PyCAMA report generated by tropl2-proc

tropl2-proc

2025-04-23 (08:45)

1 Short Introduction

1.1 The list of parameters

You may want to keep the list given in table 1 at hand when viewing the results.

2 Definitions

The averages shown here are unweighed averages:

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i \tag{1}$$

with N the number of observations in the dataset.

The spread of the measurements is indicated with the variance V(x), or rather the standard deviation $\sigma(x) = \sqrt{V(x)}$.

$$V(x) = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2$$
(2)

We also report the more robust statistics median, minimum, maximum, various percentiles and inter quartile range.

The median m is the value of parameter x for which half of the observations of x is smaller than m:

$$P(x \le m) = P(x \ge m) = \int_{-\infty}^{m} f(x) \, \mathrm{d}x = \frac{1}{2}$$
(3)

with f(x) the probability density function.

The median is a special case of a percentile. Instead of $\frac{1}{2}$ in equation 3, other threshold values can be used. We report results for 1%, 5%, 10%, 15.9%, 25%, 75%, 84.1%, 90%, 95% and 99%. The inter quartile range is the difference between the 75% and 25% percentiles. Similarly the minimum and maximum values correspond to the 0% and 100% percentiles respectively.

For normally distributed parameters the mean and median are the same, while the $\mu \pm \sigma$ values and the 15.9% and 84.1% percentiles coincide.

To get a measure for the relation of one variable $x_{(k)}$ with another $x_{(l)}$, we calculate the covariance matrix C_{kl} .

$$C_{kl} = C(x_{(k)}, x_{(l)}) = \frac{1}{N-1} \sum_{i=1}^{N} (x_{(k),i} - \overline{x_{(k)}}) (x_{(l),i} - \overline{x_{(l)}})$$
(4)

Rather than a dimensionally dependent covariance, it is often easier to interpret a correlation matrix R_{kl} , a matrix of Pearson's *r* coefficients:

$$R_{kl} = R(x_{(k)}, x_{(l)}) = \frac{C_{kl}}{\sqrt{C_{kk}C_{ll}}} = \frac{C_{kl}}{\sqrt{V(x_k)V(x_l)}}$$
(5)

The diagonal elements of the covariance matrix are the variances of the elements, $V(x_{(k)}) = C_{kk}$ and obviously $R_{kk} = 1$.

	Table 1: Parameterl	ist and basic s	statistics for the ar	nalysis			
Variable	mean $\pm \sigma$	Count	Mode	IQR	Median	Minimum	Maximum
qa value [1]	0.908 ± 0.186	23303356	0.995	0.0	1.000	0.350	1.000
cloud pressure crb [hPa]	805 ± 194	23303356	1.015×10^{3}	265	870	130	1.063×10^{3}
cloud pressure crb precision [hPa]	2.46 ± 9.28	23303356	0.750	1.18	0.578	$2.441 imes 10^{-4}$	1.360×10^{3}
cloud fraction crb [1]	0.471 ± 0.386	23303356	0.996	0.849	0.385	0.0	1.000
cloud fraction crb precision [1]	$(2.207 \pm 12.934) \times 10^{-4}$	23303356	$2.500 imes10^{-4}$	$5.473 imes10^{-5}$	$8.287 imes10^{-5}$	$2.006 imes 10^{-8}$	0.594
scene albedo [1]	0.459 ± 0.330	23303356	$1.500 imes10^{-2}$	0.597	0.421	$-3.037 imes 10^{-3}$	6.11
scene albedo precision [1]	$(8.685 \pm 10.326) \times 10^{-5}$	23303356	$2.500 imes10^{-4}$	$6.246 imes 10^{-5}$	5.449×10^{-5}	1.079×10^{-5}	3.097×10^{-3}
apparent scene pressure [hPa]	834 ± 172	23303356	1.008×10^3	222	890	130	1.063×10^{3}
apparent scene pressure precision [hPa]	0.985 ± 1.876	23303356	0.500	0.464	0.436	$8.810 imes10^{-2}$	60.9
chi square [1]	$(0.230 \pm 1.628) \times 10^5$	23303356	0.150	2.659×10^4	$1.453 imes 10^4$	46.0	$2.729 imes 10^8$
number of iterations [1]	3.42 ± 1.06	23303356	3.23	1.000	3.00	1.000	14.0
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.384 \pm 5.939) \times 10^{-9}$	23303356	$2.500 imes 10^{-10}$	$5.256 imes10^{-9}$	1.235×10^{-9}	-2.363×10^{-6}	$1.769 imes10^{-6}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.775 \pm 0.715) \times 10^{-9}$	23303356	$8.500 imes 10^{-10}$	$1.084 imes10^{-9}$	$1.716 imes 10^{-9}$	$4.863 imes 10^{-10}$	$5.780 imes 10^{-9}$
chi square fluorescence [1]	$(0.482 \pm 0.858) \times 10^5$	23303356	750	4.231×10^4	$1.674 imes 10^4$	101	$4.020 imes 10^6$
degrees of freedom fluorescence [1]	6.00 ± 0.00	23303356	5.95	0.0	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	23303356	49.7	0.0	50.0	44.0	50.0
wavelength calibration offset [nm]	$(2.936 \pm 8.573) \times 10^{-3}$	23303356	$2.800 imes 10^{-3}$	5.672×10^{-3}	2.929×10^{-3}	-0.214	0.146

			Table 2:	Percentile rang	es					
Variable	1 %	5 %	10 %	15.9 %	25 %	75 %	84.1 %	90 %	95 %	99 %
qa value [1]	0.500	0.500	0.500	0.500	1.000	1.000	1.000	1.000	1.000	1.000
cloud pressure crb [hPa]	266	406	498	583	693	958	985	1.002×10^3	1.012×10^3	1.023×10^3
cloud pressure crb precision [hPa]	0.147	0.236	0.261	0.289	0.338	1.52	2.67	4.57	9.39	31.6
cloud fraction crb [1]	1.131×10^{-3}	$1.048 imes 10^{-2}$	$2.362 imes 10^{-2}$	$4.465 imes10^{-2}$	$9.083 imes10^{-2}$	0.940	1.000	1.000	1.000	1.000
cloud fraction crb precision [1]	$2.030 imes 10^{-5}$	$2.337 imes10^{-5}$	$2.654 imes10^{-5}$	$3.123 imes 10^{-5}$	$4.527 imes 10^{-5}$	$1.000 imes 10^{-4}$	$1.276 imes10^{-4}$	$1.948 imes 10^{-4}$	$5.011 imes 10^{-4}$	4.003×10^{-3}
scene albedo [1]	$7.559 imes 10^{-3}$	$2.044 imes 10^{-2}$	$3.872 imes 10^{-2}$	$7.079 imes 10^{-2}$	0.154	0.751	0.858	0.913	0.970	1.13
scene albedo precision [1]	1.314×10^{-5}	$1.576 imes 10^{-5}$	$1.957 imes 10^{-5}$	$2.485 imes 10^{-5}$	$3.283 imes 10^{-5}$	9.530×10^{-5}	1.310×10^{-4}	$1.813 imes10^{-4}$	$2.812 imes 10^{-4}$	5.521×10^{-4}
apparent scene pressure [hPa]	346	469	560	644	745	967	989	1.004×10^{3}	1.012×10^{3}	1.023×10^{3}
apparent scene pressure precision [hPa]	0.215	0.243	0.263	0.284	0.317	0.781	1.26	2.05	3.61	9.30
chi square [1]	232	604	1.292×10^{3}	2.545×10^{3}	5.003×10^{3}	3.159×10^{4}	4.376×10^{4}	5.534×10^{4}	7.015×10^{4}	9.538×10^{4}
number of iterations [1]	2.00	2.00	2.00	3.00	3.00	4.00	4.00	5.00	5.00	6.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	-1.448×10^{-8}	-6.887×10^{-9}	-4.085×10^{-9}	-2.497×10^{-9}	-1.116×10^{-9}	4.140×10^{-9}	$5.853 imes 10^{-9}$	$7.497 imes 10^{-9}$	$9.812 imes 10^{-9}$	1.483×10^{-8}
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$7.301 imes 10^{-10}$	$8.211 imes 10^{-10}$	$8.985 imes 10^{-10}$	$9.919 imes 10^{-10}$	$1.168 imes10^{-9}$	2.252×10^{-9}	$2.537 imes 10^{-9}$	2.743×10^{-9}	3.040×10^{-9}	3.713×10^{-9}
chi square fluorescence [1]	443	1.145×10^{3}	2.125×10^{3}	3.442×10^{3}	5.956×10^{3}	4.826×10^{4}	8.136×10^{4}	1.282×10^{5}	2.196×10^{5}	4.310×10^{5}
degrees of freedom fluorescence [1]	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0
wavelength calibration offset [nm]	-2.494×10^{-2}	-9.662×10^{-3}	-4.572×10^{-3}	-1.946×10^{-3}	$1.079 imes10^{-4}$	5.780×10^{-3}	7.864×10^{-3}	1.053×10^{-2}	$1.563 imes10^{-2}$	3.039×10^{-2}

B: Parameterlist and basic s	statistics for	the analysis for	observations ir	n the northern her	nisphere		
mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
0.856 ± 0.219	14039218	0.500	1.000	0.350	1.000	0.500	1.000
831 ± 183	14039218	234	891	130	1.063×10^{3}	739	973
2.00 ± 7.48	14039218	1.01	0.501	$2.441 imes 10^{-4}$	1.360×10^{3}	0.303	1.32
0.528 ± 0.408	14039218	0.894	0.482	0.0	1.000	0.106	1.000
$(2.950 \pm 16.161) \times 10^{-4}$	14039218	$5.132 imes 10^{-5}$	$9.900 imes 10^{-5}$	$2.006 imes 10^{-8}$	0.594	$4.868 imes 10^{-5}$	$1.000 imes 10^{-4}$
0.532 ± 0.338	14039218	0.623	0.544	$-2.007 imes10^{-3}$	4.73	0.220	0.844
$(9.091 \pm 11.065) \times 10^{-5}$	14039218	$6.879 imes10^{-5}$	$5.469 imes10^{-5}$	$1.079 imes10^{-5}$	$1.822 imes 10^{-3}$	$3.208 imes 10^{-5}$	$1.009 imes10^{-4}$
862 ± 151	14039218	187	911	130	1.063×10^3	791	977
0.660 ± 0.978	14039218	0.307	0.382	0.132	51.6	0.294	0.600
$(0.311 \pm 2.090) \times 10^5$	14039218	$3.593 imes 10^4$	2.264×10^4	93.6	$2.729 imes 10^8$	8.616×10^3	$4.455 imes 10^4$
3.70 ± 1.14	14039218	1.000	3.00	1.000	14.0	3.00	4.00
$(2.194 \pm 6.460) \times 10^{-9}$	14039218	$6.307 imes10^{-9}$	2.231×10^{-9}	$-2.363 imes 10^{-6}$	$1.769 imes10^{-6}$	$-8.906 imes 10^{-10}$	$5.416 imes 10^{-9}$
$(1.940\pm0.710)\times10^{-9}$	14039218	$1.052 imes 10^{-9}$	$1.898 imes10^{-9}$	$4.863 imes 10^{-10}$	$5.780 imes10^{-9}$	1.369×10^{-9}	$2.421 imes 10^{-9}$
$(0.489\pm 0.814)\times 10^5$	14039218	$4.262 imes 10^4$	$1.973 imes 10^4$	110	$4.020 imes 10^6$	8.673×10^{3}	$5.129 imes10^4$
6.00 ± 0.00	14039218	0.0	6.00	6.00	6.00	6.00	6.00
50.0 ± 0.1	14039218	0.0	50.0	44.0	50.0	50.0	50.0
$(2.908\pm 6.855) imes 10^{-3}$	14039218	4.629×10^{-3}	2.876×10^{-3}	-7.931×10^{-2}	8.432×10^{-2}	$5.674 imes10^{-4}$	$5.197 imes10^{-3}$
	: Parameterlist and basic s mean $\pm \sigma$ 0.856 \pm 0.219 831 \pm 183 2.00 \pm 7.48 0.528 \pm 0.408 (2.950 \pm 16.161) × 10 ⁻⁴ 0.532 \pm 0.338 (9.091 \pm 11.065) × 10 ⁻⁵ 862 \pm 151 0.660 \pm 0.978 (0.311 \pm 2.090) × 10 ⁵ 3.70 \pm 1.14 (2.194 \pm 6.460) × 10 ⁻⁹ (1.940 \pm 0.710) × 10 ⁻⁹ (0.489 \pm 0.814) × 10 ⁵ 6.00 \pm 0.00 50.0 \pm 0.1 (2.908 \pm 6.855) × 10 ⁻³	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Table 4	4: Parameterlist and basic s	tatistics for	the analysis for	observations in	the southern hem	isphere		
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.988 ± 0.067	9264138	0.0	1.000	0.350	1.000	1.000	1.000
cloud pressure crb [hPa]	766 ± 203	9264138	318	835	130	1.033×10^{3}	612	930
cloud pressure crb precision [hPa]	3.15 ± 11.45	9264138	1.51	0.688	$1.202 imes 10^{-2}$	578	0.408	1.92
cloud fraction crb [1]	0.384 ± 0.332	9264138	0.587	0.307	0.0	1.000	$6.824 imes10^{-2}$	0.655
cloud fraction crb precision [1]	$(1.082 \pm 4.787) \times 10^{-4}$	9264138	$6.084 imes10^{-5}$	$7.332 imes 10^{-5}$	$9.841 imes 10^{-7}$	0.352	$4.067 imes10^{-5}$	$1.015 imes 10^{-4}$
scene albedo [1]	0.350 ± 0.286	9264138	0.466	0.309	$-3.037 imes 10^{-3}$	6.11	$8.242 imes 10^{-2}$	0.549
scene albedo precision [1]	$(8.069 \pm 9.057) \times 10^{-5}$	9264138	5.464×10^{-5}	5.424×10^{-5}	$1.085 imes10^{-5}$	3.097×10^{-3}	$3.395 imes10^{-5}$	$8.859 imes10^{-5}$
apparent scene pressure [hPa]	791 ± 191	9264138	292	857	130	1.033×10^3	652	944
apparent scene pressure precision [hPa]	1.48 ± 2.65	9264138	0.904	0.560	$8.810 imes10^{-2}$	60.9	0.381	1.29
chi square [1]	$(0.109 \pm 0.144) \times 10^5$	9264138	$1.354 imes 10^4$	8.213×10^{3}	46.0	$8.803 imes 10^6$	2.495×10^{3}	$1.604 imes 10^4$
number of iterations [1]	3.00 ± 0.76	9264138	0.0	3.00	1.000	14.0	3.00	3.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.550 \pm 47.926) \times 10^{-10}$	9264138	$3.588 imes 10^{-9}$	$4.343 imes 10^{-10}$	-1.309×10^{-6}	$1.186 imes10^{-6}$	-1.359×10^{-9}	$2.228 imes 10^{-9}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.524 \pm 0.648) \times 10^{-9}$	9264138	9.166×10^{-10}	$1.407 imes 10^{-9}$	$5.336 imes 10^{-10}$	5.539×10^{-9}	$9.786 imes 10^{-10}$	$1.895 imes10^{-9}$
chi square fluorescence [1]	$(0.473 \pm 0.920) \times 10^5$	9264138	$3.895 imes 10^4$	$1.117 imes10^4$	101	1.451×10^{6}	3.208×10^3	$4.216 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	9264138	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	9264138	0.0	50.0	48.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(2.977 \pm 10.661) \times 10^{-3}$	9264138	7.955×10^{-3}	3.060×10^{-3}	-0.214	0.146	-9.413×10^{-4}	7.014×10^{-3}

S

	Table 5: Parameterlist and	d basic stati	stics for the anal	ysis for observa	tions over water			
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.919 ± 0.172	16180625	0.1000	1.000	0.350	1.000	0.900	1.000
cloud pressure crb [hPa]	815 ± 193	16180625	258	882	130	1.063×10^{3}	707	964
cloud pressure crb precision [hPa]	2.43 ± 9.72	16180625	1.06	0.572	$2.441 imes 10^{-4}$	434	0.348	1.41
cloud fraction crb [1]	0.458 ± 0.375	16180625	0.756	0.385	0.0	1.000	8.727×10^{-2}	0.843
cloud fraction crb precision [1]	$(2.135 \pm 12.751) \times 10^{-4}$	16180625	$6.674 imes10^{-5}$	$6.683 imes10^{-5}$	$2.006 imes 10^{-8}$	0.594	3.326×10^{-5}	$1.000 imes 10^{-4}$
scene albedo [1]	0.402 ± 0.330	16180625	0.611	0.342	-3.037×10^{-3}	4.60	8.232×10^{-2}	0.693
scene albedo precision [1]	$(8.508 \pm 10.036) \times 10^{-5}$	16180625	$7.404 imes10^{-5}$	$5.459 imes10^{-5}$	1.079×10^{-5}	$3.097 imes 10^{-3}$	2.713×10^{-5}	$1.012 imes 10^{-4}$
apparent scene pressure [hPa]	833 ± 179	16180625	230	894	130	1.063×10^3	742	973
apparent scene pressure precision [hPa]	1.25 ± 2.20	16180625	0.788	0.536	8.810×10^{-2}	60.9	0.348	1.14
chi square [1]	$(0.187 \pm 1.750) \times 10^5$	16180625	$2.171 imes 10^4$	9.532×10^{3}	46.0	$2.729 imes 10^8$	2.964×10^{3}	$2.467 imes 10^4$
number of iterations [1]	3.22 ± 1.01	16180625	0.0	3.00	1.000	14.0	3.00	3.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(9.043 \pm 49.813) \times 10^{-10}$	16180625	$4.482 imes 10^{-9}$	$7.920 imes 10^{-10}$	-2.363×10^{-6}	$1.392 imes 10^{-6}$	-1.190×10^{-9}	3.292×10^{-9}
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.596 \pm 0.668) \times 10^{-9}$	16180625	$9.677 imes 10^{-10}$	1.467×10^{-9}	$4.880 imes 10^{-10}$	$5.780 imes10^{-9}$	$1.046 imes 10^{-9}$	$2.014 imes10^{-9}$
chi square fluorescence [1]	$(0.353 \pm 0.658) \times 10^5$	16180625	3.124×10^4	1.359×10^4	101	$4.020 imes 10^6$	4.756×10^{3}	3.600×10^4
degrees of freedom fluorescence [1]	6.00 ± 0.00	16180625	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	16180625	0.0	50.0	45.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(2.907 \pm 9.597) \times 10^{-3}$	16180625	$6.333 imes10^{-3}$	2.915×10^{-3}	-0.214	0.146	-2.496×10^{-4}	$6.083 imes10^{-3}$
	•							

	Table 6: Parameterlist ar	nd basic star	tistics for the an	alysis for obser	vations over land			
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.870 ± 0.222	5127266	0.500	1.000	0.350	1.000	0.500	1.000
cloud pressure crb [hPa]	780 ± 192	5127266	267	825	130	1.043×10^{3}	672	939
cloud pressure crb precision [hPa]	2.56 ± 8.24	5127266	1.52	0.611	$9.155 imes10^{-4}$	1.360×10^{3}	0.306	1.82
cloud fraction crb [1]	0.505 ± 0.412	5127266	0.905	0.389	0.0	1.000	$9.473 imes 10^{-2}$	1.000
cloud fraction crb precision [1]	$(2.523 \pm 14.113) \times 10^{-4}$	5127266	3.359×10^{-5}	$1.000 imes 10^{-4}$	2.952×10^{-7}	0.577	7.637×10^{-5}	1.100×10^{-4}
scene albedo [1]	0.603 ± 0.290	5127266	0.524	0.570	$2.595 imes 10^{-2}$	5.75	0.340	0.864
scene albedo precision [1]	$(9.633 \pm 11.538) \times 10^{-5}$	5127266	$4.966 imes 10^{-5}$	$5.520 imes 10^{-5}$	$1.411 imes 10^{-5}$	$1.724 imes 10^{-3}$	$3.880 imes10^{-5}$	$8.846 imes10^{-5}$
apparent scene pressure [hPa]	829 ± 151	5127266	210	870	130	1.043×10^3	741	951
apparent scene pressure precision [hPa]	0.377 ± 0.133	5127266	0.162	0.347	0.162	5.10	0.278	0.440
chi square [1]	$(0.324 \pm 1.000) \times 10^5$	5127266	2.744×10^4	$2.423 imes 10^4$	437	$1.079 imes 10^8$	$1.470 imes 10^4$	$4.214 imes 10^4$
number of iterations [1]	3.91 ± 1.02	5127266	1.000	4.00	1.000	14.0	3.00	4.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(2.367 \pm 7.163) \times 10^{-9}$	5127266	$6.658 imes10^{-9}$	$2.598 imes 10^{-9}$	$-1.616 imes 10^{-6}$	$1.328 imes 10^{-6}$	$-7.823 imes 10^{-10}$	$5.876 imes10^{-9}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(2.165 \pm 0.645) \times 10^{-9}$	5127266	$8.403 imes 10^{-10}$	$2.166 imes 10^{-9}$	$5.377 imes 10^{-10}$	$5.755 imes 10^{-9}$	1.754×10^{-9}	2.595×10^{-9}
chi square fluorescence [1]	$(0.726 \pm 1.084) \times 10^5$	5127266	$7.390 imes 10^4$	$2.527 imes 10^4$	175	$1.933 imes10^6$	$8.800 imes 10^3$	$8.270 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	5127266	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	5127266	0.0	50.0	46.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(2.953 \pm 4.897) \times 10^{-3}$	5127266	4.341×10^{-3}	2.926×10^{-3}	-5.261×10^{-2}	6.104×10^{-2}	7.769×10^{-4}	$5.117 imes 10^{-3}$

Granule outlines

Figure 1: Outline of the granules.

4 Input data monitoring

Figure 2: Input data per granule

5 Warnings and errors

Figure 3: Fraction of pixels with specific warnings and errors during processing

6 World maps

Figure 4: Map of "Cloud pressure" for 2025-04-21 to 2025-04-22

Figure 5: Map of "Cloud fraction" for 2025-04-21 to 2025-04-22

Figure 6: Map of "Scene albedo" for 2025-04-21 to 2025-04-22

Figure 7: Map of "Apparent scene pressure" for 2025-04-21 to 2025-04-22

Figure 8: Map of "Fluorescence" for 2025-04-21 to 2025-04-22

Figure 9: Map of the number of observations for 2025-04-21 to 2025-04-22

7 Zonal average

Figure 10: Zonal average of "QA value" for 2025-04-21 to 2025-04-22.

Figure 11: Zonal average of "Cloud pressure" for 2025-04-21 to 2025-04-22.

Figure 12: Zonal average of "Cloud pressure precision" for 2025-04-21 to 2025-04-22.

Figure 13: Zonal average of "Cloud fraction" for 2025-04-21 to 2025-04-22.

Figure 14: Zonal average of "Cloud fraction precision" for 2025-04-21 to 2025-04-22.

Figure 15: Zonal average of "Scene albedo" for 2025-04-21 to 2025-04-22.

Figure 16: Zonal average of "Scene albedo precision" for 2025-04-21 to 2025-04-22.

Figure 17: Zonal average of "Apparent scene pressure" for 2025-04-21 to 2025-04-22.

Figure 18: Zonal average of "Apparent scene pressure precision" for 2025-04-21 to 2025-04-22.

Figure 19: Zonal average of " χ^2 " for 2025-04-21 to 2025-04-22.

Figure 20: Zonal average of "Number of iterations" for 2025-04-21 to 2025-04-22.

Figure 21: Zonal average of "Fluorescence" for 2025-04-21 to 2025-04-22.

Figure 22: Zonal average of "Fluorescence precision" for 2025-04-21 to 2025-04-22.

Figure 23: Zonal average of " χ^2 of fluorescence retrieval" for 2025-04-21 to 2025-04-22.

Figure 24: Zonal average of "Degrees of freedom for signal of fluorescence retrieval" for 2025-04-21 to 2025-04-22.

Figure 25: Zonal average of "Number of points in the spectrum" for 2025-04-21 to 2025-04-22.

Figure 26: Zonal average of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-04-21 to 2025-04-22.

8 Histograms

The definitions of the parameters given in this section can be found in section 2.

Figure 27: Histogram of "QA value" for 2025-04-21 to 2025-04-22

Figure 28: Histogram of "Cloud pressure" for 2025-04-21 to 2025-04-22

Figure 29: Histogram of "Cloud pressure precision" for 2025-04-21 to 2025-04-22

Figure 30: Histogram of "Cloud fraction" for 2025-04-21 to 2025-04-22

Figure 31: Histogram of "Cloud fraction precision" for 2025-04-21 to 2025-04-22

Figure 32: Histogram of "Scene albedo" for 2025-04-21 to 2025-04-22

Figure 33: Histogram of "Scene albedo precision" for 2025-04-21 to 2025-04-22

Figure 34: Histogram of "Apparent scene pressure" for 2025-04-21 to 2025-04-22

Figure 35: Histogram of "Apparent scene pressure precision" for 2025-04-21 to 2025-04-22

Figure 36: Histogram of " χ^2 " for 2025-04-21 to 2025-04-22

Figure 37: Histogram of "Number of iterations" for 2025-04-21 to 2025-04-22

Figure 38: Histogram of "Fluorescence" for 2025-04-21 to 2025-04-22

Figure 39: Histogram of "Fluorescence precision" for 2025-04-21 to 2025-04-22

Figure 40: Histogram of " χ^2 of fluorescence retrieval" for 2025-04-21 to 2025-04-22

Figure 41: Histogram of "Degrees of freedom for signal of fluorescence retrieval" for 2025-04-21 to 2025-04-22

Figure 42: Histogram of "Number of points in the spectrum" for 2025-04-21 to 2025-04-22

Figure 43: Histogram of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-04-21 to 2025-04-22

9 Along track statistics

The TROPOMI instrument uses different binned detector rows for different viewing directions. In this section statistics are presented for each of the binned rows in the instrument.

Figure 44: Along track statistics of "QA value" for 2025-04-21 to 2025-04-22

Figure 45: Along track statistics of "Cloud pressure" for 2025-04-21 to 2025-04-22

Figure 46: Along track statistics of "Cloud pressure precision" for 2025-04-21 to 2025-04-22

Figure 47: Along track statistics of "Cloud fraction" for 2025-04-21 to 2025-04-22

Figure 48: Along track statistics of "Cloud fraction precision" for 2025-04-21 to 2025-04-22

Figure 49: Along track statistics of "Scene albedo" for 2025-04-21 to 2025-04-22

Figure 50: Along track statistics of "Scene albedo precision" for 2025-04-21 to 2025-04-22

Figure 51: Along track statistics of "Apparent scene pressure" for 2025-04-21 to 2025-04-22

Figure 52: Along track statistics of "Apparent scene pressure precision" for 2025-04-21 to 2025-04-22

Figure 53: Along track statistics of " χ^2 " for 2025-04-21 to 2025-04-22

Figure 54: Along track statistics of "Number of iterations" for 2025-04-21 to 2025-04-22

Figure 55: Along track statistics of "Fluorescence" for 2025-04-21 to 2025-04-22

Figure 56: Along track statistics of "Fluorescence precision" for 2025-04-21 to 2025-04-22

Figure 57: Along track statistics of " χ^2 of fluorescence retrieval" for 2025-04-21 to 2025-04-22

Figure 58: Along track statistics of "Degrees of freedom for signal of fluorescence retrieval" for 2025-04-21 to 2025-04-22

Figure 59: Along track statistics of "Number of points in the spectrum" for 2025-04-21 to 2025-04-22

Figure 60: Along track statistics of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-04-21 to 2025-04-22

10 Coincidence density

To investigate the relation between parameters scatter density plots are produced. These include some 'hidden' parameters, latitude and the solar- and viewing geometries, in addition to all configured parameters. All combinations of pairs of parameters are included *once*, in one direction alone.

Contents

1	Short Introduction 1.1 The list of parameters	1 1
2	Definitions	1
3	Granule outlines	8
4	Input data monitoring	9
5	Warnings and errors	10
6	World maps	11
7	Zonal average	17
8	Histograms	34
9	Along track statistics	51
10	Coincidence density	68
11	Copyright information of 'PyCAMA'	68

List of Figures

1	Outline of the granules.	8
2	Input data per granule	9
3	Fraction of pixels with specific warnings and errors during processing	10
4	Map of "Cloud pressure" for 2025-04-21 to 2025-04-22	11
5	Map of "Cloud fraction" for 2025-04-21 to 2025-04-22	12
6	Map of "Scene albedo" for 2025-04-21 to 2025-04-22	13
7	Map of "Apparent scene pressure" for 2025-04-21 to 2025-04-22	14
8	Map of "Fluorescence" for 2025-04-21 to 2025-04-22	15
9	Map of the number of observations for 2025-04-21 to 2025-04-22	16
10	Zonal average of "QA value" for 2025-04-21 to 2025-04-22	17
11	Zonal average of "Cloud pressure" for 2025-04-21 to 2025-04-22.	18
12	Zonal average of "Cloud pressure precision" for 2025-04-21 to 2025-04-22.	19
13	Zonal average of "Cloud fraction" for 2025-04-21 to 2025-04-22.	20
14	Zonal average of "Cloud fraction precision" for 2025-04-21 to 2025-04-22.	21
15	Zonal average of "Scene albedo" for 2025-04-21 to 2025-04-22.	22
16	Zonal average of "Scene albedo precision" for 2025-04-21 to 2025-04-22.	23
17	Zonal average of "Apparent scene pressure" for 2025-04-21 to 2025-04-22.	24
18	Zonal average of "Apparent scene pressure precision" for 2025-04-21 to 2025-04-22.	25
19	Zonal average of " χ^2 " for 2025-04-21 to 2025-04-22	26
20	Zonal average of "Number of iterations" for 2025-04-21 to 2025-04-22.	27
21	Zonal average of "Fluorescence" for 2025-04-21 to 2025-04-22.	28
22	Zonal average of "Fluorescence precision" for 2025-04-21 to 2025-04-22.	29
23	Zonal average of " χ^2 of fluorescence retrieval" for 2025-04-21 to 2025-04-22	30
24	Zonal average of "Degrees of freedom for signal of fluorescence retrieval" for 2025-04-21 to 2025-04-22.	31
25	Zonal average of "Number of points in the spectrum" for 2025-04-21 to 2025-04-22.	32
26	Zonal average of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-04-21 to 2025-04-22	33
27	Histogram of "QA value" for 2025-04-21 to 2025-04-22	34
28	Histogram of "Cloud pressure" for 2025-04-21 to 2025-04-22	35
29	Histogram of "Cloud pressure precision" for 2025-04-21 to 2025-04-22	36

30	Histogram of "Cloud fraction" for 2025-04-21 to 2025-04-22	37
31	Histogram of "Cloud fraction precision" for 2025-04-21 to 2025-04-22	38
32	Histogram of "Scene albedo" for 2025-04-21 to 2025-04-22	39
33	Histogram of "Scene albedo precision" for 2025-04-21 to 2025-04-22	40
34	Histogram of "Apparent scene pressure" for 2025-04-21 to 2025-04-22	41
35	Histogram of "Apparent scene pressure precision" for 2025-04-21 to 2025-04-22	42
36	Histogram of " χ^2 " for 2025-04-21 to 2025-04-22	43
37	Histogram of "Number of iterations" for 2025-04-21 to 2025-04-22	44
38	Histogram of "Fluorescence" for 2025-04-21 to 2025-04-22	45
39	Histogram of "Fluorescence precision" for 2025-04-21 to 2025-04-22	46
40	Histogram of " χ^2 of fluorescence retrieval" for 2025-04-21 to 2025-04-22	47
41	Histogram of "Degrees of freedom for signal of fluorescence retrieval" for 2025-04-21 to 2025-04-22	48
42	Histogram of "Number of points in the spectrum" for 2025-04-21 to 2025-04-22	49
43	Histogram of "Spectral offset $(\lambda_{true} - \lambda_{nominal})$ " for 2025-04-21 to 2025-04-22	50
44	Along track statistics of "QA value" for 2025-04-21 to 2025-04-22	51
45	Along track statistics of "Cloud pressure" for 2025-04-21 to 2025-04-22	52
46	Along track statistics of "Cloud pressure precision" for 2025-04-21 to 2025-04-22	53
47	Along track statistics of "Cloud fraction" for 2025-04-21 to 2025-04-22	54
48	Along track statistics of "Cloud fraction precision" for 2025-04-21 to 2025-04-22	55
49	Along track statistics of "Scene albedo" for 2025-04-21 to 2025-04-22	56
50	Along track statistics of "Scene albedo precision" for 2025-04-21 to 2025-04-22	57
51	Along track statistics of "Apparent scene pressure" for 2025-04-21 to 2025-04-22	58
52	Along track statistics of "Apparent scene pressure precision" for 2025-04-21 to 2025-04-22	59
53	Along track statistics of " χ^2 " for 2025-04-21 to 2025-04-22	60
54	Along track statistics of "Number of iterations" for 2025-04-21 to 2025-04-22	61
55	Along track statistics of "Fluorescence" for 2025-04-21 to 2025-04-22	62
56	Along track statistics of "Fluorescence precision" for 2025-04-21 to 2025-04-22	63
57	Along track statistics of " χ^2 of fluorescence retrieval" for 2025-04-21 to 2025-04-22	64
58	Along track statistics of "Degrees of freedom for signal of fluorescence retrieval" for 2025-04-21 to 2025-04-22	65
59	Along track statistics of "Number of points in the spectrum" for 2025-04-21 to 2025-04-22	66
60	Along track statistics of "Spectral offset $(\lambda_{true} - \lambda_{nominal})$ " for 2025-04-21 to 2025-04-22	67

List of Tables

1	Parameterlist and basic statistics for the analysis
2	Percentile ranges
3	Parameterlist and basic statistics for the analysis for observations in the northern hemisphere
4	Parameterlist and basic statistics for the analysis for observations in the southern hemisphere
5	Parameterlist and basic statistics for the analysis for observations over water
6	Parameterlist and basic statistics for the analysis for observations over land

11 Copyright information of 'PyCAMA'

Copyright © 2005-2023, Maarten Sneep (KNMI).

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
- 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

This software is provided by the copyright holders and contributors "as is" and any express or implied warranties, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose are disclaimed. In no event shall the copyright holder or contributors be liable for any direct, indirect, incidental, special, exemplary, or consequential damages (including, but not limited to, procurement of substitute goods or services; loss of use, data, or profits; or business interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence or otherwise) arising in any way out of the use of this software, even if advised of the possibility of such damage.

Maarten Sneep (maarten.sneep@knmi.nl).