PyCAMA report generated by tropl2-proc

tropl2-proc

2025-04-17 (08:45)

1 Short Introduction

1.1 The list of parameters

You may want to keep the list given in table 1 at hand when viewing the results.

2 Definitions

The averages shown here are unweighed averages:

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i \tag{1}$$

with N the number of observations in the dataset.

The spread of the measurements is indicated with the variance V(x), or rather the standard deviation $\sigma(x) = \sqrt{V(x)}$.

$$V(x) = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2$$
(2)

We also report the more robust statistics median, minimum, maximum, various percentiles and inter quartile range.

The median m is the value of parameter x for which half of the observations of x is smaller than m:

$$P(x \le m) = P(x \ge m) = \int_{-\infty}^{m} f(x) \, \mathrm{d}x = \frac{1}{2}$$
(3)

with f(x) the probability density function.

The median is a special case of a percentile. Instead of $\frac{1}{2}$ in equation 3, other threshold values can be used. We report results for 1%, 5%, 10%, 15.9%, 25%, 75%, 84.1%, 90%, 95% and 99%. The inter quartile range is the difference between the 75% and 25% percentiles. Similarly the minimum and maximum values correspond to the 0% and 100% percentiles respectively.

For normally distributed parameters the mean and median are the same, while the $\mu \pm \sigma$ values and the 15.9% and 84.1% percentiles coincide.

To get a measure for the relation of one variable $x_{(k)}$ with another $x_{(l)}$, we calculate the covariance matrix C_{kl} .

$$C_{kl} = C(x_{(k)}, x_{(l)}) = \frac{1}{N-1} \sum_{i=1}^{N} (x_{(k),i} - \overline{x_{(k)}}) (x_{(l),i} - \overline{x_{(l)}})$$
(4)

Rather than a dimensionally dependent covariance, it is often easier to interpret a correlation matrix R_{kl} , a matrix of Pearson's *r* coefficients:

$$R_{kl} = R(x_{(k)}, x_{(l)}) = \frac{C_{kl}}{\sqrt{C_{kk}C_{ll}}} = \frac{C_{kl}}{\sqrt{V(x_k)V(x_l)}}$$
(5)

The diagonal elements of the covariance matrix are the variances of the elements, $V(x_{(k)}) = C_{kk}$ and obviously $R_{kk} = 1$.

Table 1: Parameterlist and basic statistics for the ar	ialysi
--	--------

	Table 1: Parameterl	ist and basic s	statistics for the ar	nalysis			
Variable	mean $\pm \sigma$	Count	Mode	IQR	Median	Minimum	Maximum
qa value [1]	0.909 ± 0.185	23276000	0.995	0.0	1.000	0.350	1.000
cloud pressure crb [hPa]	802 ± 194	23276000	1.005×10^3	267	867	130	1.071×10^3
cloud pressure crb precision [hPa]	2.30 ± 8.63	23276000	0.750	1.17	0.576	$3.052 imes 10^{-4}$	$1.434 imes 10^3$
cloud fraction crb [1]	0.473 ± 0.387	23276000	0.996	0.859	0.385	0.0	1.000
cloud fraction crb precision [1]	$(2.517 \pm 15.381) \times 10^{-4}$	23276000	$2.500 imes10^{-4}$	$5.511 imes10^{-5}$	$8.214 imes10^{-5}$	4.343×10^{-9}	0.765
scene albedo [1]	0.458 ± 0.329	23276000	$1.500 imes10^{-2}$	0.604	0.419	$-2.155 imes 10^{-2}$	4.71
scene albedo precision [1]	$(8.588 \pm 10.249) \times 10^{-5}$	23276000	2.500×10^{-4}	$6.287 imes 10^{-5}$	$5.380 imes 10^{-5}$	1.098×10^{-5}	1.137×10^{-2}
apparent scene pressure [hPa]	832 ± 170	23276000	1.008×10^3	223	888	130	1.071×10^3
apparent scene pressure precision [hPa]	0.958 ± 1.842	23276000	0.500	0.457	0.437	$8.398 imes10^{-2}$	62.5
chi square [1]	$(0.230 \pm 2.104) \times 10^5$	23276000	0.150	$2.535 imes 10^4$	$1.453 imes 10^4$	52.0	$3.197 imes10^8$
number of iterations [1]	3.42 ± 1.07	23276000	3.23	1.000	3.00	1.000	14.0
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.228\pm6.011)\times10^{-9}$	23276000	$2.500 imes 10^{-10}$	$5.291 imes10^{-9}$	1.141×10^{-9}	-1.786×10^{-6}	1.802×10^{-6}
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.774 \pm 0.714) \times 10^{-9}$	23276000	$9.500 imes 10^{-10}$	$1.065 imes 10^{-9}$	$1.708 imes10^{-9}$	$3.911 imes 10^{-10}$	5.783×10^{-9}
chi square fluorescence [1]	$(0.481 \pm 0.890) \times 10^5$	23276000	750	$3.972 imes 10^4$	$1.579 imes 10^4$	100	$3.931 imes10^6$
degrees of freedom fluorescence [1]	6.00 ± 0.00	23276000	5.95	0.0	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	23276000	49.7	0.0	50.0	44.0	50.0
wavelength calibration offset [nm]	$(2.895 \pm 8.478) \times 10^{-3}$	23276000	2.800×10^{-3}	5.629×10^{-3}	2.896×10^{-3}	-0.154	0.159

			Table 2:	Percentile rang	jes					
Variable	1 %	5 %	10 %	15.9 %	25 %	75 %	84.1 %	90%	95 %	99 %
qa value [1]	0.500	0.500	0.500	0.500	1.000	1.000	1.000	1.000	1.000	1.000
cloud pressure crb [hPa]	255	405	502	583	688	956	983	999	1.010×10^3	1.020×10^3
cloud pressure crb precision [hPa]	0.140	0.234	0.259	0.288	0.335	1.50	2.58	4.29	8.56	28.5
cloud fraction crb [1]	$1.600 imes 10^{-3}$	$1.186 imes10^{-2}$	$2.601 imes 10^{-2}$	$4.667 imes 10^{-2}$	$9.080 imes 10^{-2}$	0.950	1.000	1.000	1.000	1.000
cloud fraction crb precision [1]	$2.060 imes 10^{-5}$	$2.376 imes10^{-5}$	$2.689 imes10^{-5}$	$3.143 imes 10^{-5}$	$4.489 imes 10^{-5}$	$1.000 imes 10^{-4}$	$1.244 imes10^{-4}$	$1.867 imes10^{-4}$	$4.897 imes10^{-4}$	4.909×10^{-3}
scene albedo [1]	$8.488 imes 10^{-3}$	$2.215 imes10^{-2}$	$4.064 imes 10^{-2}$	$7.226 imes 10^{-2}$	0.152	0.756	0.855	0.910	0.966	1.11
scene albedo precision [1]	1.311×10^{-5}	1.566×10^{-5}	$1.933 imes 10^{-5}$	2.442×10^{-5}	3.233×10^{-5}	9.520×10^{-5}	$1.298 imes 10^{-4}$	$1.775 imes 10^{-4}$	$2.755 imes 10^{-4}$	5.487×10^{-4}
apparent scene pressure [hPa]	336	477	565	643	741	965	987	1.000×10^{3}	1.011×10^{3}	1.020×10^{3}
apparent scene pressure precision [hPa]	0.214	0.242	0.263	0.284	0.317	0.774	1.23	1.94	3.41	8.88
chi square [1]	257	673	1.405×10^{3}	2.692×10^{3}	5.238×10^{3}	3.058×10^{4}	4.269×10^{4}	5.457×10^{4}	6.881×10^{4}	9.467×10^{4}
number of iterations [1]	2.00	2.00	2.00	3.00	3.00	4.00	4.00	5.00	5.00	6.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$-1.498 imes 10^{-8}$	-7.155×10^{-9}	-4.296×10^{-9}	-2.679×10^{-9}	-1.257×10^{-9}	4.035×10^{-9}	5.723×10^{-9}	7.323×10^{-9}	$9.563 imes 10^{-9}$	1.441×10^{-8}
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$7.326 imes 10^{-10}$	$8.309 imes 10^{-10}$	$9.097 imes 10^{-10}$	1.001×10^{-9}	$1.178 imes10^{-9}$	2.243×10^{-9}	2.530×10^{-9}	2.742×10^{-9}	3.057×10^{-9}	3.723×10^{-9}
chi square fluorescence [1]	427	1.074×10^{3}	2.083×10^{3}	3.416×10^{3}	5.927×10^{3}	4.565×10^{4}	7.929×10^{4}	1.264×10^{5}	2.213×10^{5}	4.556×10^{5}
degrees of freedom fluorescence [1]	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$-2.455 imes 10^{-2}$	-9.633×10^{-3}	-4.582×10^{-3}	-1.966×10^{-3}	8.720×10^{-5}	5.716×10^{-3}	7.783×10^{-3}	1.043×10^{-2}	$1.547 imes10^{-2}$	3.006×10^{-2}

Table 3. Parameterlist and	basic statistics for the anal	lysis for observations in	the northern hemist	here
rable 5. rarameternst and	basic statistics for the anal	lysis for observations in	the normern nemis	JILLIC

Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.858 ± 0.217	13725712	0.500	1.000	0.350	1.000	0.500	1.000
cloud pressure crb [hPa]	827 ± 185	13725712	236	889	130	1.071×10^3	735	971
cloud pressure crb precision [hPa]	2.08 ± 7.53	13725712	1.13	0.533	$3.052 imes 10^{-4}$	1.434×10^{3}	0.303	1.43
cloud fraction crb [1]	0.517 ± 0.412	13725712	0.904	0.438	0.0	1.000	9.601×10^{-2}	1.000
cloud fraction crb precision [1]	$(3.430 \pm 18.926) \times 10^{-4}$	13725712	$5.231 imes 10^{-5}$	9.654×10^{-5}	$2.737 imes 10^{-8}$	0.765	$4.769 imes 10^{-5}$	$1.000 imes 10^{-4}$
scene albedo [1]	0.520 ± 0.340	13725712	0.641	0.520	$-2.168 imes 10^{-3}$	4.71	0.199	0.839
scene albedo precision [1]	$(8.937 \pm 10.850) \times 10^{-5}$	13725712	6.950×10^{-5}	$5.394 imes 10^{-5}$	$1.101 imes 10^{-5}$	1.864×10^{-3}	$3.174 imes 10^{-5}$	$1.012 imes 10^{-4}$
apparent scene pressure [hPa]	862 ± 150	13725712	185	912	130	1.071×10^{3}	790	975
apparent scene pressure precision [hPa]	0.703 ± 1.069	13725712	0.342	0.391	0.142	50.3	0.295	0.637
chi square [1]	$(0.308 \pm 2.735) \times 10^5$	13725712	$3.581 imes 10^4$	2.156×10^{4}	76.3	$3.197 imes 10^8$	8.048×10^{3}	4.386×10^{4}
number of iterations [1]	3.72 ± 1.13	13725712	1.000	4.00	1.000	14.0	3.00	4.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.961 \pm 6.459) \times 10^{-9}$	13725712	6.249×10^{-9}	$2.025 imes 10^{-9}$	-1.612×10^{-6}	$1.802 imes 10^{-6}$	-1.012×10^{-9}	$5.237 imes 10^{-9}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.908\pm0.710) imes10^{-9}$	13725712	1.044×10^{-9}	$1.857 imes10^{-9}$	$3.911 imes 10^{-10}$	5.749×10^{-9}	1.333×10^{-9}	$2.377 imes10^{-9}$
chi square fluorescence [1]	$(0.485 \pm 0.870) \times 10^5$	13725712	3.958×10^{4}	1.754×10^{4}	103	3.931×10^{6}	7.621×10^{3}	$4.720 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	13725712	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	13725712	0.0	50.0	44.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(2.867 \pm 7.095) \times 10^{-3}$	13725712	4.606×10^{-3}	2.843×10^{-3}	-8.534×10^{-2}	8.884×10^{-2}	$5.351 imes 10^{-4}$	5.141×10^{-3}

Table	4: Parameterlist and basic s	tatistics for	the analysis for	observations in	the southern hem	nisphere		
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.983 ± 0.081	9550288	0.0	1.000	0.350	1.000	1.000	1.000
cloud pressure crb [hPa]	767 ± 201	9550288	302	834	130	1.036×10^{3}	623	925
cloud pressure crb precision [hPa]	2.60 ± 9.99	9550288	1.22	0.626	$7.385 imes 10^{-3}$	1.130×10^{3}	0.388	1.60
cloud fraction crb [1]	0.408 ± 0.337	9550288	0.611	0.343	0.0	1.000	$8.279 imes10^{-2}$	0.693
cloud fraction crb precision [1]	$(1.206 \pm 7.671) \times 10^{-4}$	9550288	$5.855 imes 10^{-5}$	$7.299 imes 10^{-5}$	$4.343 imes 10^{-9}$	0.291	$4.163 imes 10^{-5}$	$1.002 imes 10^{-4}$
scene albedo [1]	0.370 ± 0.289	9550288	0.480	0.335	-2.155×10^{-2}	4.16	$9.705 imes 10^{-2}$	0.577
scene albedo precision [1]	$(8.087 \pm 9.295) \times 10^{-5}$	9550288	5.526×10^{-5}	$5.365 imes 10^{-5}$	$1.098 imes10^{-5}$	$1.137 imes10^{-2}$	$3.332 imes 10^{-5}$	$8.857 imes10^{-5}$
apparent scene pressure [hPa]	790 ± 188	9550288	279	854	130	1.036×10^3	658	937
apparent scene pressure precision [hPa]	1.33 ± 2.53	9550288	0.734	0.521	$8.398 imes10^{-2}$	62.5	0.368	1.10
chi square [1]	$(0.118 \pm 0.143) \times 10^5$	9550288	$1.435 imes 10^4$	9.273×10^{3}	52.0	$6.327 imes 10^6$	3.064×10^{3}	$1.741 imes 10^4$
number of iterations [1]	2.99 ± 0.80	9550288	0.0	3.00	1.000	14.0	3.00	3.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.739 \pm 51.209) \times 10^{-10}$	9550288	3.860×10^{-9}	$4.196 imes 10^{-10}$	$-1.786 imes10^{-6}$	$1.480 imes10^{-6}$	-1.520×10^{-9}	2.341×10^{-9}
fluorescence precision [mol $s^{-1} m^{-2} nm^{-1} sr^{-1}$]	$(1.582 \pm 0.674) \times 10^{-9}$	9550288	9.462×10^{-10}	$1.465 imes 10^{-9}$	$5.353 imes 10^{-10}$	$5.783 imes 10^{-9}$	$1.020 imes 10^{-9}$	$1.966 imes 10^{-9}$
chi square fluorescence [1]	$(0.476 \pm 0.917) \times 10^5$	9550288	$3.915 imes 10^4$	$1.287 imes 10^4$	100	$1.878 imes10^{6}$	3.899×10^{3}	$4.305 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	9550288	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	9550288	0.0	50.0	48.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(2.934 \pm 10.141) \times 10^{-3}$	9550288	7.684×10^{-3}	3.019×10^{-3}	-0.154	0.159	-8.565×10^{-4}	6.828×10^{-3}

S

	Table 5: Parameterlist an	d basic stati	stics for the anal	lysis for observa	tions over water			
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.919 ± 0.171	16272676	0.1000	1.000	0.350	1.000	0.900	1.000
cloud pressure crb [hPa]	817 ± 189	16272676	252	883	130	1.071×10^{3}	711	963
cloud pressure crb precision [hPa]	2.23 ± 8.95	16272676	1.02	0.565	$3.052 imes 10^{-4}$	763	0.344	1.36
cloud fraction crb [1]	0.462 ± 0.376	16272676	0.766	0.391	0.0	1.000	8.990×10^{-2}	0.856
cloud fraction crb precision [1]	$(2.617 \pm 15.467) \times 10^{-4}$	16272676	6.651×10^{-5}	$6.603 imes10^{-5}$	$2.737 imes10^{-8}$	0.447	3.349×10^{-5}	$1.000 imes 10^{-4}$
scene albedo [1]	0.403 ± 0.327	16272676	0.616	0.346	-2.155×10^{-2}	4.71	$8.415 imes10^{-2}$	0.701
scene albedo precision [1]	$(8.439 \pm 10.115) \times 10^{-5}$	16272676	7.371×10^{-5}	5.395×10^{-5}	1.098×10^{-5}	1.137×10^{-2}	2.661×10^{-5}	$1.003 imes 10^{-4}$
apparent scene pressure [hPa]	834 ± 177	16272676	227	895	130	1.059×10^3	743	970
apparent scene pressure precision [hPa]	1.20 ± 2.15	16272676	0.760	0.531	0.161	62.5	0.347	1.11
chi square [1]	$(0.187 \pm 1.497) \times 10^5$	16272676	$2.116 imes 10^4$	9.951×10^{3}	52.0	$1.458 imes 10^8$	3.147×10^{3}	2.431×10^4
number of iterations [1]	3.21 ± 1.01	16272676	0.0	3.00	1.000	14.0	3.00	3.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(7.979 \pm 52.084) \times 10^{-10}$	16272676	4.576×10^{-9}	$7.252 imes 10^{-10}$	-1.612×10^{-6}	$1.756 imes10^{-6}$	-1.325×10^{-9}	3.251×10^{-9}
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.608 \pm 0.680) \times 10^{-9}$	16272676	$9.565 imes 10^{-10}$	$1.468 imes10^{-9}$	$3.911 imes 10^{-10}$	$5.570 imes10^{-9}$	1.060×10^{-9}	2.017×10^{-9}
chi square fluorescence [1]	$(0.363 \pm 0.716) \times 10^5$	16272676	$2.940 imes 10^4$	$1.316 imes 10^4$	100	$2.296 imes 10^6$	4.949×10^{3}	$3.434 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	16272676	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	16272676	0.0	50.0	45.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(2.871 \pm 9.477) \times 10^{-3}$	16272676	6.256×10^{-3}	2.889×10^{-3}	-0.154	0.159	-2.509×10^{-4}	$6.005 imes 10^{-3}$

	Table 6: Parameterlist an	d basic stat	istics for the ana	alysis for observ	vations over land			
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.870 ± 0.221	5034470	0.500	1.000	0.350	1.000	0.500	1.000
cloud pressure crb [hPa]	761 ± 199	5034470	278	806	130	1.062×10^3	647	925
cloud pressure crb precision [hPa]	2.38 ± 7.70	5034470	1.49	0.608	$5.493 imes10^{-4}$	1.434×10^{3}	0.307	1.80
cloud fraction crb [1]	0.508 ± 0.413	5034470	0.904	0.389	0.0	1.000	$9.623 imes 10^{-2}$	1.000
cloud fraction crb precision [1]	$(2.474 \pm 16.286) \times 10^{-4}$	5034470	$2.950 imes 10^{-5}$	$1.000 imes 10^{-4}$	4.343×10^{-9}	0.765	7.659×10^{-5}	$1.061 imes10^{-4}$
scene albedo [1]	0.604 ± 0.291	5034470	0.528	0.567	$2.174 imes10^{-2}$	4.03	0.341	0.869
scene albedo precision [1]	$(9.504 \pm 11.121) \times 10^{-5}$	5034470	$5.103 imes 10^{-5}$	$5.448 imes 10^{-5}$	$1.368 imes10^{-5}$	$1.784 imes10^{-3}$	$3.877 imes 10^{-5}$	$8.980 imes10^{-5}$
apparent scene pressure [hPa]	819 ± 154	5034470	217	860	130	1.062×10^3	727	944
apparent scene pressure precision [hPa]	0.376 ± 0.134	5034470	0.159	0.345	$8.398 imes10^{-2}$	9.70	0.278	0.437
chi square [1]	$(0.328 \pm 2.848) \times 10^5$	5034470	$2.773 imes 10^4$	$2.394 imes 10^4$	184	$3.197 imes 10^8$	$1.434 imes 10^4$	$4.207 imes 10^4$
number of iterations [1]	3.94 ± 1.02	5034470	1.000	4.00	1.000	14.0	3.00	4.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(2.054 \pm 7.223) \times 10^{-9}$	5034470	$6.671 imes 10^{-9}$	$2.382 imes 10^{-9}$	$-1.535 imes10^{-6}$	$1.480 imes10^{-6}$	$-1.076 imes 10^{-9}$	$5.596 imes 10^{-9}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(2.152 \pm 0.631) \times 10^{-9}$	5034470	$8.083 imes 10^{-10}$	2.156×10^{-9}	$4.891 imes 10^{-10}$	$5.783 imes10^{-9}$	$1.752 imes 10^{-9}$	$2.560 imes 10^{-9}$
chi square fluorescence [1]	$(0.728 \pm 1.127) \times 10^5$	5034470	$7.218 imes 10^4$	$2.517 imes 10^4$	161	$2.018 imes 10^6$	7.951×10^{3}	$8.013 imes10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	5034470	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	5034470	0.0	50.0	46.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(2.915 \pm 4.896) \times 10^{-3}$	5034470	4.367×10^{-3}	2.886×10^{-3}	$-5.496 imes 10^{-2}$	5.910×10^{-2}	7.220×10^{-4}	$5.089 imes 10^{-3}$

Granule outlines

Figure 1: Outline of the granules.

4 Input data monitoring

Figure 2: Input data per granule

5 Warnings and errors

Figure 3: Fraction of pixels with specific warnings and errors during processing

6 World maps

Figure 4: Map of "Cloud pressure" for 2025-04-15 to 2025-04-16

Figure 5: Map of "Cloud fraction" for 2025-04-15 to 2025-04-16

Figure 6: Map of "Scene albedo" for 2025-04-15 to 2025-04-16

Figure 7: Map of "Apparent scene pressure" for 2025-04-15 to 2025-04-16

2025-04-15

Figure 8: Map of "Fluorescence" for 2025-04-15 to 2025-04-16

Figure 9: Map of the number of observations for 2025-04-15 to 2025-04-16

7 Zonal average

Figure 10: Zonal average of "QA value" for 2025-04-15 to 2025-04-16.

Figure 11: Zonal average of "Cloud pressure" for 2025-04-15 to 2025-04-16.

Figure 12: Zonal average of "Cloud pressure precision" for 2025-04-15 to 2025-04-16.

Figure 13: Zonal average of "Cloud fraction" for 2025-04-15 to 2025-04-16.

Figure 14: Zonal average of "Cloud fraction precision" for 2025-04-15 to 2025-04-16.

Figure 15: Zonal average of "Scene albedo" for 2025-04-15 to 2025-04-16.

Figure 16: Zonal average of "Scene albedo precision" for 2025-04-15 to 2025-04-16.

Figure 17: Zonal average of "Apparent scene pressure" for 2025-04-15 to 2025-04-16.

Figure 18: Zonal average of "Apparent scene pressure precision" for 2025-04-15 to 2025-04-16.

Figure 19: Zonal average of " χ^2 " for 2025-04-15 to 2025-04-16.

Figure 20: Zonal average of "Number of iterations" for 2025-04-15 to 2025-04-16.

Figure 21: Zonal average of "Fluorescence" for 2025-04-15 to 2025-04-16.

Figure 22: Zonal average of "Fluorescence precision" for 2025-04-15 to 2025-04-16.

Figure 23: Zonal average of " χ^2 of fluorescence retrieval" for 2025-04-15 to 2025-04-16.

Figure 24: Zonal average of "Degrees of freedom for signal of fluorescence retrieval" for 2025-04-15 to 2025-04-16.

Figure 25: Zonal average of "Number of points in the spectrum" for 2025-04-15 to 2025-04-16.

Figure 26: Zonal average of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-04-15 to 2025-04-16.

8 Histograms

The definitions of the parameters given in this section can be found in section 2.

Figure 27: Histogram of "QA value" for 2025-04-15 to 2025-04-16

Figure 28: Histogram of "Cloud pressure" for 2025-04-15 to 2025-04-16

Figure 29: Histogram of "Cloud pressure precision" for 2025-04-15 to 2025-04-16

Figure 30: Histogram of "Cloud fraction" for 2025-04-15 to 2025-04-16

Figure 31: Histogram of "Cloud fraction precision" for 2025-04-15 to 2025-04-16

Figure 32: Histogram of "Scene albedo" for 2025-04-15 to 2025-04-16

Figure 33: Histogram of "Scene albedo precision" for 2025-04-15 to 2025-04-16

Figure 34: Histogram of "Apparent scene pressure" for 2025-04-15 to 2025-04-16

Figure 35: Histogram of "Apparent scene pressure precision" for 2025-04-15 to 2025-04-16

Figure 36: Histogram of " χ^2 " for 2025-04-15 to 2025-04-16

Figure 37: Histogram of "Number of iterations" for 2025-04-15 to 2025-04-16

Figure 38: Histogram of "Fluorescence" for 2025-04-15 to 2025-04-16

Figure 39: Histogram of "Fluorescence precision" for 2025-04-15 to 2025-04-16

Figure 40: Histogram of " χ^2 of fluorescence retrieval" for 2025-04-15 to 2025-04-16

Figure 41: Histogram of "Degrees of freedom for signal of fluorescence retrieval" for 2025-04-15 to 2025-04-16

Figure 42: Histogram of "Number of points in the spectrum" for 2025-04-15 to 2025-04-16

Figure 43: Histogram of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-04-15 to 2025-04-16

9 Along track statistics

The TROPOMI instrument uses different binned detector rows for different viewing directions. In this section statistics are presented for each of the binned rows in the instrument.

Figure 44: Along track statistics of "QA value" for 2025-04-15 to 2025-04-16

Figure 45: Along track statistics of "Cloud pressure" for 2025-04-15 to 2025-04-16

Figure 46: Along track statistics of "Cloud pressure precision" for 2025-04-15 to 2025-04-16

Figure 47: Along track statistics of "Cloud fraction" for 2025-04-15 to 2025-04-16

Figure 48: Along track statistics of "Cloud fraction precision" for 2025-04-15 to 2025-04-16

Figure 49: Along track statistics of "Scene albedo" for 2025-04-15 to 2025-04-16

Figure 50: Along track statistics of "Scene albedo precision" for 2025-04-15 to 2025-04-16

Figure 51: Along track statistics of "Apparent scene pressure" for 2025-04-15 to 2025-04-16

Figure 52: Along track statistics of "Apparent scene pressure precision" for 2025-04-15 to 2025-04-16

Figure 53: Along track statistics of " χ^2 " for 2025-04-15 to 2025-04-16

Figure 54: Along track statistics of "Number of iterations" for 2025-04-15 to 2025-04-16

Figure 55: Along track statistics of "Fluorescence" for 2025-04-15 to 2025-04-16

Figure 56: Along track statistics of "Fluorescence precision" for 2025-04-15 to 2025-04-16

Figure 57: Along track statistics of " χ^2 of fluorescence retrieval" for 2025-04-15 to 2025-04-16

Figure 58: Along track statistics of "Degrees of freedom for signal of fluorescence retrieval" for 2025-04-15 to 2025-04-16

Figure 59: Along track statistics of "Number of points in the spectrum" for 2025-04-15 to 2025-04-16

Figure 60: Along track statistics of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-04-15 to 2025-04-16

10 Coincidence density

To investigate the relation between parameters scatter density plots are produced. These include some 'hidden' parameters, latitude and the solar- and viewing geometries, in addition to all configured parameters. All combinations of pairs of parameters are included *once*, in one direction alone.

Contents

1	Short Introduction	1
	1.1 The list of parameters	1
2	Definitions	1
3	Granule outlines	8
4	Input data monitoring	9
5	Warnings and errors	10
6	World maps	11
7	Zonal average	17
8	Histograms	34
9	Along track statistics	51
10	Coincidence density	68
11	Copyright information of 'PyCAMA'	68

List of Figures

1	Outline of the granules.	8
2	Input data per granule	9
3	Fraction of pixels with specific warnings and errors during processing	10
4	Map of "Cloud pressure" for 2025-04-15 to 2025-04-16	11
5	Map of "Cloud fraction" for 2025-04-15 to 2025-04-16	12
6	Map of "Scene albedo" for 2025-04-15 to 2025-04-16	13
7	Map of "Apparent scene pressure" for 2025-04-15 to 2025-04-16	14
8	Map of "Fluorescence" for 2025-04-15 to 2025-04-16	15
9	Map of the number of observations for 2025-04-15 to 2025-04-16	16
10	Zonal average of "QA value" for 2025-04-15 to 2025-04-16.	17
11	Zonal average of "Cloud pressure" for 2025-04-15 to 2025-04-16.	18
12	Zonal average of "Cloud pressure precision" for 2025-04-15 to 2025-04-16.	19
13	Zonal average of "Cloud fraction" for 2025-04-15 to 2025-04-16.	20
14	Zonal average of "Cloud fraction precision" for 2025-04-15 to 2025-04-16.	21
15	Zonal average of "Scene albedo" for 2025-04-15 to 2025-04-16.	22
16	Zonal average of "Scene albedo precision" for 2025-04-15 to 2025-04-16.	23
17	Zonal average of "Apparent scene pressure" for 2025-04-15 to 2025-04-16.	24
18	Zonal average of "Apparent scene pressure precision" for 2025-04-15 to 2025-04-16.	25
19	Zonal average of " χ^2 " for 2025-04-15 to 2025-04-16	26
20	Zonal average of "Number of iterations" for 2025-04-15 to 2025-04-16.	27
21	Zonal average of "Fluorescence" for 2025-04-15 to 2025-04-16.	28
22	Zonal average of "Fluorescence precision" for 2025-04-15 to 2025-04-16.	29
23	Zonal average of " χ^2 of fluorescence retrieval" for 2025-04-15 to 2025-04-16	30
24	Zonal average of "Degrees of freedom for signal of fluorescence retrieval" for 2025-04-15 to 2025-04-16.	31
25	Zonal average of "Number of points in the spectrum" for 2025-04-15 to 2025-04-16	32
26	Zonal average of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-04-15 to 2025-04-16	33
27	Histogram of "QA value" for 2025-04-15 to 2025-04-16	34
28	Histogram of "Cloud pressure" for 2025-04-15 to 2025-04-16	35
29	Histogram of "Cloud pressure precision" for 2025-04-15 to 2025-04-16	36

30	Histogram of "Cloud fraction" for 2025-04-15 to 2025-04-16	37
31	Histogram of "Cloud fraction precision" for 2025-04-15 to 2025-04-16	38
32	Histogram of "Scene albedo" for 2025-04-15 to 2025-04-16	39
33	Histogram of "Scene albedo precision" for 2025-04-15 to 2025-04-16	40
34	Histogram of "Apparent scene pressure" for 2025-04-15 to 2025-04-16	41
35	Histogram of "Apparent scene pressure precision" for 2025-04-15 to 2025-04-16	42
36	Histogram of " χ^2 " for 2025-04-15 to 2025-04-16	43
37	Histogram of "Number of iterations" for 2025-04-15 to 2025-04-16	44
38	Histogram of "Fluorescence" for 2025-04-15 to 2025-04-16	45
39	Histogram of "Fluorescence precision" for 2025-04-15 to 2025-04-16	46
40	Histogram of " χ^2 of fluorescence retrieval" for 2025-04-15 to 2025-04-16	47
41	Histogram of "Degrees of freedom for signal of fluorescence retrieval" for 2025-04-15 to 2025-04-16	48
42	Histogram of "Number of points in the spectrum" for 2025-04-15 to 2025-04-16	49
43	Histogram of "Spectral offset $(\lambda_{true} - \lambda_{nominal})$ " for 2025-04-15 to 2025-04-16	50
44	Along track statistics of "QA value" for 2025-04-15 to 2025-04-16	51
45	Along track statistics of "Cloud pressure" for 2025-04-15 to 2025-04-16	52
46	Along track statistics of "Cloud pressure precision" for 2025-04-15 to 2025-04-16	53
47	Along track statistics of "Cloud fraction" for 2025-04-15 to 2025-04-16	54
48	Along track statistics of "Cloud fraction precision" for 2025-04-15 to 2025-04-16	55
49	Along track statistics of "Scene albedo" for 2025-04-15 to 2025-04-16	56
50	Along track statistics of "Scene albedo precision" for 2025-04-15 to 2025-04-16	57
51	Along track statistics of "Apparent scene pressure" for 2025-04-15 to 2025-04-16	58
52	Along track statistics of "Apparent scene pressure precision" for 2025-04-15 to 2025-04-16	59
53	Along track statistics of " χ^2 " for 2025-04-15 to 2025-04-16	60
54	Along track statistics of "Number of iterations" for 2025-04-15 to 2025-04-16	61
55	Along track statistics of "Fluorescence" for 2025-04-15 to 2025-04-16	62
56	Along track statistics of "Fluorescence precision" for 2025-04-15 to 2025-04-16	63
57	Along track statistics of " χ^2 of fluorescence retrieval" for 2025-04-15 to 2025-04-16	64
58	Along track statistics of "Degrees of freedom for signal of fluorescence retrieval" for 2025-04-15 to 2025-04-16	65
59	Along track statistics of "Number of points in the spectrum" for 2025-04-15 to 2025-04-16	66
60	Along track statistics of "Spectral offset $(\lambda_{true} - \lambda_{nominal})$ " for 2025-04-15 to 2025-04-16	67

List of Tables

1	Parameterlist and basic statistics for the analysis
2	Percentile ranges
3	Parameterlist and basic statistics for the analysis for observations in the northern hemisphere
4	Parameterlist and basic statistics for the analysis for observations in the southern hemisphere
5	Parameterlist and basic statistics for the analysis for observations over water
6	Parameterlist and basic statistics for the analysis for observations over land

11 Copyright information of 'PyCAMA'

Copyright © 2005-2023, Maarten Sneep (KNMI).

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
- 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

This software is provided by the copyright holders and contributors "as is" and any express or implied warranties, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose are disclaimed. In no event shall the copyright holder or contributors be liable for any direct, indirect, incidental, special, exemplary, or consequential damages (including, but not limited to, procurement of substitute goods or services; loss of use, data, or profits; or business interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence or otherwise) arising in any way out of the use of this software, even if advised of the possibility of such damage.

Maarten Sneep (maarten.sneep@knmi.nl).