PyCAMA report generated by tropl2-proc

tropl2-proc

2025-04-16 (03:15)

1 Short Introduction

1.1 The list of parameters

You may want to keep the list given in table 1 at hand when viewing the results.

2 Definitions

The averages shown here are unweighed averages:

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i \tag{1}$$

with N the number of observations in the dataset.

The spread of the measurements is indicated with the variance V(x), or rather the standard deviation $\sigma(x) = \sqrt{V(x)}$.

$$V(x) = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2$$
(2)

We also report the more robust statistics median, minimum, maximum, various percentiles and inter quartile range.

The median m is the value of parameter x for which half of the observations of x is smaller than m:

$$P(x \le m) = P(x \ge m) = \int_{-\infty}^{m} f(x) \, \mathrm{d}x = \frac{1}{2}$$
(3)

with f(x) the probability density function.

The median is a special case of a percentile. Instead of $\frac{1}{2}$ in equation 3, other threshold values can be used. We report results for 1%, 5%, 10%, 15.9%, 25%, 75%, 84.1%, 90%, 95% and 99%. The inter quartile range is the difference between the 75% and 25% percentiles. Similarly the minimum and maximum values correspond to the 0% and 100% percentiles respectively.

For normally distributed parameters the mean and median are the same, while the $\mu \pm \sigma$ values and the 15.9% and 84.1% percentiles coincide.

To get a measure for the relation of one variable $x_{(k)}$ with another $x_{(l)}$, we calculate the covariance matrix C_{kl} .

$$C_{kl} = C(x_{(k)}, x_{(l)}) = \frac{1}{N-1} \sum_{i=1}^{N} (x_{(k),i} - \overline{x_{(k)}}) (x_{(l),i} - \overline{x_{(l)}})$$
(4)

Rather than a dimensionally dependent covariance, it is often easier to interpret a correlation matrix R_{kl} , a matrix of Pearson's *r* coefficients:

$$R_{kl} = R(x_{(k)}, x_{(l)}) = \frac{C_{kl}}{\sqrt{C_{kk}C_{ll}}} = \frac{C_{kl}}{\sqrt{V(x_k)V(x_l)}}$$
(5)

The diagonal elements of the covariance matrix are the variances of the elements, $V(x_{(k)}) = C_{kk}$ and obviously $R_{kk} = 1$.

Table 1: Parameterlist and basic s	statistics for t	he analysi
------------------------------------	------------------	------------

	Table 1: Parameterl	ist and basic s	statistics for the ar	alysis			
Variable	mean $\pm \sigma$	Count	Mode	IQR	Median	Minimum	Maximum
qa value [1]	0.915 ± 0.180	22959171	0.995	0.0	1.000	0.350	1.000
cloud pressure crb [hPa]	802 ± 196	22959171	$1.005 imes 10^3$	274	868	130	1.051×10^3
cloud pressure crb precision [hPa]	2.33 ± 8.79	22959171	0.750	1.17	0.577	$1.831 imes10^{-4}$	1.420×10^3
cloud fraction crb [1]	0.468 ± 0.385	22959171	0.996	0.831	0.378	0.0	1.000
cloud fraction crb precision [1]	$(2.425 \pm 15.195) \times 10^{-4}$	22959171	$2.500 imes10^{-4}$	$5.606 imes10^{-5}$	$8.013 imes10^{-5}$	$1.480 imes10^{-8}$	0.837
scene albedo [1]	0.454 ± 0.327	22959171	$1.500 imes10^{-2}$	0.597	0.415	-3.262×10^{-3}	5.59
scene albedo precision [1]	$(8.454 \pm 10.121) \times 10^{-5}$	22959171	$2.500 imes10^{-4}$	$6.147 imes 10^{-5}$	$5.299 imes 10^{-5}$	1.057×10^{-5}	7.210×10^{-3}
apparent scene pressure [hPa]	831 ± 174	22959171	1.008×10^3	230	890	130	1.051×10^3
apparent scene pressure precision [hPa]	0.966 ± 1.864	22959171	0.500	0.461	0.437	7.091×10^{-2}	62.1
chi square [1]	$(0.230 \pm 2.391) \times 10^5$	22959171	0.150	$2.497 imes 10^4$	$1.451 imes 10^4$	53.5	2.967×10^{8}
number of iterations [1]	3.40 ± 1.06	22959171	3.23	1.000	3.00	1.000	14.0
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.204 \pm 6.178) \times 10^{-9}$	22959171	$2.500 imes 10^{-10}$	$5.314 imes10^{-9}$	$1.120 imes 10^{-9}$	-1.851×10^{-6}	1.654×10^{-6}
fluorescence precision [mol $s^{-1} m^{-2} nm^{-1} sr^{-1}$]	$(1.775 \pm 0.714) \times 10^{-9}$	22959171	$9.500 imes 10^{-10}$	1.055×10^{-9}	1.707×10^{-9}	$4.364 imes 10^{-10}$	5.763×10^{-9}
chi square fluorescence [1]	$(0.483 \pm 0.907) \times 10^5$	22959171	750	$4.066 imes 10^4$	$1.581 imes 10^4$	102	$2.562 imes 10^6$
degrees of freedom fluorescence [1]	6.00 ± 0.00	22959171	5.95	0.0	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	22959171	49.7	0.0	50.0	46.0	50.0
wavelength calibration offset [nm]	$(2.899 \pm 8.595) \times 10^{-3}$	22959171	2.800×10^{-3}	5.707×10^{-3}	2.911×10^{-3}	-0.667	0.249

Table 2: Percentile ranges										
Variable	1 %	5%	10 %	15.9 %	25 %	75 %	84.1 %	90 %	95 %	99 %
qa value [1]	0.500	0.500	0.500	0.900	1.000	1.000	1.000	1.000	1.000	1.000
cloud pressure crb [hPa]	258	404	494	575	684	958	984	1000	1.010×10^3	1.020×10^3
cloud pressure crb precision [hPa]	0.156	0.236	0.262	0.290	0.337	1.51	2.58	4.30	8.71	29.5
cloud fraction crb [1]	$9.424 imes 10^{-4}$	$1.128 imes10^{-2}$	$2.522 imes 10^{-2}$	$4.598 imes10^{-2}$	$8.971 imes10^{-2}$	0.921	1.000	1.000	1.000	1.000
cloud fraction crb precision [1]	$2.040 imes10^{-5}$	$2.351 imes 10^{-5}$	$2.665 imes 10^{-5}$	$3.105 imes10^{-5}$	$4.394 imes 10^{-5}$	$1.000 imes10^{-4}$	$1.244 imes10^{-4}$	$1.842 imes10^{-4}$	$4.593 imes10^{-4}$	4.561×10^{-3}
scene albedo [1]	$8.244 imes 10^{-3}$	$2.146 imes10^{-2}$	$3.967 imes10^{-2}$	$7.051 imes 10^{-2}$	0.149	0.746	0.849	0.906	0.962	1.11
scene albedo precision [1]	$1.311 imes 10^{-5}$	$1.555 imes10^{-5}$	$1.914 imes10^{-5}$	$2.413 imes 10^{-5}$	$3.207 imes 10^{-5}$	9.354×10^{-5}	$1.255 imes 10^{-4}$	$1.726 imes10^{-4}$	$2.737 imes 10^{-4}$	$5.465 imes 10^{-4}$
apparent scene pressure [hPa]	344	466	552	633	737	966	988	1.002×10^{3}	1.011×10^{3}	1.020×10^{3}
apparent scene pressure precision [hPa]	0.213	0.243	0.264	0.284	0.317	0.779	1.24	1.97	3.47	9.03
chi square [1]	253	662	1.395×10^{3}	2.685×10^{3}	5.168×10^{3}	3.013×10^{4}	4.187×10^{4}	5.374×10^{4}	6.842×10^{4}	9.405×10^{4}
number of iterations [1]	2.00	2.00	2.00	3.00	3.00	4.00	4.00	5.00	5.00	6.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	-1.527×10^{-8}	-7.214×10^{-9}	-4.292×10^{-9}	-2.681×10^{-9}	-1.286×10^{-9}	$4.028 imes 10^{-9}$	$5.718 imes 10^{-9}$	$7.315 imes 10^{-9}$	$9.550 imes 10^{-9}$	1.443×10^{-8}
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$7.404 imes 10^{-10}$	8.333×10^{-10}	$9.115 imes 10^{-10}$	1.003×10^{-9}	$1.182 imes10^{-9}$	2.237×10^{-9}	2.518×10^{-9}	2.738×10^{-9}	3.077×10^{-9}	3.746×10^{-9}
chi square fluorescence [1]	417	1.069×10^{3}	2.042×10^{3}	3.377×10^{3}	5.942×10^{3}	4.660×10^{4}	7.851×10^{4}	1.232×10^{5}	2.205×10^{5}	4.635×10^{5}
degrees of freedom fluorescence [1]	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0
wavelength calibration offset [nm]	-2.492×10^{-2}	-9.813×10^{-3}	-4.699×10^{-3}	-2.040×10^{-3}	$4.956 imes 10^{-5}$	$5.756 imes 10^{-3}$	$7.837 imes 10^{-3}$	1.052×10^{-2}	1.566×10^{-2}	3.046×10^{-2}

Table 3. Parameterlist and basic statistics for the anal	lysis for observations in the northern hemisphere
Tuble 5. I diameternist and busic statistics for the and	i ysis for observations in the northern nemisphere

Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.866 ± 0.212	13374334	0.1000	1.000	0.350	1.000	0.900	1.000
cloud pressure crb [hPa]	825 ± 188	13374334	236	889	130	1.051×10^3	735	970
cloud pressure crb precision [hPa]	2.21 ± 8.35	13374334	1.14	0.537	$1.831 imes 10^{-4}$	$1.420 imes 10^3$	0.304	1.45
cloud fraction crb [1]	0.508 ± 0.408	13374334	0.904	0.419	0.0	1.000	9.560×10^{-2}	1.000
cloud fraction crb precision [1]	$(3.295 \pm 18.241) \times 10^{-4}$	13374334	$5.266 imes10^{-5}$	$9.149 imes 10^{-5}$	$1.480 imes10^{-8}$	0.837	$4.734 imes 10^{-5}$	$1.000 imes 10^{-4}$
scene albedo [1]	0.513 ± 0.338	13374334	0.633	0.506	-2.297×10^{-3}	3.94	0.199	0.831
scene albedo precision [1]	$(8.745 \pm 10.740) \times 10^{-5}$	13374334	$6.497 imes10^{-5}$	$5.295 imes 10^{-5}$	$1.057 imes 10^{-5}$	$1.709 imes 10^{-3}$	$3.173 imes 10^{-5}$	$9.670 imes10^{-5}$
apparent scene pressure [hPa]	860 ± 153	13374334	186	912	130	1.051×10^3	790	976
apparent scene pressure precision [hPa]	0.714 ± 1.149	13374334	0.340	0.390	0.161	47.6	0.295	0.635
chi square [1]	$(0.310 \pm 3.128) \times 10^5$	13374334	3.506×10^4	$2.147 imes 10^4$	80.9	$2.967 imes 10^8$	8.076×10^{3}	4.314×10^{4}
number of iterations [1]	3.69 ± 1.14	13374334	1.000	3.00	1.000	14.0	3.00	4.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.932 \pm 6.683) \times 10^{-9}$	13374334	$6.334 imes 10^{-9}$	$1.973 imes10^{-9}$	$-1.455 imes 10^{-6}$	$1.654 imes10^{-6}$	$-1.081 imes 10^{-9}$	$5.252 imes 10^{-9}$
fluorescence precision [mol $s^{-1} m^{-2} nm^{-1} sr^{-1}$]	$(1.917 \pm 0.716) \times 10^{-9}$	13374334	1.022×10^{-9}	$1.871 imes10^{-9}$	$4.364 imes 10^{-10}$	$5.763 imes10^{-9}$	1.343×10^{-9}	2.365×10^{-9}
chi square fluorescence [1]	$(0.485 \pm 0.886) \times 10^5$	13374334	3.967×10^4	$1.765 imes 10^4$	109	$2.562 imes 10^6$	$7.815 imes 10^3$	$4.749 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	13374334	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	13374334	0.0	50.0	46.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(2.863 \pm 7.338) \times 10^{-3}$	13374334	4.749×10^{-3}	$2.840 imes 10^{-3}$	-8.489×10^{-2}	$9.321 imes 10^{-2}$	$4.586 imes10^{-4}$	$5.208 imes 10^{-3}$

Table 4	4: Parameterlist and basic s	tatistics for	the analysis for	observations in	the southern hem	nisphere		
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.982 ± 0.081	9584837	0.0	1.000	0.350	1.000	1.000	1.000
cloud pressure crb [hPa]	769 ± 203	9584837	322	835	130	1.034×10^3	613	936
cloud pressure crb precision [hPa]	2.50 ± 9.38	9584837	1.21	0.624	8.911×10^{-3}	805	0.387	1.60
cloud fraction crb [1]	0.412 ± 0.342	9584837	0.628	0.343	0.0	1.000	$8.092 imes 10^{-2}$	0.708
cloud fraction crb precision [1]	$(1.211 \pm 9.286) \times 10^{-4}$	9584837	$5.959 imes 10^{-5}$	$7.200 imes 10^{-5}$	$4.224 imes 10^{-8}$	0.521	$4.041 imes 10^{-5}$	$1.000 imes 10^{-4}$
scene albedo [1]	0.372 ± 0.292	9584837	0.494	0.334	-3.262×10^{-3}	5.59	$9.432 imes 10^{-2}$	0.588
scene albedo precision [1]	$(8.048 \pm 9.172) \times 10^{-5}$	9584837	$5.730 imes 10^{-5}$	$5.305 imes 10^{-5}$	$1.091 imes10^{-5}$	$7.210 imes 10^{-3}$	$3.261 imes 10^{-5}$	$8.991 imes10^{-5}$
apparent scene pressure [hPa]	790 ± 192	9584837	300	855	130	1.034×10^3	646	945
apparent scene pressure precision [hPa]	1.32 ± 2.50	9584837	0.735	0.518	$7.091 imes 10^{-2}$	62.1	0.367	1.10
chi square [1]	$(0.118 \pm 0.161) \times 10^5$	9584837	$1.438 imes 10^4$	9.322×10^{3}	53.5	$5.773 imes 10^{6}$	3.030×10^{3}	$1.741 imes 10^4$
number of iterations [1]	3.00 ± 0.79	9584837	0.0	3.00	1.000	14.0	3.00	3.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.865 \pm 52.287) \times 10^{-10}$	9584837	3.910×10^{-9}	4.404×10^{-10}	$-1.851 imes 10^{-6}$	$1.150 imes 10^{-6}$	-1.502×10^{-9}	$2.407 imes 10^{-9}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.576 \pm 0.661) \times 10^{-9}$	9584837	$9.071 imes 10^{-10}$	$1.464 imes 10^{-9}$	5.142×10^{-10}	$5.584 imes 10^{-9}$	$1.029 imes10^{-9}$	$1.936 imes 10^{-9}$
chi square fluorescence [1]	$(0.479 \pm 0.935) \times 10^5$	9584837	$4.138 imes 10^4$	$1.269 imes 10^4$	102	1.731×10^{6}	3.792×10^{3}	$4.517 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	9584837	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	9584837	0.0	50.0	48.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(2.950 \pm 10.090) \times 10^{-3}$	9584837	7.516×10^{-3}	3.060×10^{-3}	-0.667	0.249	$-7.674 imes 10^{-4}$	6.748×10^{-3}

S

	Table 5: Parameterlist an	d basic stati	stics for the anal	lysis for observa	tions over water			
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.926 ± 0.163	16032217	0.0	1.000	0.350	1.000	1.000	1.000
cloud pressure crb [hPa]	814 ± 194	16032217	269	884	130	1.034×10^{3}	697	966
cloud pressure crb precision [hPa]	2.24 ± 8.87	16032217	1.03	0.566	$1.831 imes 10^{-4}$	633	0.346	1.38
cloud fraction crb [1]	0.456 ± 0.374	16032217	0.750	0.379	0.0	1.000	$8.738 imes10^{-2}$	0.837
cloud fraction crb precision [1]	$(2.443 \pm 14.978) \times 10^{-4}$	16032217	6.692×10^{-5}	6.422×10^{-5}	1.480×10^{-8}	0.516	3.308×10^{-5}	$1.000 imes 10^{-4}$
scene albedo [1]	0.398 ± 0.326	16032217	0.606	0.337	-3.262×10^{-3}	4.15	$8.203 imes 10^{-2}$	0.689
scene albedo precision [1]	$(8.238 \pm 9.882) \times 10^{-5}$	16032217	$7.194 imes10^{-5}$	$5.269 imes10^{-5}$	1.057×10^{-5}	$7.210 imes 10^{-3}$	$2.604 imes 10^{-5}$	$9.798 imes10^{-5}$
apparent scene pressure [hPa]	831 ± 182	16032217	242	896	130	$1.034 imes 10^3$	731	973
apparent scene pressure precision [hPa]	1.22 ± 2.18	16032217	0.768	0.532	0.158	62.1	0.348	1.12
chi square [1]	$(0.186 \pm 2.054) \times 10^5$	16032217	$2.038 imes 10^4$	$9.816 imes 10^3$	53.5	$2.967 imes 10^8$	3.123×10^3	$2.350 imes 10^4$
number of iterations [1]	3.19 ± 1.00	16032217	0.0	3.00	1.000	14.0	3.00	3.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(7.453 \pm 51.738) \times 10^{-10}$	16032217	$4.567 imes 10^{-9}$	$6.786 imes 10^{-10}$	$-1.388 imes10^{-6}$	$1.654 imes10^{-6}$	$-1.367 imes 10^{-9}$	3.200×10^{-9}
fluorescence precision [mol $s^{-1} m^{-2} nm^{-1} sr^{-1}$]	$(1.609 \pm 0.680) \times 10^{-9}$	16032217	$9.509 imes 10^{-10}$	$1.468 imes10^{-9}$	$4.364 imes 10^{-10}$	5.650×10^{-9}	1.064×10^{-9}	2.015×10^{-9}
chi square fluorescence [1]	$(0.359 \pm 0.721) \times 10^5$	16032217	$2.929 imes 10^4$	$1.279 imes 10^4$	102	$2.562 imes 10^6$	$4.738 imes 10^3$	$3.403 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	16032217	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	16032217	0.0	50.0	46.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(2.872 \pm 9.621) \times 10^{-3}$	16032217	6.356×10^{-3}	2.902×10^{-3}	-0.667	0.249	$-3.073 imes 10^{-4}$	6.049×10^{-3}

	Table 6: Parameterlist an	d basic sta	tistics for the ana	alysis for observ	vations over land			
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.874 ± 0.219	4978741	0.300	1.000	0.350	1.000	0.700	1.000
cloud pressure crb [hPa]	770 ± 196	4978741	266	819	130	1.048×10^3	662	927
cloud pressure crb precision [hPa]	2.57 ± 8.78	4978741	1.56	0.624	$7.324 imes10^{-4}$	1.420×10^3	0.309	1.87
cloud fraction crb [1]	0.503 ± 0.412	4978741	0.907	0.381	0.0	1.000	$9.277 imes10^{-2}$	1.000
cloud fraction crb precision [1]	$(2.575 \pm 16.980) \times 10^{-4}$	4978741	$3.321 imes 10^{-5}$	$1.000 imes 10^{-4}$	$3.896 imes 10^{-8}$	0.837	$7.555 imes 10^{-5}$	$1.088 imes10^{-4}$
scene albedo [1]	0.599 ± 0.290	4978741	0.523	0.566	$2.214 imes10^{-2}$	5.59	0.335	0.859
scene albedo precision [1]	$(9.525 \pm 11.256) \times 10^{-5}$	4978741	$5.086 imes10^{-5}$	$5.435 imes 10^{-5}$	$1.311 imes 10^{-5}$	$1.685 imes 10^{-3}$	3.864×10^{-5}	$8.950 imes10^{-5}$
apparent scene pressure [hPa]	824 ± 152	4978741	210	867	130	$1.048 imes 10^3$	736	946
apparent scene pressure precision [hPa]	0.377 ± 0.130	4978741	0.162	0.348	$7.091 imes 10^{-2}$	4.68	0.279	0.441
chi square [1]	$(0.323 \pm 2.292) \times 10^5$	4978741	$2.693 imes 10^4$	$2.400 imes 10^4$	561	$2.106 imes 10^8$	$1.458 imes 10^4$	$4.152 imes 10^4$
number of iterations [1]	3.92 ± 1.03	4978741	1.000	4.00	1.000	14.0	3.00	4.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(2.057 \pm 7.994) \times 10^{-9}$	4978741	6.691×10^{-9}	2.420×10^{-9}	$-1.851 imes10^{-6}$	1.535×10^{-6}	-1.069×10^{-9}	$5.622 imes 10^{-9}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(2.144 \pm 0.634) \times 10^{-9}$	4978741	$8.011 imes10^{-10}$	2.141×10^{-9}	$5.356 imes 10^{-10}$	$5.760 imes 10^{-9}$	$1.743 imes 10^{-9}$	$2.545 imes 10^{-9}$
chi square fluorescence [1]	$(0.749 \pm 1.170) \times 10^5$	4978741	$7.172 imes 10^4$	$2.621 imes 10^4$	148	$1.968 imes 10^6$	$8.805 imes 10^3$	$8.052 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	4978741	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	4978741	0.0	50.0	48.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(2.931 \pm 4.880) \times 10^{-3}$	4978741	4.399×10^{-3}	2.906×10^{-3}	$-5.887 imes 10^{-2}$	6.993×10^{-2}	7.242×10^{-4}	5.123×10^{-3}

Granule outlines

Figure 1: Outline of the granules.

4 Input data monitoring

Figure 2: Input data per granule

5 Warnings and errors

Figure 3: Fraction of pixels with specific warnings and errors during processing

6 World maps

Figure 4: Map of "Cloud pressure" for 2025-04-14 to 2025-04-15

Figure 5: Map of "Cloud fraction" for 2025-04-14 to 2025-04-15

Figure 6: Map of "Scene albedo" for 2025-04-14 to 2025-04-15

Figure 7: Map of "Apparent scene pressure" for 2025-04-14 to 2025-04-15

2025-04-14

Figure 8: Map of "Fluorescence" for 2025-04-14 to 2025-04-15

Figure 9: Map of the number of observations for 2025-04-14 to 2025-04-15

7 Zonal average

Figure 10: Zonal average of "QA value" for 2025-04-14 to 2025-04-15.

Figure 11: Zonal average of "Cloud pressure" for 2025-04-14 to 2025-04-15.

Figure 12: Zonal average of "Cloud pressure precision" for 2025-04-14 to 2025-04-15.

Figure 13: Zonal average of "Cloud fraction" for 2025-04-14 to 2025-04-15.

Figure 14: Zonal average of "Cloud fraction precision" for 2025-04-14 to 2025-04-15.

Figure 15: Zonal average of "Scene albedo" for 2025-04-14 to 2025-04-15.

Figure 16: Zonal average of "Scene albedo precision" for 2025-04-14 to 2025-04-15.

Figure 17: Zonal average of "Apparent scene pressure" for 2025-04-14 to 2025-04-15.

Figure 18: Zonal average of "Apparent scene pressure precision" for 2025-04-14 to 2025-04-15.

Figure 19: Zonal average of " χ^2 " for 2025-04-14 to 2025-04-15.

Figure 20: Zonal average of "Number of iterations" for 2025-04-14 to 2025-04-15.

Figure 21: Zonal average of "Fluorescence" for 2025-04-14 to 2025-04-15.

Figure 22: Zonal average of "Fluorescence precision" for 2025-04-14 to 2025-04-15.

Figure 23: Zonal average of " χ^2 of fluorescence retrieval" for 2025-04-14 to 2025-04-15.

Figure 24: Zonal average of "Degrees of freedom for signal of fluorescence retrieval" for 2025-04-14 to 2025-04-15.

Figure 25: Zonal average of "Number of points in the spectrum" for 2025-04-14 to 2025-04-15.

Figure 26: Zonal average of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-04-14 to 2025-04-15.

8 Histograms

The definitions of the parameters given in this section can be found in section 2.

Figure 27: Histogram of "QA value" for 2025-04-14 to 2025-04-15

Figure 28: Histogram of "Cloud pressure" for 2025-04-14 to 2025-04-15

Figure 29: Histogram of "Cloud pressure precision" for 2025-04-14 to 2025-04-15

Figure 30: Histogram of "Cloud fraction" for 2025-04-14 to 2025-04-15

Figure 31: Histogram of "Cloud fraction precision" for 2025-04-14 to 2025-04-15

Figure 32: Histogram of "Scene albedo" for 2025-04-14 to 2025-04-15

Figure 33: Histogram of "Scene albedo precision" for 2025-04-14 to 2025-04-15

Figure 34: Histogram of "Apparent scene pressure" for 2025-04-14 to 2025-04-15

Figure 35: Histogram of "Apparent scene pressure precision" for 2025-04-14 to 2025-04-15

Figure 36: Histogram of " χ^2 " for 2025-04-14 to 2025-04-15

Figure 37: Histogram of "Number of iterations" for 2025-04-14 to 2025-04-15

Figure 38: Histogram of "Fluorescence" for 2025-04-14 to 2025-04-15

Figure 39: Histogram of "Fluorescence precision" for 2025-04-14 to 2025-04-15

Figure 40: Histogram of " χ^2 of fluorescence retrieval" for 2025-04-14 to 2025-04-15

Figure 41: Histogram of "Degrees of freedom for signal of fluorescence retrieval" for 2025-04-14 to 2025-04-15

Figure 42: Histogram of "Number of points in the spectrum" for 2025-04-14 to 2025-04-15

Figure 43: Histogram of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-04-14 to 2025-04-15

9 Along track statistics

The TROPOMI instrument uses different binned detector rows for different viewing directions. In this section statistics are presented for each of the binned rows in the instrument.

Figure 44: Along track statistics of "QA value" for 2025-04-14 to 2025-04-15

Figure 45: Along track statistics of "Cloud pressure" for 2025-04-14 to 2025-04-15

Figure 46: Along track statistics of "Cloud pressure precision" for 2025-04-14 to 2025-04-15

Figure 47: Along track statistics of "Cloud fraction" for 2025-04-14 to 2025-04-15

Figure 48: Along track statistics of "Cloud fraction precision" for 2025-04-14 to 2025-04-15

Figure 49: Along track statistics of "Scene albedo" for 2025-04-14 to 2025-04-15

Figure 50: Along track statistics of "Scene albedo precision" for 2025-04-14 to 2025-04-15

Figure 51: Along track statistics of "Apparent scene pressure" for 2025-04-14 to 2025-04-15

Figure 52: Along track statistics of "Apparent scene pressure precision" for 2025-04-14 to 2025-04-15

Figure 53: Along track statistics of " χ^2 " for 2025-04-14 to 2025-04-15

Figure 54: Along track statistics of "Number of iterations" for 2025-04-14 to 2025-04-15

Figure 55: Along track statistics of "Fluorescence" for 2025-04-14 to 2025-04-15

Figure 56: Along track statistics of "Fluorescence precision" for 2025-04-14 to 2025-04-15

Figure 57: Along track statistics of " χ^2 of fluorescence retrieval" for 2025-04-14 to 2025-04-15

Figure 58: Along track statistics of "Degrees of freedom for signal of fluorescence retrieval" for 2025-04-14 to 2025-04-15

Figure 59: Along track statistics of "Number of points in the spectrum" for 2025-04-14 to 2025-04-15

Figure 60: Along track statistics of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-04-14 to 2025-04-15

10 Coincidence density

To investigate the relation between parameters scatter density plots are produced. These include some 'hidden' parameters, latitude and the solar- and viewing geometries, in addition to all configured parameters. All combinations of pairs of parameters are included *once*, in one direction alone.

Contents

1	Short Introduction	1
	1.1 The list of parameters	1
2	Definitions	1
3	Granule outlines	8
4	Input data monitoring	9
5	Warnings and errors	10
6	World maps	11
7	Zonal average	17
8	Histograms	34
9	Along track statistics	51
10	Coincidence density	68
11	Copyright information of 'PyCAMA'	68

List of Figures

1	Outline of the granules.	8
2	Input data per granule	9
3	Fraction of pixels with specific warnings and errors during processing	10
4	Map of "Cloud pressure" for 2025-04-14 to 2025-04-15	11
5	Map of "Cloud fraction" for 2025-04-14 to 2025-04-15	12
6	Map of "Scene albedo" for 2025-04-14 to 2025-04-15	13
7	Map of "Apparent scene pressure" for 2025-04-14 to 2025-04-15	14
8	Map of "Fluorescence" for 2025-04-14 to 2025-04-15	15
9	Map of the number of observations for 2025-04-14 to 2025-04-15	16
10	Zonal average of "QA value" for 2025-04-14 to 2025-04-15.	17
11	Zonal average of "Cloud pressure" for 2025-04-14 to 2025-04-15.	18
12	Zonal average of "Cloud pressure precision" for 2025-04-14 to 2025-04-15.	19
13	Zonal average of "Cloud fraction" for 2025-04-14 to 2025-04-15.	20
14	Zonal average of "Cloud fraction precision" for 2025-04-14 to 2025-04-15.	21
15	Zonal average of "Scene albedo" for 2025-04-14 to 2025-04-15.	22
16	Zonal average of "Scene albedo precision" for 2025-04-14 to 2025-04-15.	23
17	Zonal average of "Apparent scene pressure" for 2025-04-14 to 2025-04-15.	24
18	Zonal average of "Apparent scene pressure precision" for 2025-04-14 to 2025-04-15.	25
19	Zonal average of " χ^2 " for 2025-04-14 to 2025-04-15	26
20	Zonal average of "Number of iterations" for 2025-04-14 to 2025-04-15.	27
21	Zonal average of "Fluorescence" for 2025-04-14 to 2025-04-15.	28
22	Zonal average of "Fluorescence precision" for 2025-04-14 to 2025-04-15.	29
23	Zonal average of " χ^2 of fluorescence retrieval" for 2025-04-14 to 2025-04-15	30
24	Zonal average of "Degrees of freedom for signal of fluorescence retrieval" for 2025-04-14 to 2025-04-15.	31
25	Zonal average of "Number of points in the spectrum" for 2025-04-14 to 2025-04-15.	32
26	Zonal average of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-04-14 to 2025-04-15	33
27	Histogram of "QA value" for 2025-04-14 to 2025-04-15	34
28	Histogram of "Cloud pressure" for 2025-04-14 to 2025-04-15	35
29	Histogram of "Cloud pressure precision" for 2025-04-14 to 2025-04-15	36

30	Histogram of "Cloud fraction" for 2025-04-14 to 2025-04-15	37
31	Histogram of "Cloud fraction precision" for 2025-04-14 to 2025-04-15	38
32	Histogram of "Scene albedo" for 2025-04-14 to 2025-04-15	39
33	Histogram of "Scene albedo precision" for 2025-04-14 to 2025-04-15	40
34	Histogram of "Apparent scene pressure" for 2025-04-14 to 2025-04-15	41
35	Histogram of "Apparent scene pressure precision" for 2025-04-14 to 2025-04-15	42
36	Histogram of " χ^2 " for 2025-04-14 to 2025-04-15	43
37	Histogram of "Number of iterations" for 2025-04-14 to 2025-04-15	44
38	Histogram of "Fluorescence" for 2025-04-14 to 2025-04-15	45
39	Histogram of "Fluorescence precision" for 2025-04-14 to 2025-04-15	46
40	Histogram of " χ^2 of fluorescence retrieval" for 2025-04-14 to 2025-04-15	47
41	Histogram of "Degrees of freedom for signal of fluorescence retrieval" for 2025-04-14 to 2025-04-15	48
42	Histogram of "Number of points in the spectrum" for 2025-04-14 to 2025-04-15	49
43	Histogram of "Spectral offset $(\lambda_{true} - \lambda_{nominal})$ " for 2025-04-14 to 2025-04-15	50
44	Along track statistics of "QA value" for 2025-04-14 to 2025-04-15	51
45	Along track statistics of "Cloud pressure" for 2025-04-14 to 2025-04-15	52
46	Along track statistics of "Cloud pressure precision" for 2025-04-14 to 2025-04-15	53
47	Along track statistics of "Cloud fraction" for 2025-04-14 to 2025-04-15	54
48	Along track statistics of "Cloud fraction precision" for 2025-04-14 to 2025-04-15	55
49	Along track statistics of "Scene albedo" for 2025-04-14 to 2025-04-15	56
50	Along track statistics of "Scene albedo precision" for 2025-04-14 to 2025-04-15	57
51	Along track statistics of "Apparent scene pressure" for 2025-04-14 to 2025-04-15	58
52	Along track statistics of "Apparent scene pressure precision" for 2025-04-14 to 2025-04-15	59
53	Along track statistics of " χ^2 " for 2025-04-14 to 2025-04-15	60
54	Along track statistics of "Number of iterations" for 2025-04-14 to 2025-04-15	61
55	Along track statistics of "Fluorescence" for 2025-04-14 to 2025-04-15	62
56	Along track statistics of "Fluorescence precision" for 2025-04-14 to 2025-04-15	63
57	Along track statistics of " χ^2 of fluorescence retrieval" for 2025-04-14 to 2025-04-15	64
58	Along track statistics of "Degrees of freedom for signal of fluorescence retrieval" for 2025-04-14 to 2025-04-15	65
59	Along track statistics of "Number of points in the spectrum" for 2025-04-14 to 2025-04-15	66
60	Along track statistics of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-04-14 to 2025-04-15	67

List of Tables

1	Parameterlist and basic statistics for the analysis
2	Percentile ranges
3	Parameterlist and basic statistics for the analysis for observations in the northern hemisphere
4	Parameterlist and basic statistics for the analysis for observations in the southern hemisphere
5	Parameterlist and basic statistics for the analysis for observations over water
6	Parameterlist and basic statistics for the analysis for observations over land

11 Copyright information of 'PyCAMA'

Copyright © 2005-2023, Maarten Sneep (KNMI).

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
- 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

This software is provided by the copyright holders and contributors "as is" and any express or implied warranties, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose are disclaimed. In no event shall the copyright holder or contributors be liable for any direct, indirect, incidental, special, exemplary, or consequential damages (including, but not limited to, procurement of substitute goods or services; loss of use, data, or profits; or business interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence or otherwise) arising in any way out of the use of this software, even if advised of the possibility of such damage.

Maarten Sneep (maarten.sneep@knmi.nl).