi square fluorescence [1]	$(0.485 \pm 0.924) \times 10^5$	9734399	4.302×10^4	$1.240 imes 10^4$	93.4	$1.655 imes 10^6$	3.409×10^{3}	$4.643 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	9734399	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	9734399	0.0	50.0	48.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(2.971 \pm 10.490) \times 10^{-3}$	9734399	7.468×10^{-3}	3.078×10^{-3}	-0.489	0.151	-7.146×10^{-4}	6.753×10^{-3}

	Table 5: Parameterlist an	d basic stati	stics for the ana	lysis for observa	tions over water			
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.926 ± 0.164	16107009	0.0	1.000	0.350	1.000	1.000	1.000
cloud pressure crb [hPa]	816 ± 191	16107009	252	883	130	1.040×10^{3}	711	964
cloud pressure crb precision [hPa]	2.72 ± 10.64	16107009	1.21	0.594	$4.272 imes 10^{-4}$	853	0.355	1.56
cloud fraction crb [1]	0.441 ± 0.377	16107009	0.752	0.348	0.0	1.000	7.297×10^{-2}	0.825
cloud fraction crb precision [1]	$(2.185 \pm 16.154) \times 10^{-4}$	16107009	$6.784 imes10^{-5}$	6.122×10^{-5}	2.924×10^{-9}	0.628	3.216×10^{-5}	$1.000 imes 10^{-4}$
scene albedo [1]	0.390 ± 0.335	16107009	0.613	0.311	-3.342×10^{-3}	4.44	$6.984 imes 10^{-2}$	0.683
scene albedo precision [1]	$(8.396 \pm 10.264) \times 10^{-5}$	16107009	$7.416 imes10^{-5}$	$5.174 imes10^{-5}$	1.068×10^{-5}	$4.200 imes 10^{-3}$	$2.587 imes10^{-5}$	$1.000 imes 10^{-4}$
apparent scene pressure [hPa]	836 ± 177	16107009	228	897	130	1.036×10^3	746	973
apparent scene pressure precision [hPa]	1.34 ± 2.33	16107009	0.889	0.547	0.164	61.2	0.353	1.24
chi square [1]	$(0.185 \pm 3.686) \times 10^5$	16107009	$2.037 imes 10^4$	9.464×10^{3}	50.4	$4.427 imes 10^8$	2.786×10^3	$2.315 imes 10^4$
number of iterations [1]	3.20 ± 1.00	16107009	0.0	3.00	1.000	14.0	3.00	3.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(6.443 \pm 52.127) \times 10^{-10}$	16107009	$4.388 imes 10^{-9}$	$6.269 imes 10^{-10}$	-1.591×10^{-6}	$1.457 imes10^{-6}$	-1.340×10^{-9}	$3.049 imes 10^{-9}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.573 \pm 0.666) \times 10^{-9}$	16107009	$9.296 imes 10^{-10}$	$1.431 imes 10^{-9}$	4.427×10^{-10}	$5.625 imes 10^{-9}$	1.031×10^{-9}	$1.961 imes 10^{-9}$
chi square fluorescence [1]	$(0.360 \pm 0.689) \times 10^5$	16107009	3.066×10^4	$1.220 imes 10^4$	93.4	$1.655 imes 10^6$	4.404×10^3	$3.506 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	16107009	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	16107009	0.0	50.0	46.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(2.882 \pm 9.952) \times 10^{-3}$	16107009	6.494×10^{-3}	2.905×10^{-3}	-0.489	0.151	-3.705×10^{-4}	6.124×10^{-3}

	Table 6: Parameterlist ar	nd basic sta	tistics for the an	alysis for obser	vations over land			
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.869 ± 0.223	5128222	0.500	1.000	0.350	1.000	0.500	1.000
cloud pressure crb [hPa]	762 ± 196	5128222	284	802	130	1.042×10^{3}	644	928
cloud pressure crb precision [hPa]	2.50 ± 8.65	5128222	1.41	0.555	$9.766 imes10^{-4}$	1.366×10^{3}	0.302	1.71
cloud fraction crb [1]	0.530 ± 0.412	5128222	0.897	0.470	0.0	1.000	0.103	1.000
cloud fraction crb precision [1]	$(2.665 \pm 17.332) \times 10^{-4}$	5128222	$3.390 imes 10^{-5}$	$1.000 imes 10^{-4}$	$4.931 imes 10^{-8}$	0.746	$7.939 imes10^{-5}$	$1.133 imes10^{-4}$
scene albedo [1]	0.617 ± 0.285	5128222	0.505	0.600	1.636×10^{-2}	4.50	0.360	0.865
scene albedo precision [1]	$(9.903 \pm 11.377) \times 10^{-5}$	5128222	$5.470 imes 10^{-5}$	$5.786 imes10^{-5}$	$1.147 imes10^{-5}$	1.641×10^{-3}	$3.977 imes 10^{-5}$	$9.447 imes 10^{-5}$
apparent scene pressure [hPa]	814 ± 157	5128222	229	853	130	1.037×10^3	717	945
apparent scene pressure precision [hPa]	0.372 ± 0.126	5128222	0.154	0.339	0.163	5.43	0.279	0.433
chi square [1]	$(0.321 \pm 1.770) \times 10^5$	5128222	$2.692 imes 10^4$	$2.480 imes 10^4$	150	$1.529 imes 10^8$	$1.465 imes 10^4$	$4.156 imes 10^4$
number of iterations [1]	3.92 ± 1.01	5128222	1.000	4.00	1.000	14.0	3.00	4.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(2.149\pm 6.370) imes 10^{-9}$	5128222	$6.508 imes10^{-9}$	2.470×10^{-9}	-1.568×10^{-6}	$1.337 imes 10^{-6}$	$-9.484 imes 10^{-10}$	5.559×10^{-9}
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(2.144 \pm 0.641) \times 10^{-9}$	5128222	$8.057 imes 10^{-10}$	$2.145 imes10^{-9}$	$5.547 imes 10^{-10}$	5.747×10^{-9}	1.743×10^{-9}	2.549×10^{-9}
chi square fluorescence [1]	$(0.700 \pm 1.069) \times 10^5$	5128222	$7.837 imes 10^4$	$2.443 imes 10^4$	137	$1.473 imes10^{6}$	$7.318 imes 10^3$	$8.568 imes10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	5128222	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	5128222	0.0	50.0	48.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(2.928 \pm 4.685) \times 10^{-3}$	5128222	4.207×10^{-3}	2.927×10^{-3}	$-5.993 imes 10^{-2}$	5.980×10^{-2}	8.232×10^{-4}	5.030×10^{-3}

Γ

Granule outlines

Figure 1: Outline of the granules.

4 Input data monitoring

Figure 2: Input data per granule

5 Warnings and errors

Figure 3: Fraction of pixels with specific warnings and errors during processing

6 World maps

Figure 4: Map of "Cloud pressure" for 2025-04-11 to 2025-04-11

Figure 5: Map of "Cloud fraction" for 2025-04-11 to 2025-04-11

Figure 6: Map of "Scene albedo" for 2025-04-11 to 2025-04-11

Figure 7: Map of "Apparent scene pressure" for 2025-04-11 to 2025-04-11

Figure 8: Map of "Fluorescence" for 2025-04-11 to 2025-04-11

Figure 9: Map of the number of observations for 2025-04-11 to 2025-04-11

7 Zonal average

Figure 10: Zonal average of "QA value" for 2025-04-11 to 2025-04-11.

Figure 11: Zonal average of "Cloud pressure" for 2025-04-11 to 2025-04-11.

Figure 12: Zonal average of "Cloud pressure precision" for 2025-04-11 to 2025-04-11.

Figure 13: Zonal average of "Cloud fraction" for 2025-04-11 to 2025-04-11.

Figure 14: Zonal average of "Cloud fraction precision" for 2025-04-11 to 2025-04-11.

Figure 15: Zonal average of "Scene albedo" for 2025-04-11 to 2025-04-11.

Figure 16: Zonal average of "Scene albedo precision" for 2025-04-11 to 2025-04-11.

Figure 17: Zonal average of "Apparent scene pressure" for 2025-04-11 to 2025-04-11.

Figure 18: Zonal average of "Apparent scene pressure precision" for 2025-04-11 to 2025-04-11.

Figure 19: Zonal average of " χ^2 " for 2025-04-11 to 2025-04-11.

Figure 20: Zonal average of "Number of iterations" for 2025-04-11 to 2025-04-11.

Figure 21: Zonal average of "Fluorescence" for 2025-04-11 to 2025-04-11.

Figure 22: Zonal average of "Fluorescence precision" for 2025-04-11 to 2025-04-11.

Figure 23: Zonal average of " χ^2 of fluorescence retrieval" for 2025-04-11 to 2025-04-11.

Figure 24: Zonal average of "Degrees of freedom for signal of fluorescence retrieval" for 2025-04-11 to 2025-04-11.

Figure 25: Zonal average of "Number of points in the spectrum" for 2025-04-11 to 2025-04-11.

Figure 26: Zonal average of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-04-11 to 2025-04-11.

8 Histograms

The definitions of the parameters given in this section can be found in section 2.

Figure 27: Histogram of "QA value" for 2025-04-11 to 2025-04-11

Figure 28: Histogram of "Cloud pressure" for 2025-04-11 to 2025-04-11

Figure 29: Histogram of "Cloud pressure precision" for 2025-04-11 to 2025-04-11

Figure 30: Histogram of "Cloud fraction" for 2025-04-11 to 2025-04-11

Figure 31: Histogram of "Cloud fraction precision" for 2025-04-11 to 2025-04-11

Figure 32: Histogram of "Scene albedo" for 2025-04-11 to 2025-04-11

Figure 33: Histogram of "Scene albedo precision" for 2025-04-11 to 2025-04-11

Figure 34: Histogram of "Apparent scene pressure" for 2025-04-11 to 2025-04-11

Figure 35: Histogram of "Apparent scene pressure precision" for 2025-04-11 to 2025-04-11

Figure 36: Histogram of " χ^2 " for 2025-04-11 to 2025-04-11

Figure 37: Histogram of "Number of iterations" for 2025-04-11 to 2025-04-11

Figure 38: Histogram of "Fluorescence" for 2025-04-11 to 2025-04-11

Figure 39: Histogram of "Fluorescence precision" for 2025-04-11 to 2025-04-11

Figure 40: Histogram of " χ^2 of fluorescence retrieval" for 2025-04-11 to 2025-04-11

Figure 41: Histogram of "Degrees of freedom for signal of fluorescence retrieval" for 2025-04-11 to 2025-04-11

Figure 42: Histogram of "Number of points in the spectrum" for 2025-04-11 to 2025-04-11

Figure 43: Histogram of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-04-11 to 2025-04-11

9 Along track statistics

The TROPOMI instrument uses different binned detector rows for different viewing directions. In this section statistics are presented for each of the binned rows in the instrument.

Figure 44: Along track statistics of "QA value" for 2025-04-11 to 2025-04-11

Figure 45: Along track statistics of "Cloud pressure" for 2025-04-11 to 2025-04-11

Figure 46: Along track statistics of "Cloud pressure precision" for 2025-04-11 to 2025-04-11

Figure 47: Along track statistics of "Cloud fraction" for 2025-04-11 to 2025-04-11

Figure 48: Along track statistics of "Cloud fraction precision" for 2025-04-11 to 2025-04-11

Figure 49: Along track statistics of "Scene albedo" for 2025-04-11 to 2025-04-11

Figure 50: Along track statistics of "Scene albedo precision" for 2025-04-11 to 2025-04-11

Figure 51: Along track statistics of "Apparent scene pressure" for 2025-04-11 to 2025-04-11

Figure 52: Along track statistics of "Apparent scene pressure precision" for 2025-04-11 to 2025-04-11

Figure 53: Along track statistics of " χ^2 " for 2025-04-11 to 2025-04-11

Figure 54: Along track statistics of "Number of iterations" for 2025-04-11 to 2025-04-11

Figure 55: Along track statistics of "Fluorescence" for 2025-04-11 to 2025-04-11

Figure 56: Along track statistics of "Fluorescence precision" for 2025-04-11 to 2025-04-11

Figure 57: Along track statistics of " χ^2 of fluorescence retrieval" for 2025-04-11 to 2025-04-11

Figure 58: Along track statistics of "Degrees of freedom for signal of fluorescence retrieval" for 2025-04-11 to 2025-04-11

Figure 59: Along track statistics of "Number of points in the spectrum" for 2025-04-11 to 2025-04-11

Figure 60: Along track statistics of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-04-11 to 2025-04-11

10 Coincidence density

To investigate the relation between parameters scatter density plots are produced. These include some 'hidden' parameters, latitude and the solar- and viewing geometries, in addition to all configured parameters. All combinations of pairs of parameters are included *once*, in one direction alone.

Contents

1	Short Introduction 1.1 The list of parameters	1 1
2	Definitions	1
3	Granule outlines	8
4	Input data monitoring	9
5	Warnings and errors	10
6	World maps	11
7	Zonal average	17
8	Histograms	34
9	Along track statistics	51
10	Coincidence density	68
11	Copyright information of 'PyCAMA'	68

List of Figures

1	Outline of the granules.	8
2	Input data per granule	9
3	Fraction of pixels with specific warnings and errors during processing	10
4	Map of "Cloud pressure" for 2025-04-11 to 2025-04-11	11
5	Map of "Cloud fraction" for 2025-04-11 to 2025-04-11	12
6	Map of "Scene albedo" for 2025-04-11 to 2025-04-11	13
7	Map of "Apparent scene pressure" for 2025-04-11 to 2025-04-11	14
8	Map of "Fluorescence" for 2025-04-11 to 2025-04-11	15
9	Map of the number of observations for 2025-04-11 to 2025-04-11	16
10	Zonal average of "QA value" for 2025-04-11 to 2025-04-11.	17
11	Zonal average of "Cloud pressure" for 2025-04-11 to 2025-04-11.	18
12	Zonal average of "Cloud pressure precision" for 2025-04-11 to 2025-04-11.	19
13	Zonal average of "Cloud fraction" for 2025-04-11 to 2025-04-11.	20
14	Zonal average of "Cloud fraction precision" for 2025-04-11 to 2025-04-11.	21
15	Zonal average of "Scene albedo" for 2025-04-11 to 2025-04-11	22
16	Zonal average of "Scene albedo precision" for 2025-04-11 to 2025-04-11.	23
17	Zonal average of "Apparent scene pressure" for 2025-04-11 to 2025-04-11.	24
18	Zonal average of "Apparent scene pressure precision" for 2025-04-11 to 2025-04-11.	25
19	Zonal average of " χ^2 " for 2025-04-11 to 2025-04-11	26
20	Zonal average of "Number of iterations" for 2025-04-11 to 2025-04-11.	27
21	Zonal average of "Fluorescence" for 2025-04-11 to 2025-04-11.	28
22	Zonal average of "Fluorescence precision" for 2025-04-11 to 2025-04-11.	29
23	Zonal average of " χ^2 of fluorescence retrieval" for 2025-04-11 to 2025-04-11	30
24	Zonal average of "Degrees of freedom for signal of fluorescence retrieval" for 2025-04-11 to 2025-04-11.	31
25	Zonal average of "Number of points in the spectrum" for 2025-04-11 to 2025-04-11.	32
26	Zonal average of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-04-11 to 2025-04-11	33
27	Histogram of "QA value" for 2025-04-11 to 2025-04-11	34
28	Histogram of "Cloud pressure" for 2025-04-11 to 2025-04-11	35
29	Histogram of "Cloud pressure precision" for 2025-04-11 to 2025-04-11	36

30	Histogram of "Cloud fraction" for 2025-04-11 to 2025-04-11	37
31	Histogram of "Cloud fraction precision" for 2025-04-11 to 2025-04-11	38
32	Histogram of "Scene albedo" for 2025-04-11 to 2025-04-11	39
33	Histogram of "Scene albedo precision" for 2025-04-11 to 2025-04-11	40
34	Histogram of "Apparent scene pressure" for 2025-04-11 to 2025-04-11	41
35	Histogram of "Apparent scene pressure precision" for 2025-04-11 to 2025-04-11	42
36	Histogram of " χ^2 " for 2025-04-11 to 2025-04-11	43
37	Histogram of "Number of iterations" for 2025-04-11 to 2025-04-11	44
38	Histogram of "Fluorescence" for 2025-04-11 to 2025-04-11	45
39	Histogram of "Fluorescence precision" for 2025-04-11 to 2025-04-11	46
40	Histogram of " χ^2 of fluorescence retrieval" for 2025-04-11 to 2025-04-11	47
41	Histogram of "Degrees of freedom for signal of fluorescence retrieval" for 2025-04-11 to 2025-04-11	48
42	Histogram of "Number of points in the spectrum" for 2025-04-11 to 2025-04-11	49
43	Histogram of "Spectral offset $(\lambda_{true} - \lambda_{nominal})$ " for 2025-04-11 to 2025-04-11	50
44	Along track statistics of "QA value" for 2025-04-11 to 2025-04-11	51
45	Along track statistics of "Cloud pressure" for 2025-04-11 to 2025-04-11	52
46	Along track statistics of "Cloud pressure precision" for 2025-04-11 to 2025-04-11	53
47	Along track statistics of "Cloud fraction" for 2025-04-11 to 2025-04-11	54
48	Along track statistics of "Cloud fraction precision" for 2025-04-11 to 2025-04-11	55
49	Along track statistics of "Scene albedo" for 2025-04-11 to 2025-04-11	56
50	Along track statistics of "Scene albedo precision" for 2025-04-11 to 2025-04-11	57
51	Along track statistics of "Apparent scene pressure" for 2025-04-11 to 2025-04-11	58
52	Along track statistics of "Apparent scene pressure precision" for 2025-04-11 to 2025-04-11	59
53	Along track statistics of " χ^2 " for 2025-04-11 to 2025-04-11	60
54	Along track statistics of "Number of iterations" for 2025-04-11 to 2025-04-11	61
55	Along track statistics of "Fluorescence" for 2025-04-11 to 2025-04-11	62
56	Along track statistics of "Fluorescence precision" for 2025-04-11 to 2025-04-11	63
57	Along track statistics of " χ^2 of fluorescence retrieval" for 2025-04-11 to 2025-04-11	64
58	Along track statistics of "Degrees of freedom for signal of fluorescence retrieval" for 2025-04-11 to 2025-04-11	65
59	Along track statistics of "Number of points in the spectrum" for 2025-04-11 to 2025-04-11	66
60	Along track statistics of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-04-11 to 2025-04-11	67

List of Tables

1	Parameterlist and basic statistics for the analysis
2	Percentile ranges
3	Parameterlist and basic statistics for the analysis for observations in the northern hemisphere
4	Parameterlist and basic statistics for the analysis for observations in the southern hemisphere
5	Parameterlist and basic statistics for the analysis for observations over water
6	Parameterlist and basic statistics for the analysis for observations over land

11 Copyright information of 'PyCAMA'

Copyright © 2005-2023, Maarten Sneep (KNMI).

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
- 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

This software is provided by the copyright holders and contributors "as is" and any express or implied warranties, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose are disclaimed. In no event shall the copyright holder or contributors be liable for any direct, indirect, incidental, special, exemplary, or consequential damages (including, but not limited to, procurement of substitute goods or services; loss of use, data, or profits; or business interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence or otherwise) arising in any way out of the use of this software, even if advised of the possibility of such damage.

Maarten Sneep (maarten.sneep@knmi.nl).