PyCAMA report generated by tropl2-proc

tropl2-proc

2025-04-15 (03:15)

1 Short Introduction

1.1 The list of parameters

You may want to keep the list given in table 1 at hand when viewing the results.

2 Definitions

The averages shown here are unweighed averages:

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i \tag{1}$$

with N the number of observations in the dataset.

The spread of the measurements is indicated with the variance V(x), or rather the standard deviation $\sigma(x) = \sqrt{V(x)}$.

$$V(x) = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2$$
(2)

We also report the more robust statistics median, minimum, maximum, various percentiles and inter quartile range.

The median m is the value of parameter x for which half of the observations of x is smaller than m:

$$P(x \le m) = P(x \ge m) = \int_{-\infty}^{m} f(x) \, \mathrm{d}x = \frac{1}{2}$$
(3)

with f(x) the probability density function.

The median is a special case of a percentile. Instead of $\frac{1}{2}$ in equation 3, other threshold values can be used. We report results for 1%, 5%, 10%, 15.9%, 25%, 75%, 84.1%, 90%, 95% and 99%. The inter quartile range is the difference between the 75% and 25% percentiles. Similarly the minimum and maximum values correspond to the 0% and 100% percentiles respectively.

For normally distributed parameters the mean and median are the same, while the $\mu \pm \sigma$ values and the 15.9% and 84.1% percentiles coincide.

To get a measure for the relation of one variable $x_{(k)}$ with another $x_{(l)}$, we calculate the covariance matrix C_{kl} .

$$C_{kl} = C(x_{(k)}, x_{(l)}) = \frac{1}{N-1} \sum_{i=1}^{N} (x_{(k),i} - \overline{x_{(k)}}) (x_{(l),i} - \overline{x_{(l)}})$$
(4)

Rather than a dimensionally dependent covariance, it is often easier to interpret a correlation matrix R_{kl} , a matrix of Pearson's *r* coefficients:

$$R_{kl} = R(x_{(k)}, x_{(l)}) = \frac{C_{kl}}{\sqrt{C_{kk}C_{ll}}} = \frac{C_{kl}}{\sqrt{V(x_k)V(x_l)}}$$
(5)

The diagonal elements of the covariance matrix are the variances of the elements, $V(x_{(k)}) = C_{kk}$ and obviously $R_{kk} = 1$.

Т	able	1:	Parameter	list and	basic	statistic	s for	the ana	lysis
---	------	----	-----------	----------	-------	-----------	-------	---------	-------

Variable	mean $\pm \sigma$	Count	Mode	IQR	Median	Minimum	Maximum
qa value [1]	0.904 ± 0.189	16022673	0.995	0.1000	1.000	0.350	1.000
cloud pressure crb [hPa]	816 ± 194	16022673	1.005×10^3	252	883	130	1.063×10^{3}
cloud pressure crb precision [hPa]	2.38 ± 9.03	16022673	0.750	1.18	0.575	6.104×10^{-5}	1.520×10^3
cloud fraction crb [1]	0.470 ± 0.389	16022673	0.996	0.866	0.379	0.0	1.000
cloud fraction crb precision [1]	$(2.397 \pm 14.417) \times 10^{-4}$	16022673	$2.500 imes 10^{-4}$	$5.882 imes 10^{-5}$	$7.801 imes 10^{-5}$	$7.108 imes10^{-9}$	0.643
scene albedo [1]	0.451 ± 0.336	16022673	1.500×10^{-2}	0.630	0.410	$-3.013 imes10^{-3}$	4.00
scene albedo precision [1]	$(8.638 \pm 10.634) \times 10^{-5}$	16022673	$2.500 imes 10^{-4}$	$6.372 imes 10^{-5}$	$5.268 imes10^{-5}$	1.073×10^{-5}	6.758×10^{-3}
apparent scene pressure [hPa]	842 ± 171	16022673	1.008×10^3	210	899	130	1.037×10^3
apparent scene pressure precision [hPa]	1.03 ± 1.93	16022673	0.500	0.525	0.447	0.118	66.9
chi square [1]	$(0.227 \pm 2.105) \times 10^5$	16022673	0.150	$2.584 imes 10^4$	$1.398 imes 10^4$	51.7	$2.751 imes 10^8$
number of iterations [1]	3.39 ± 1.08	16022673	3.23	1.000	3.00	1.000	14.0
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.170 \pm 5.863) \times 10^{-9}$	16022673	$2.500 imes 10^{-10}$	$5.337 imes10^{-9}$	$1.083 imes10^{-9}$	$-1.494 imes10^{-6}$	1.660×10^{-6}
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.752 \pm 0.711) \times 10^{-9}$	16022673	$9.500 imes 10^{-10}$	$1.083 imes10^{-9}$	$1.677 imes10^{-9}$	$4.565 imes 10^{-10}$	5.751×10^{-9}
chi square fluorescence [1]	$(0.486 \pm 0.892) \times 10^5$	16022673	750	$4.104 imes 10^4$	1.590×10^4	101	2.106×10^6
degrees of freedom fluorescence [1]	6.00 ± 0.00	16022673	5.95	0.0	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	16022673	49.7	0.0	50.0	42.0	50.0
wavelength calibration offset [nm]	$(2.909 \pm 8.809) \times 10^{-3}$	16022673	$2.800 imes 10^{-3}$	$5.710 imes10^{-3}$	2.938×10^{-3}	-0.227	0.213

	Table 2: Percentile ranges									
Variable	1 %	5%	10 %	15.9 %	25 %	75 %	84.1 %	90 %	95 %	99 %
qa value [1]	0.500	0.500	0.500	0.500	0.900	1.000	1.000	1.000	1.000	1.000
cloud pressure crb [hPa]	256	405	505	595	714	965	990	1.004×10^3	1.012×10^3	1.021×10^3
cloud pressure crb precision [hPa]	0.141	0.237	0.261	0.287	0.334	1.51	2.63	4.43	8.82	30.5
cloud fraction crb [1]	$7.397 imes10^{-4}$	$1.084 imes10^{-2}$	$2.405 imes10^{-2}$	$4.418 imes10^{-2}$	$8.764 imes10^{-2}$	0.953	1.000	1.000	1.000	1.000
cloud fraction crb precision [1]	$2.059 imes 10^{-5}$	$2.330 imes 10^{-5}$	$2.612 imes 10^{-5}$	$2.999 imes10^{-5}$	$4.118 imes10^{-5}$	$1.000 imes 10^{-4}$	$1.170 imes10^{-4}$	$1.675 imes10^{-4}$	$4.143 imes 10^{-4}$	4.803×10^{-3}
scene albedo [1]	7.942×10^{-3}	$1.947 imes10^{-2}$	$3.534 imes 10^{-2}$	6.122×10^{-2}	0.126	0.756	0.862	0.916	0.973	1.13
scene albedo precision [1]	1.315×10^{-5}	$1.540 imes 10^{-5}$	$1.873 imes 10^{-5}$	$2.328 imes 10^{-5}$	3.150×10^{-5}	9.521×10^{-5}	$1.289 imes10^{-4}$	$1.791 imes 10^{-4}$	$2.838 imes 10^{-4}$	5.724×10^{-4}
apparent scene pressure [hPa]	343	472	568	657	762	972	993	1.005×10^3	1.013×10^{3}	1.022×10^{3}
apparent scene pressure precision [hPa]	0.216	0.244	0.263	0.284	0.316	0.841	1.38	2.21	3.89	9.26
chi square [1]	241	584	1.205×10^{3}	2.365×10^{3}	4.801×10^{3}	3.064×10^{4}	4.267×10^{4}	5.532×10^{4}	7.001×10^{4}	9.341×10^{4}
number of iterations [1]	2.00	2.00	2.00	3.00	3.00	4.00	4.00	5.00	5.00	6.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	-1.546×10^{-8}	-7.309×10^{-9}	-4.347×10^{-9}	-2.719×10^{-9}	-1.307×10^{-9}	4.031×10^{-9}	$5.729 imes 10^{-9}$	$7.318 imes 10^{-9}$	$9.515 imes 10^{-9}$	1.427×10^{-8}
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	7.352×10^{-10}	8.253×10^{-10}	$8.984 imes 10^{-10}$	$9.860 imes 10^{-10}$	1.146×10^{-9}	2.229×10^{-9}	2.509×10^{-9}	2.723×10^{-9}	3.023×10^{-9}	3.692×10^{-9}
chi square fluorescence [1]	409	1.106×10^{3}	2.111×10^{3}	3.509×10^{3}	6.083×10^{3}	4.712×10^{4}	8.089×10^{4}	1.267×10^{5}	2.260×10^{5}	4.475×10^{5}
degrees of freedom fluorescence [1]	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$-2.586 imes 10^{-2}$	-1.019×10^{-2}	-4.832×10^{-3}	-2.067×10^{-3}	7.041×10^{-5}	$5.780 imes 10^{-3}$	7.892×10^{-3}	1.066×10^{-2}	$1.598 imes10^{-2}$	3.122×10^{-2}

Table 3: Param	eterlist and basic	statistics for t	the analysis fo	r observations i	n the northern	hemisphere
1		_				

Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.843 ± 0.223	9124763	0.500	1.000	0.350	1.000	0.500	1.000
cloud pressure crb [hPa]	847 ± 180	9124763	201	909	130	1.063×10^3	777	978
cloud pressure crb precision [hPa]	2.16 ± 8.49	9124763	1.04	0.501	$6.104 imes10^{-5}$	$1.520 imes 10^3$	0.299	1.34
cloud fraction crb [1]	0.528 ± 0.414	9124763	0.901	0.475	0.0	1.000	$9.851 imes10^{-2}$	1.000
cloud fraction crb precision [1]	$(3.312 \pm 18.270) \times 10^{-4}$	9124763	$5.731 imes 10^{-5}$	$9.046 imes10^{-5}$	$7.108 imes10^{-9}$	0.643	$4.269 imes 10^{-5}$	$1.000 imes 10^{-4}$
scene albedo [1]	0.523 ± 0.350	9124763	0.679	0.531	$-2.404 imes10^{-3}$	2.78	0.176	0.855
scene albedo precision [1]	$(9.100 \pm 11.384) \times 10^{-5}$	9124763	$7.109 imes10^{-5}$	$5.322 imes 10^{-5}$	$1.073 imes10^{-5}$	$1.724 imes10^{-3}$	$3.086 imes 10^{-5}$	$1.020 imes 10^{-4}$
apparent scene pressure [hPa]	876 ± 145	9124763	162	924	130	1.037×10^3	820	982
apparent scene pressure precision [hPa]	0.749 ± 1.198	9124763	0.373	0.388	0.118	48.4	0.293	0.666
chi square [1]	$(0.314 \pm 2.783) \times 10^5$	9124763	$3.692 imes 10^4$	$2.266 imes 10^4$	85.3	$2.751 imes 10^8$	$7.893 imes 10^3$	$4.481 imes 10^4$
number of iterations [1]	3.70 ± 1.17	9124763	2.00	3.00	1.000	14.0	3.00	5.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.936 \pm 6.250) \times 10^{-9}$	9124763	6.535×10^{-9}	2.061×10^{-9}	$-1.494 imes10^{-6}$	$1.660 imes10^{-6}$	-1.166×10^{-9}	$5.370 imes10^{-9}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.902\pm0.712)\times10^{-9}$	9124763	$1.073 imes 10^{-9}$	$1.861 imes 10^{-9}$	$4.565 imes 10^{-10}$	$5.712 imes 10^{-9}$	1.302×10^{-9}	2.375×10^{-9}
chi square fluorescence [1]	$(0.480 \pm 0.836) \times 10^5$	9124763	$4.070 imes 10^4$	$1.780 imes 10^4$	101	$2.106 imes 10^6$	7.942×10^{3}	$4.864 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	9124763	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	9124763	0.0	50.0	42.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(2.867 \pm 7.570) \times 10^{-3}$	9124763	4.654×10^{-3}	2.875×10^{-3}	-8.284×10^{-2}	8.761×10^{-2}	5.245×10^{-4}	5.179×10^{-3}

Table 4	E Parameterlist and basic s	tatistics for	the analysis for	observations in	the southern hem	isphere		
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.985 ± 0.073	6897910	0.0	1.000	0.350	1.000	1.000	1.000
cloud pressure crb [hPa]	774 ± 205	6897910	313	847	130	1.035×10^{3}	623	936
cloud pressure crb precision [hPa]	2.67 ± 9.70	6897910	1.36	0.662	$1.325 imes 10^{-2}$	687	0.396	1.76
cloud fraction crb [1]	0.394 ± 0.337	6897910	0.603	0.314	0.0	1.000	$7.371 imes10^{-2}$	0.677
cloud fraction crb precision [1]	$(1.187 \pm 6.218) imes 10^{-4}$	6897910	$6.025 imes 10^{-5}$	$7.038 imes10^{-5}$	$3.249 imes 10^{-8}$	0.540	$3.983 imes10^{-5}$	$1.001 imes 10^{-4}$
scene albedo [1]	0.357 ± 0.289	6897910	0.483	0.314	$-3.013 imes10^{-3}$	4.00	$8.401 imes 10^{-2}$	0.567
scene albedo precision [1]	$(8.028\pm9.518)\times10^{-5}$	6897910	$5.643 imes 10^{-5}$	$5.205 imes 10^{-5}$	$1.082 imes 10^{-5}$	$6.758 imes10^{-3}$	3.236×10^{-5}	$8.878 imes10^{-5}$
apparent scene pressure [hPa]	797 ± 191	6897910	280	863	130	1.035×10^3	667	946
apparent scene pressure precision [hPa]	1.40 ± 2.54	6897910	0.834	0.544	0.155	66.9	0.373	1.21
chi square [1]	$(0.113 \pm 0.150) \times 10^5$	6897910	1.382×10^4	8.639×10^{3}	51.7	1.797×10^{7}	2.688×10^{3}	1.651×10^4
number of iterations [1]	2.99 ± 0.78	6897910	0.0	3.00	1.000	14.0	3.00	3.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.558 \pm 51.341) \times 10^{-10}$	6897910	3.759×10^{-9}	$4.398 imes 10^{-10}$	$-1.293 imes 10^{-6}$	$1.005 imes 10^{-6}$	$-1.449 imes 10^{-9}$	2.310×10^{-9}
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.553 \pm 0.660) \times 10^{-9}$	6897910	$9.235 imes 10^{-10}$	$1.433 imes 10^{-9}$	$5.484 imes 10^{-10}$	5.751×10^{-9}	$1.000 imes 10^{-9}$	$1.924 imes 10^{-9}$
chi square fluorescence [1]	$(0.494 \pm 0.962) \times 10^5$	6897910	$4.094 imes 10^4$	$1.297 imes 10^4$	105	$1.739 imes 10^6$	3.828×10^3	$4.477 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	6897910	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	6897910	0.0	50.0	48.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(2.963 \pm 10.219) \times 10^{-3}$	6897910	7.606×10^{-3}	$3.070 imes 10^{-3}$	-0.227	0.213	-7.792×10^{-4}	6.827×10^{-3}

S

	Table 5: Parameterlist an	d basic stati	stics for the anal	lysis for observa	tions over water			
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.917 ± 0.173	11811387	0.1000	1.000	0.350	1.000	0.900	1.000
cloud pressure crb [hPa]	829 ± 188	11811387	230	894	130	1.036×10^{3}	742	972
cloud pressure crb precision [hPa]	2.36 ± 9.17	11811387	1.09	0.576	$6.104 imes10^{-5}$	534	0.345	1.43
cloud fraction crb [1]	0.454 ± 0.379	11811387	0.773	0.370	0.0	1.000	$8.204 imes10^{-2}$	0.855
cloud fraction crb precision [1]	$(2.421 \pm 14.774) \times 10^{-4}$	11811387	$6.751 imes10^{-5}$	$6.282 imes10^{-5}$	$7.108 imes10^{-9}$	0.325	$3.249 imes 10^{-5}$	$1.000 imes 10^{-4}$
scene albedo [1]	0.396 ± 0.332	11811387	0.621	0.325	$-3.013 imes10^{-3}$	4.00	$7.701 imes10^{-2}$	0.698
scene albedo precision [1]	$(8.455 \pm 10.601) \times 10^{-5}$	11811387	$7.185 imes10^{-5}$	$5.200 imes 10^{-5}$	$1.073 imes 10^{-5}$	$6.758 imes 10^{-3}$	$2.592 imes 10^{-5}$	$9.778 imes10^{-5}$
apparent scene pressure [hPa]	845 ± 175	11811387	208	903	130	1.035×10^3	770	978
apparent scene pressure precision [hPa]	1.26 ± 2.19	11811387	0.814	0.546	0.155	66.9	0.348	1.16
chi square [1]	$(0.188 \pm 1.928) \times 10^5$	11811387	$2.116 imes 10^4$	9.793×10^{3}	51.7	$2.751 imes 10^8$	3.045×10^3	2.420×10^4
number of iterations [1]	3.21 ± 1.04	11811387	0.0	3.00	1.000	14.0	3.00	3.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(7.603 \pm 51.270) \times 10^{-10}$	11811387	4.613×10^{-9}	$6.931 imes 10^{-10}$	$-9.562 imes 10^{-7}$	$1.097 imes10^{-6}$	$-1.365 imes 10^{-9}$	$3.248 imes 10^{-9}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.594 \pm 0.668) \times 10^{-9}$	11811387	$9.685 imes 10^{-10}$	$1.451 imes 10^{-9}$	$4.565 imes 10^{-10}$	$5.712 imes 10^{-9}$	$1.050 imes 10^{-9}$	$2.018 imes10^{-9}$
chi square fluorescence [1]	$(0.355 \pm 0.685) \times 10^5$	11811387	$2.947 imes 10^4$	$1.310 imes 10^4$	101	$2.106 imes 10^6$	$4.938 imes 10^3$	3.440×10^4
degrees of freedom fluorescence [1]	6.00 ± 0.00	11811387	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	11811387	0.0	50.0	48.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(2.878 \pm 9.746) \times 10^{-3}$	11811387	6.324×10^{-3}	2.934×10^{-3}	-0.227	0.213	-2.756×10^{-4}	$6.048 imes 10^{-3}$

	Table 6: Parameterlist an	d basic stat	istics for the ana	alysis for observ	vations over land			
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.852 ± 0.231	2926322	0.500	1.000	0.350	1.000	0.500	1.000
cloud pressure crb [hPa]	770 ± 204	2926322	273	823	130	1.030×10^{3}	665	938
cloud pressure crb precision [hPa]	2.36 ± 8.26	2926322	1.42	0.582	1.892×10^{-3}	1.218×10^3	0.299	1.72
cloud fraction crb [1]	0.524 ± 0.415	2926322	0.897	0.428	0.0	1.000	0.103	1.000
cloud fraction crb precision [1]	$(2.491 \pm 14.031) \times 10^{-4}$	2926322	$2.743 imes 10^{-5}$	$1.000 imes 10^{-4}$	$2.004 imes 10^{-8}$	0.643	$7.913 imes10^{-5}$	$1.066 imes10^{-4}$
scene albedo [1]	0.625 ± 0.294	2926322	0.534	0.584	$3.179 imes10^{-2}$	3.97	0.360	0.894
scene albedo precision [1]	$(9.801 \pm 11.497) \times 10^{-5}$	2926322	5.635×10^{-5}	5.439×10^{-5}	$1.375 imes10^{-5}$	$1.388 imes10^{-3}$	$3.924 imes10^{-5}$	9.559×10^{-5}
apparent scene pressure [hPa]	824 ± 157	2926322	212	870	130	1.029×10^3	737	949
apparent scene pressure precision [hPa]	0.367 ± 0.126	2926322	0.147	0.335	0.118	7.79	0.275	0.421
chi square [1]	$(0.328 \pm 2.475) \times 10^5$	2926322	$2.593 imes 10^4$	$2.517 imes 10^4$	250	2.544×10^{8}	1.521×10^{4}	4.114×10^4
number of iterations [1]	3.94 ± 1.01	2926322	1.000	4.00	1.000	14.0	3.00	4.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(2.022 \pm 7.248) \times 10^{-9}$	2926322	7.262×10^{-9}	2.556×10^{-9}	$-1.293 imes 10^{-6}$	$1.060 imes10^{-6}$	-1.359×10^{-9}	$5.903 imes 10^{-9}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(2.197 \pm 0.637) \times 10^{-9}$	2926322	$8.006 imes 10^{-10}$	$2.188 imes 10^{-9}$	$5.381 imes 10^{-10}$	5.751×10^{-9}	$1.797 imes10^{-9}$	$2.598 imes 10^{-9}$
chi square fluorescence [1]	$(0.894 \pm 1.283) \times 10^5$	2926322	$1.000 imes 10^5$	3.207×10^4	161	$1.680 imes 10^6$	9.772×10^{3}	$1.098 imes 10^5$
degrees of freedom fluorescence [1]	6.00 ± 0.00	2926322	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	2926322	0.0	50.0	44.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(3.010 \pm 4.695) \times 10^{-3}$	2926322	4.275×10^{-3}	2.950×10^{-3}	$-5.478 imes 10^{-2}$	6.567×10^{-2}	8.529×10^{-4}	5.128×10^{-3}

Granule outlines

Figure 1: Outline of the granules.

4 Input data monitoring

Figure 2: Input data per granule

5 Warnings and errors

Figure 3: Fraction of pixels with specific warnings and errors during processing

6 World maps

Figure 4: Map of "Cloud pressure" for 2025-04-13 to 2025-04-14

Figure 5: Map of "Cloud fraction" for 2025-04-13 to 2025-04-14

Figure 6: Map of "Scene albedo" for 2025-04-13 to 2025-04-14

Figure 7: Map of "Apparent scene pressure" for 2025-04-13 to 2025-04-14

Figure 8: Map of "Fluorescence" for 2025-04-13 to 2025-04-14

Figure 9: Map of the number of observations for 2025-04-13 to 2025-04-14

7 Zonal average

Figure 10: Zonal average of "QA value" for 2025-04-13 to 2025-04-14.

Figure 11: Zonal average of "Cloud pressure" for 2025-04-13 to 2025-04-14.

Figure 12: Zonal average of "Cloud pressure precision" for 2025-04-13 to 2025-04-14.

Figure 13: Zonal average of "Cloud fraction" for 2025-04-13 to 2025-04-14.

Figure 14: Zonal average of "Cloud fraction precision" for 2025-04-13 to 2025-04-14.

Figure 15: Zonal average of "Scene albedo" for 2025-04-13 to 2025-04-14.

Figure 16: Zonal average of "Scene albedo precision" for 2025-04-13 to 2025-04-14.

Figure 17: Zonal average of "Apparent scene pressure" for 2025-04-13 to 2025-04-14.

Figure 18: Zonal average of "Apparent scene pressure precision" for 2025-04-13 to 2025-04-14.

Figure 19: Zonal average of " χ^2 " for 2025-04-13 to 2025-04-14.

Figure 20: Zonal average of "Number of iterations" for 2025-04-13 to 2025-04-14.

Figure 21: Zonal average of "Fluorescence" for 2025-04-13 to 2025-04-14.

Figure 22: Zonal average of "Fluorescence precision" for 2025-04-13 to 2025-04-14.

Figure 23: Zonal average of " χ^2 of fluorescence retrieval" for 2025-04-13 to 2025-04-14.

Figure 24: Zonal average of "Degrees of freedom for signal of fluorescence retrieval" for 2025-04-13 to 2025-04-14.

Figure 25: Zonal average of "Number of points in the spectrum" for 2025-04-13 to 2025-04-14.

Figure 26: Zonal average of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-04-13 to 2025-04-14.

8 Histograms

The definitions of the parameters given in this section can be found in section 2.

Figure 27: Histogram of "QA value" for 2025-04-13 to 2025-04-14

Figure 28: Histogram of "Cloud pressure" for 2025-04-13 to 2025-04-14

Figure 29: Histogram of "Cloud pressure precision" for 2025-04-13 to 2025-04-14

Figure 30: Histogram of "Cloud fraction" for 2025-04-13 to 2025-04-14

Figure 31: Histogram of "Cloud fraction precision" for 2025-04-13 to 2025-04-14

Figure 32: Histogram of "Scene albedo" for 2025-04-13 to 2025-04-14

Figure 33: Histogram of "Scene albedo precision" for 2025-04-13 to 2025-04-14

Figure 34: Histogram of "Apparent scene pressure" for 2025-04-13 to 2025-04-14

Figure 35: Histogram of "Apparent scene pressure precision" for 2025-04-13 to 2025-04-14

Figure 36: Histogram of " χ^2 " for 2025-04-13 to 2025-04-14

Figure 37: Histogram of "Number of iterations" for 2025-04-13 to 2025-04-14

Figure 38: Histogram of "Fluorescence" for 2025-04-13 to 2025-04-14

Figure 39: Histogram of "Fluorescence precision" for 2025-04-13 to 2025-04-14

Figure 40: Histogram of " χ^2 of fluorescence retrieval" for 2025-04-13 to 2025-04-14

Figure 41: Histogram of "Degrees of freedom for signal of fluorescence retrieval" for 2025-04-13 to 2025-04-14

Figure 42: Histogram of "Number of points in the spectrum" for 2025-04-13 to 2025-04-14

Figure 43: Histogram of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-04-13 to 2025-04-14

9 Along track statistics

The TROPOMI instrument uses different binned detector rows for different viewing directions. In this section statistics are presented for each of the binned rows in the instrument.

Figure 44: Along track statistics of "QA value" for 2025-04-13 to 2025-04-14

Figure 45: Along track statistics of "Cloud pressure" for 2025-04-13 to 2025-04-14

Figure 46: Along track statistics of "Cloud pressure precision" for 2025-04-13 to 2025-04-14

Figure 47: Along track statistics of "Cloud fraction" for 2025-04-13 to 2025-04-14

Figure 48: Along track statistics of "Cloud fraction precision" for 2025-04-13 to 2025-04-14

Figure 49: Along track statistics of "Scene albedo" for 2025-04-13 to 2025-04-14

Figure 50: Along track statistics of "Scene albedo precision" for 2025-04-13 to 2025-04-14

Figure 51: Along track statistics of "Apparent scene pressure" for 2025-04-13 to 2025-04-14

Figure 52: Along track statistics of "Apparent scene pressure precision" for 2025-04-13 to 2025-04-14

Figure 53: Along track statistics of " χ^2 " for 2025-04-13 to 2025-04-14

Figure 54: Along track statistics of "Number of iterations" for 2025-04-13 to 2025-04-14

Figure 55: Along track statistics of "Fluorescence" for 2025-04-13 to 2025-04-14

Figure 56: Along track statistics of "Fluorescence precision" for 2025-04-13 to 2025-04-14

Figure 57: Along track statistics of " χ^2 of fluorescence retrieval" for 2025-04-13 to 2025-04-14

Figure 58: Along track statistics of "Degrees of freedom for signal of fluorescence retrieval" for 2025-04-13 to 2025-04-14

Figure 59: Along track statistics of "Number of points in the spectrum" for 2025-04-13 to 2025-04-14

Figure 60: Along track statistics of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-04-13 to 2025-04-14

10 Coincidence density

To investigate the relation between parameters scatter density plots are produced. These include some 'hidden' parameters, latitude and the solar- and viewing geometries, in addition to all configured parameters. All combinations of pairs of parameters are included *once*, in one direction alone.

Contents

1	Short Introduction	1
	1.1 The list of parameters	1
2	Definitions	1
3	Granule outlines	8
4	Input data monitoring	9
5	Warnings and errors	10
6	World maps	11
7	Zonal average	17
8	Histograms	34
9	Along track statistics	51
10	Coincidence density	68
11	Copyright information of 'PyCAMA'	68

List of Figures

1	Outline of the granules.	8
2	Input data per granule	9
3	Fraction of pixels with specific warnings and errors during processing	10
4	Map of "Cloud pressure" for 2025-04-13 to 2025-04-14	11
5	Map of "Cloud fraction" for 2025-04-13 to 2025-04-14	12
6	Map of "Scene albedo" for 2025-04-13 to 2025-04-14	13
7	Map of "Apparent scene pressure" for 2025-04-13 to 2025-04-14	14
8	Map of "Fluorescence" for 2025-04-13 to 2025-04-14	15
9	Map of the number of observations for 2025-04-13 to 2025-04-14	16
10	Zonal average of "QA value" for 2025-04-13 to 2025-04-14.	17
11	Zonal average of "Cloud pressure" for 2025-04-13 to 2025-04-14.	18
12	Zonal average of "Cloud pressure precision" for 2025-04-13 to 2025-04-14.	19
13	Zonal average of "Cloud fraction" for 2025-04-13 to 2025-04-14.	20
14	Zonal average of "Cloud fraction precision" for 2025-04-13 to 2025-04-14.	21
15	Zonal average of "Scene albedo" for 2025-04-13 to 2025-04-14.	22
16	Zonal average of "Scene albedo precision" for 2025-04-13 to 2025-04-14.	23
17	Zonal average of "Apparent scene pressure" for 2025-04-13 to 2025-04-14.	24
18	Zonal average of "Apparent scene pressure precision" for 2025-04-13 to 2025-04-14.	25
19	Zonal average of " χ^2 " for 2025-04-13 to 2025-04-14	26
20	Zonal average of "Number of iterations" for 2025-04-13 to 2025-04-14.	27
21	Zonal average of "Fluorescence" for 2025-04-13 to 2025-04-14.	28
22	Zonal average of "Fluorescence precision" for 2025-04-13 to 2025-04-14.	29
23	Zonal average of " χ^2 of fluorescence retrieval" for 2025-04-13 to 2025-04-14	30
24	Zonal average of "Degrees of freedom for signal of fluorescence retrieval" for 2025-04-13 to 2025-04-14.	31
25	Zonal average of "Number of points in the spectrum" for 2025-04-13 to 2025-04-14.	32
26	Zonal average of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-04-13 to 2025-04-14	33
27	Histogram of "QA value" for 2025-04-13 to 2025-04-14	34
28	Histogram of "Cloud pressure" for 2025-04-13 to 2025-04-14	35
29	Histogram of "Cloud pressure precision" for 2025-04-13 to 2025-04-14	36

30	Histogram of "Cloud fraction" for 2025-04-13 to 2025-04-14	37
31	Histogram of "Cloud fraction precision" for 2025-04-13 to 2025-04-14	38
32	Histogram of "Scene albedo" for 2025-04-13 to 2025-04-14	39
33	Histogram of "Scene albedo precision" for 2025-04-13 to 2025-04-14	40
34	Histogram of "Apparent scene pressure" for 2025-04-13 to 2025-04-14	41
35	Histogram of "Apparent scene pressure precision" for 2025-04-13 to 2025-04-14	42
36	Histogram of " χ^2 " for 2025-04-13 to 2025-04-14	43
37	Histogram of "Number of iterations" for 2025-04-13 to 2025-04-14	44
38	Histogram of "Fluorescence" for 2025-04-13 to 2025-04-14	45
39	Histogram of "Fluorescence precision" for 2025-04-13 to 2025-04-14	46
40	Histogram of " χ^2 of fluorescence retrieval" for 2025-04-13 to 2025-04-14	47
41	Histogram of "Degrees of freedom for signal of fluorescence retrieval" for 2025-04-13 to 2025-04-14	48
42	Histogram of "Number of points in the spectrum" for 2025-04-13 to 2025-04-14	49
43	Histogram of "Spectral offset $(\lambda_{true} - \lambda_{nominal})$ " for 2025-04-13 to 2025-04-14	50
44	Along track statistics of "QA value" for 2025-04-13 to 2025-04-14	51
45	Along track statistics of "Cloud pressure" for 2025-04-13 to 2025-04-14	52
46	Along track statistics of "Cloud pressure precision" for 2025-04-13 to 2025-04-14	53
47	Along track statistics of "Cloud fraction" for 2025-04-13 to 2025-04-14	54
48	Along track statistics of "Cloud fraction precision" for 2025-04-13 to 2025-04-14	55
49	Along track statistics of "Scene albedo" for 2025-04-13 to 2025-04-14	56
50	Along track statistics of "Scene albedo precision" for 2025-04-13 to 2025-04-14	57
51	Along track statistics of "Apparent scene pressure" for 2025-04-13 to 2025-04-14	58
52	Along track statistics of "Apparent scene pressure precision" for 2025-04-13 to 2025-04-14	59
53	Along track statistics of " χ^2 " for 2025-04-13 to 2025-04-14	60
54	Along track statistics of "Number of iterations" for 2025-04-13 to 2025-04-14	61
55	Along track statistics of "Fluorescence" for 2025-04-13 to 2025-04-14	62
56	Along track statistics of "Fluorescence precision" for 2025-04-13 to 2025-04-14	63
57	Along track statistics of " χ^2 of fluorescence retrieval" for 2025-04-13 to 2025-04-14	64
58	Along track statistics of "Degrees of freedom for signal of fluorescence retrieval" for 2025-04-13 to 2025-04-14	65
59	Along track statistics of "Number of points in the spectrum" for 2025-04-13 to 2025-04-14	66
60	Along track statistics of "Spectral offset $(\lambda_{true} - \lambda_{nominal})$ " for 2025-04-13 to 2025-04-14	67

List of Tables

1	Parameterlist and basic statistics for the analysis
2	Percentile ranges
3	Parameterlist and basic statistics for the analysis for observations in the northern hemisphere
4	Parameterlist and basic statistics for the analysis for observations in the southern hemisphere
5	Parameterlist and basic statistics for the analysis for observations over water
6	Parameterlist and basic statistics for the analysis for observations over land

11 Copyright information of 'PyCAMA'

Copyright © 2005-2023, Maarten Sneep (KNMI).

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
- 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

This software is provided by the copyright holders and contributors "as is" and any express or implied warranties, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose are disclaimed. In no event shall the copyright holder or contributors be liable for any direct, indirect, incidental, special, exemplary, or consequential damages (including, but not limited to, procurement of substitute goods or services; loss of use, data, or profits; or business interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence or otherwise) arising in any way out of the use of this software, even if advised of the possibility of such damage.

Maarten Sneep (maarten.sneep@knmi.nl).