PyCAMA report generated by tropl2-proc

tropl2-proc

2025-04-27 (05:30)

1 Short Introduction

1.1 The list of parameters

You may want to keep the list given in table 1 at hand when viewing the results.

2 Definitions

The averages shown here are unweighed averages:

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i \tag{1}$$

with N the number of observations in the dataset.

The spread of the measurements is indicated with the variance V(x), or rather the standard deviation $\sigma(x) = \sqrt{V(x)}$.

$$V(x) = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2$$
(2)

We also report the more robust statistics median, minimum, maximum, various percentiles and inter quartile range.

The median m is the value of parameter x for which half of the observations of x is smaller than m:

$$P(x \le m) = P(x \ge m) = \int_{-\infty}^{m} f(x) \, \mathrm{d}x = \frac{1}{2}$$
(3)

with f(x) the probability density function.

The median is a special case of a percentile. Instead of $\frac{1}{2}$ in equation 3, other threshold values can be used. We report results for 1%, 5%, 10%, 15.9%, 25%, 75%, 84.1%, 90%, 95% and 99%. The inter quartile range is the difference between the 75% and 25% percentiles. Similarly the minimum and maximum values correspond to the 0% and 100% percentiles respectively.

For normally distributed parameters the mean and median are the same, while the $\mu \pm \sigma$ values and the 15.9% and 84.1% percentiles coincide.

To get a measure for the relation of one variable $x_{(k)}$ with another $x_{(l)}$, we calculate the covariance matrix C_{kl} .

$$C_{kl} = C(x_{(k)}, x_{(l)}) = \frac{1}{N-1} \sum_{i=1}^{N} (x_{(k),i} - \overline{x_{(k)}}) (x_{(l),i} - \overline{x_{(l)}})$$
(4)

Rather than a dimensionally dependent covariance, it is often easier to interpret a correlation matrix R_{kl} , a matrix of Pearson's *r* coefficients:

$$R_{kl} = R(x_{(k)}, x_{(l)}) = \frac{C_{kl}}{\sqrt{C_{kk}C_{ll}}} = \frac{C_{kl}}{\sqrt{V(x_k)V(x_l)}}$$
(5)

The diagonal elements of the covariance matrix are the variances of the elements, $V(x_{(k)}) = C_{kk}$ and obviously $R_{kk} = 1$.

Table 1: Parameterlist and basic s	statistics for t	he analysi
------------------------------------	------------------	------------

	Table 1: Parameterl	ist and basic s	statistics for the ar	nalysis			
Variable	mean $\pm \sigma$	Count	Mode	IQR	Median	Minimum	Maximum
qa value [1]	0.907 ± 0.187	23382225	0.995	0.0	1.000	0.350	1.000
cloud pressure crb [hPa]	810 ± 195	23382225	1.005×10^3	258	874	130	1.065×10^{3}
cloud pressure crb precision [hPa]	2.41 ± 9.00	23382225	0.750	1.20	0.580	$6.104 imes10^{-5}$	1.204×10^3
cloud fraction crb [1]	0.472 ± 0.387	23382225	0.996	0.860	0.385	0.0	1.000
cloud fraction crb precision [1]	$(2.568 \pm 14.978) \times 10^{-4}$	23382225	$2.500 imes10^{-4}$	$5.429 imes10^{-5}$	8.290×10^{-5}	$1.112 imes 10^{-8}$	0.677
scene albedo [1]	0.456 ± 0.326	23382225	$1.500 imes10^{-2}$	0.595	0.421	-2.542×10^{-3}	6.09
scene albedo precision [1]	$(8.689 \pm 10.315) \times 10^{-5}$	23382225	$2.500 imes10^{-4}$	$6.321 imes10^{-5}$	$5.426 imes 10^{-5}$	1.059×10^{-5}	1.168×10^{-2}
apparent scene pressure [hPa]	839 ± 171	23382225	1.008×10^3	214	893	130	1.065×10^3
apparent scene pressure precision [hPa]	1.00 ± 1.84	23382225	0.500	0.488	0.439	0.164	61.5
chi square [1]	$(0.228 \pm 2.060) \times 10^5$	23382225	0.150	$2.642 imes 10^4$	$1.424 imes 10^4$	53.5	3.632×10^8
number of iterations [1]	3.42 ± 1.06	23382225	3.23	1.000	3.00	1.000	14.0
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.355\pm5.894)\times10^{-9}$	23382225	2.500×10^{-10}	$5.270 imes10^{-9}$	1.191×10^{-9}	$-1.748 imes10^{-6}$	$1.716 imes10^{-6}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.780\pm0.730)\times10^{-9}$	23382225	$8.500 imes 10^{-10}$	1.109×10^{-9}	$1.717 imes10^{-9}$	$4.282 imes 10^{-10}$	5.766×10^{-9}
chi square fluorescence [1]	$(0.496 \pm 0.900) \times 10^5$	23382225	750	$4.210 imes 10^4$	$1.817 imes 10^4$	97.0	$5.185 imes 10^6$
degrees of freedom fluorescence [1]	6.00 ± 0.00	23382225	5.95	0.0	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	23382225	49.7	0.0	50.0	48.0	50.0
wavelength calibration offset [nm]	$(2.989 \pm 8.738) \times 10^{-3}$	23382225	2.800×10^{-3}	$5.711 imes10^{-3}$	2.986×10^{-3}	-0.167	0.156
	•						

	Table 2: Percentile ranges									
Variable	1 %	5%	10 %	15.9 %	25 %	75 %	84.1 %	90 %	95 %	99 %
qa value [1]	0.500	0.500	0.500	0.500	1.000	1.000	1.000	1.000	1.000	1.000
cloud pressure crb [hPa]	263	405	500	590	704	963	990	1.005×10^3	1.014×10^3	1.029×10^3
cloud pressure crb precision [hPa]	0.122	0.230	0.256	0.283	0.331	1.53	2.67	4.54	9.27	30.1
cloud fraction crb [1]	$8.167 imes10^{-4}$	$1.085 imes10^{-2}$	$2.447 imes10^{-2}$	$4.550 imes 10^{-2}$	$9.093 imes10^{-2}$	0.950	1.000	1.000	1.000	1.000
cloud fraction crb precision [1]	$2.045 imes 10^{-5}$	$2.363 imes10^{-5}$	2.699×10^{-5}	$3.219 imes 10^{-5}$	4.571×10^{-5}	$1.000 imes 10^{-4}$	$1.367 imes10^{-4}$	$2.205 imes 10^{-4}$	$6.551 imes 10^{-4}$	4.417×10^{-3}
scene albedo [1]	$8.191 imes 10^{-3}$	$2.012 imes 10^{-2}$	$3.830 imes 10^{-2}$	$6.962 imes 10^{-2}$	0.152	0.747	0.849	0.906	0.960	1.10
scene albedo precision [1]	1.322×10^{-5}	$1.590 imes 10^{-5}$	$1.985 imes 10^{-5}$	$2.533 imes 10^{-5}$	3.326×10^{-5}	9.647×10^{-5}	1.306×10^{-4}	$1.795 imes 10^{-4}$	$2.785 imes 10^{-4}$	5.499×10^{-4}
apparent scene pressure [hPa]	345	468	567	658	756	970	993	1.006×10^{3}	1.014×10^{3}	1.030×10^{3}
apparent scene pressure precision [hPa]	0.214	0.242	0.261	0.283	0.316	0.804	1.30	2.13	3.82	9.08
chi square [1]	236	578	1.242×10^{3}	2.459×10^{3}	4.909×10^{3}	3.133×10^{4}	4.388×10^{4}	5.522×10^{4}	7.045×10^{4}	9.872×10^{4}
number of iterations [1]	2.00	2.00	2.00	3.00	3.00	4.00	4.00	5.00	5.00	6.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	-1.458×10^{-8}	-7.005×10^{-9}	-4.192×10^{-9}	-2.579×10^{-9}	-1.173×10^{-9}	4.097×10^{-9}	$5.870 imes 10^{-9}$	7.573×10^{-9}	$9.960 imes 10^{-9}$	1.509×10^{-8}
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$7.177 imes 10^{-10}$	8.172×10^{-10}	8.923×10^{-10}	9.858×10^{-10}	1.155×10^{-9}	2.265×10^{-9}	2.556×10^{-9}	2.761×10^{-9}	3.078×10^{-9}	3.769×10^{-9}
chi square fluorescence [1]	411	1.102×10^{3}	2.126×10^{3}	3.573×10^{3}	6.432×10^{3}	4.854×10^{4}	8.222×10^4	1.282×10^{5}	2.190×10^{5}	4.570×10^{5}
degrees of freedom fluorescence [1]	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$-2.548 imes 10^{-2}$	-9.850×10^{-3}	-4.643×10^{-3}	-1.954×10^{-3}	$1.419 imes 10^{-4}$	5.853×10^{-3}	$7.973 imes 10^{-3}$	$1.070 imes 10^{-2}$	$1.591 imes 10^{-2}$	3.108×10^{-2}

г	Table 3.	Parameterlis	t and basic	statistics for	the analysis	for observ	vations in the	northern hemis	nhere
	able 5.	1 arameterns	i and basic	statistics for	the analysis		valions in the	normern nemis	phote

Variable	mean $+\sigma$	Count	IOR	Median	Minimum	Maximum	25 % percentile	75 % percentile
ga value [1]	0.854 ± 0.219	14277772	0.500	1.000	0.350	1.000	0.500	1.000
cloud pressure crb [hPa]	838 ± 183	14277772	224	899	130	1.065×10^{3}	754	978
cloud pressure crb precision [hPa]	1.94 ± 7.33	14277772	0.981	0.487	$6.104 imes 10^{-5}$	$1.204 imes 10^3$	0.294	1.28
cloud fraction crb [1]	0.535 ± 0.406	14277772	0.888	0.504	0.0	1.000	0.112	1.000
cloud fraction crb precision [1]	$(3.532 \pm 18.897) \times 10^{-4}$	14277772	$5.012 imes 10^{-5}$	$1.000 imes 10^{-4}$	1.112×10^{-8}	0.677	4.988×10^{-5}	$1.000 imes 10^{-4}$
scene albedo [1]	0.531 ± 0.331	14277772	0.603	0.549	-1.915×10^{-3}	3.42	0.231	0.834
scene albedo precision [1]	$(9.060 \pm 10.816) \times 10^{-5}$	14277772	6.762×10^{-5}	$5.503 imes10^{-5}$	1.059×10^{-5}	2.220×10^{-3}	$3.314 imes10^{-5}$	$1.008 imes 10^{-4}$
apparent scene pressure [hPa]	869 ± 149	14277772	179	916	130	$1.065 imes 10^3$	802	981
apparent scene pressure precision [hPa]	0.675 ± 1.065	14277772	0.309	0.379	0.165	49.6	0.292	0.601
chi square [1]	$(0.310 \pm 2.632) \times 10^5$	14277772	$3.555 imes 10^4$	$2.274 imes 10^4$	67.0	$3.632 imes 10^8$	8.832×10^{3}	$4.438 imes 10^4$
number of iterations [1]	3.68 ± 1.15	14277772	1.000	3.00	1.000	14.0	3.00	4.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(2.115 \pm 6.511) \times 10^{-9}$	14277772	6.442×10^{-9}	2.159×10^{-9}	$-1.748 imes 10^{-6}$	1.716×10^{-6}	-1.028×10^{-9}	$5.414 imes 10^{-9}$
fluorescence precision [mol s^{-1} m ⁻² nm ⁻¹ sr ⁻¹]	$(1.960 \pm 0.725) \times 10^{-9}$	14277772	$1.087 imes 10^{-9}$	$1.924 imes 10^{-9}$	$4.684 imes 10^{-10}$	5.766×10^{-9}	1.376×10^{-9}	2.463×10^{-9}
chi square fluorescence [1]	$(0.529 \pm 0.901) \times 10^5$	14277772	4.342×10^4	2.221×10^4	115	$5.185 imes 10^6$	9.944×10^{3}	$5.337 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	14277772	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	14277772	0.0	50.0	48.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(2.964\pm 6.982) imes 10^{-3}$	14277772	4.650×10^{-3}	2.927×10^{-3}	-8.149×10^{-2}	8.548×10^{-2}	$6.085 imes10^{-4}$	5.259×10^{-3}

Table 4	4: Parameterlist and basic s	tatistics for	the analysis for	observations in	the southern hem	nisphere		
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.990 ± 0.058	9104453	0.0	1.000	0.350	1.000	1.000	1.000
cloud pressure crb [hPa]	765 ± 204	9104453	315	832	130	1.034×10^{3}	614	929
cloud pressure crb precision [hPa]	3.14 ± 11.09	9104453	1.62	0.727	$1.465 imes 10^{-2}$	771	0.418	2.03
cloud fraction crb [1]	0.373 ± 0.331	9104453	0.578	0.283	0.0	1.000	$6.292 imes10^{-2}$	0.641
cloud fraction crb precision [1]	$(1.057 \pm 3.527) \times 10^{-4}$	9104453	$6.225 imes 10^{-5}$	$7.124 imes 10^{-5}$	$6.938 imes10^{-8}$	0.231	$4.032 imes 10^{-5}$	$1.026 imes10^{-4}$
scene albedo [1]	0.337 ± 0.281	9104453	0.463	0.288	-2.542×10^{-3}	6.09	$7.438 imes10^{-2}$	0.537
scene albedo precision [1]	$(8.106 \pm 9.446) \times 10^{-5}$	9104453	$5.724 imes 10^{-5}$	5.310×10^{-5}	$1.128 imes10^{-5}$	1.168×10^{-2}	$3.344 imes 10^{-5}$	$9.068 imes10^{-5}$
apparent scene pressure [hPa]	791 ± 191	9104453	284	855	130	1.034×10^3	659	943
apparent scene pressure precision [hPa]	1.51 ± 2.55	9104453	1.01	0.587	0.164	61.5	0.389	1.40
chi square [1]	$(0.101 \pm 0.114) \times 10^5$	9104453	1.259×10^4	7.554×10^{3}	53.5	9.962×10^{6}	2.207×10^{3}	$1.480 imes 10^4$
number of iterations [1]	3.01 ± 0.73	9104453	0.0	3.00	1.000	14.0	3.00	3.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.617 \pm 45.193) \times 10^{-10}$	9104453	$3.478 imes 10^{-9}$	4.162×10^{-10}	$-7.113 imes 10^{-7}$	6.712×10^{-7}	-1.324×10^{-9}	$2.154 imes10^{-9}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.498 \pm 0.644) \times 10^{-9}$	9104453	$8.997 imes10^{-10}$	$1.372 imes 10^{-9}$	$4.282 imes 10^{-10}$	5.563×10^{-9}	$9.671 imes 10^{-10}$	$1.867 imes10^{-9}$
chi square fluorescence [1]	$(0.445 \pm 0.894) \times 10^5$	9104453	$3.605 imes 10^4$	$1.100 imes 10^4$	97.0	$1.651 imes 10^6$	3.183×10^3	$3.924 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	9104453	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	9104453	0.0	50.0	48.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(3.029 \pm 10.937) \times 10^{-3}$	9104453	8.130×10^{-3}	3.142×10^{-3}	-0.167	0.156	-9.828×10^{-4}	7.147×10^{-3}

	Table 5: Parameterlist an	d basic stati	stics for the anal	lysis for observa	tions over water			
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.917 ± 0.173	16255451	0.1000	1.000	0.350	1.000	0.900	1.000
cloud pressure crb [hPa]	823 ± 192	16255451	249	889	130	1.064×10^{3}	722	971
cloud pressure crb precision [hPa]	2.43 ± 9.45	16255451	1.10	0.575	$6.104 imes10^{-5}$	771	0.341	1.44
cloud fraction crb [1]	0.458 ± 0.377	16255451	0.769	0.382	0.0	1.000	8.539×10^{-2}	0.855
cloud fraction crb precision [1]	$(2.588 \pm 15.710) \times 10^{-4}$	16255451	$6.584 imes10^{-5}$	$6.638 imes10^{-5}$	$1.112 imes 10^{-8}$	0.661	$3.416 imes 10^{-5}$	$1.000 imes 10^{-4}$
scene albedo [1]	0.399 ± 0.327	16255451	0.614	0.337	-2.542×10^{-3}	6.09	$8.108 imes10^{-2}$	0.696
scene albedo precision [1]	$(8.481 \pm 9.898) \times 10^{-5}$	16255451	$7.452 imes 10^{-5}$	$5.432 imes 10^{-5}$	1.059×10^{-5}	$1.168 imes10^{-2}$	2.779×10^{-5}	$1.023 imes 10^{-4}$
apparent scene pressure [hPa]	839 ± 179	16255451	223	900	130	1.064×10^3	755	978
apparent scene pressure precision [hPa]	1.27 ± 2.15	16255451	0.821	0.542	0.164	61.5	0.347	1.17
chi square [1]	$(0.183 \pm 1.275) \times 10^5$	16255451	$2.123 imes 10^4$	9.292×10^{3}	53.5	$2.288 imes 10^8$	2.900×10^{3}	$2.413 imes 10^4$
number of iterations [1]	3.21 ± 0.99	16255451	0.0	3.00	1.000	14.0	3.00	3.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(8.745 \pm 54.057) \times 10^{-10}$	16255451	$4.472 imes 10^{-9}$	$7.724 imes 10^{-10}$	$-1.748 imes10^{-6}$	$1.716 imes10^{-6}$	-1.228×10^{-9}	$3.244 imes 10^{-9}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.600 \pm 0.680) \times 10^{-9}$	16255451	$9.926 imes 10^{-10}$	$1.464 imes 10^{-9}$	$4.282 imes 10^{-10}$	$5.632 imes 10^{-9}$	1.036×10^{-9}	2.029×10^{-9}
chi square fluorescence [1]	$(0.369 \pm 0.734) \times 10^5$	16255451	$3.156 imes 10^4$	1.496×10^4	97.0	$5.185 imes10^6$	4.903×10^{3}	3.646×10^4
degrees of freedom fluorescence [1]	6.00 ± 0.00	16255451	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	16255451	0.0	50.0	48.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(2.969 \pm 9.813) \times 10^{-3}$	16255451	$6.408 imes 10^{-3}$	2.978×10^{-3}	-0.167	0.156	-2.272×10^{-4}	$6.181 imes10^{-3}$

	Table 6: Parameterlist an	d basic stat	istics for the ana	alysis for observ	vations over land			
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.872 ± 0.221	5100307	0.300	1.000	0.350	1.000	0.700	1.000
cloud pressure crb [hPa]	776 ± 196	5100307	258	823	130	1.055×10^{3}	676	934
cloud pressure crb precision [hPa]	2.36 ± 7.84	5100307	1.47	0.607	$1.038 imes 10^{-3}$	1.193×10^{3}	0.301	1.77
cloud fraction crb [1]	0.508 ± 0.410	5100307	0.901	0.393	0.0	1.000	$9.912 imes 10^{-2}$	1.000
cloud fraction crb precision [1]	$(2.657 \pm 13.264) \times 10^{-4}$	5100307	$3.528 imes 10^{-5}$	$1.000 imes 10^{-4}$	$6.938 imes10^{-8}$	0.507	7.636×10^{-5}	$1.116 imes10^{-4}$
scene albedo [1]	0.600 ± 0.284	5100307	0.513	0.569	2.545×10^{-2}	3.60	0.344	0.857
scene albedo precision [1]	$(9.613 \pm 11.709) \times 10^{-5}$	5100307	$4.933 imes 10^{-5}$	$5.510 imes10^{-5}$	$1.408 imes 10^{-5}$	$1.899 imes10^{-3}$	$3.886 imes 10^{-5}$	$8.819 imes10^{-5}$
apparent scene pressure [hPa]	832 ± 146	5100307	198	869	130	$1.055 imes 10^3$	750	948
apparent scene pressure precision [hPa]	0.380 ± 0.144	5100307	0.164	0.346	0.165	4.62	0.276	0.440
chi square [1]	$(0.328 \pm 3.474) \times 10^5$	5100307	$2.845 imes 10^4$	2.422×10^4	315	$3.632 imes 10^8$	1.464×10^4	$4.308 imes 10^4$
number of iterations [1]	3.92 ± 1.04	5100307	1.000	4.00	1.000	14.0	3.00	4.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(2.331 \pm 6.483) \times 10^{-9}$	5100307	$6.907 imes 10^{-9}$	$2.535 imes 10^{-9}$	-9.611×10^{-7}	$1.199 imes10^{-6}$	-1.001×10^{-9}	$5.906 imes 10^{-9}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(2.183 \pm 0.660) \times 10^{-9}$	5100307	$8.582 imes 10^{-10}$	$2.184 imes10^{-9}$	$4.893 imes 10^{-10}$	$5.766 imes 10^{-9}$	1.759×10^{-9}	$2.617 imes10^{-9}$
chi square fluorescence [1]	$(0.746 \pm 1.082) \times 10^5$	5100307	$8.018 imes10^4$	$2.875 imes 10^4$	135	$1.712 imes 10^6$	$1.047 imes 10^4$	$9.064 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	5100307	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	5100307	0.0	50.0	48.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(2.989 \pm 4.815) \times 10^{-3}$	5100307	4.314×10^{-3}	2.959×10^{-3}	$-7.363 imes 10^{-2}$	8.307×10^{-2}	$8.243 imes 10^{-4}$	5.139×10^{-3}

Granule outlines

Figure 1: Outline of the granules.

4 Input data monitoring

Figure 2: Input data per granule

5 Warnings and errors

Figure 3: Fraction of pixels with specific warnings and errors during processing

6 World maps

Figure 4: Map of "Cloud pressure" for 2025-04-25 to 2025-04-26

Figure 5: Map of "Cloud fraction" for 2025-04-25 to 2025-04-26

Figure 6: Map of "Scene albedo" for 2025-04-25 to 2025-04-26

Figure 7: Map of "Apparent scene pressure" for 2025-04-25 to 2025-04-26

Figure 8: Map of "Fluorescence" for 2025-04-25 to 2025-04-26

Figure 9: Map of the number of observations for 2025-04-25 to 2025-04-26

7 Zonal average

Figure 10: Zonal average of "QA value" for 2025-04-25 to 2025-04-26.

Figure 11: Zonal average of "Cloud pressure" for 2025-04-25 to 2025-04-26.

Figure 12: Zonal average of "Cloud pressure precision" for 2025-04-25 to 2025-04-26.

Figure 13: Zonal average of "Cloud fraction" for 2025-04-25 to 2025-04-26.

Figure 14: Zonal average of "Cloud fraction precision" for 2025-04-25 to 2025-04-26.

Figure 15: Zonal average of "Scene albedo" for 2025-04-25 to 2025-04-26.

Figure 16: Zonal average of "Scene albedo precision" for 2025-04-25 to 2025-04-26.

Figure 17: Zonal average of "Apparent scene pressure" for 2025-04-25 to 2025-04-26.

Figure 18: Zonal average of "Apparent scene pressure precision" for 2025-04-25 to 2025-04-26.

Figure 19: Zonal average of " χ^2 " for 2025-04-25 to 2025-04-26.

Figure 20: Zonal average of "Number of iterations" for 2025-04-25 to 2025-04-26.

Figure 21: Zonal average of "Fluorescence" for 2025-04-25 to 2025-04-26.

Figure 22: Zonal average of "Fluorescence precision" for 2025-04-25 to 2025-04-26.

Figure 23: Zonal average of " χ^2 of fluorescence retrieval" for 2025-04-25 to 2025-04-26.

Figure 24: Zonal average of "Degrees of freedom for signal of fluorescence retrieval" for 2025-04-25 to 2025-04-26.

Figure 25: Zonal average of "Number of points in the spectrum" for 2025-04-25 to 2025-04-26.

Figure 26: Zonal average of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-04-25 to 2025-04-26.

8 Histograms

The definitions of the parameters given in this section can be found in section 2.

Figure 27: Histogram of "QA value" for 2025-04-25 to 2025-04-26

Figure 28: Histogram of "Cloud pressure" for 2025-04-25 to 2025-04-26

Figure 29: Histogram of "Cloud pressure precision" for 2025-04-25 to 2025-04-26

Figure 30: Histogram of "Cloud fraction" for 2025-04-25 to 2025-04-26

Figure 31: Histogram of "Cloud fraction precision" for 2025-04-25 to 2025-04-26

Figure 32: Histogram of "Scene albedo" for 2025-04-25 to 2025-04-26

Figure 33: Histogram of "Scene albedo precision" for 2025-04-25 to 2025-04-26

Figure 34: Histogram of "Apparent scene pressure" for 2025-04-25 to 2025-04-26

Figure 35: Histogram of "Apparent scene pressure precision" for 2025-04-25 to 2025-04-26

Figure 36: Histogram of " χ^2 " for 2025-04-25 to 2025-04-26

Figure 37: Histogram of "Number of iterations" for 2025-04-25 to 2025-04-26

Figure 38: Histogram of "Fluorescence" for 2025-04-25 to 2025-04-26

Figure 39: Histogram of "Fluorescence precision" for 2025-04-25 to 2025-04-26

Figure 40: Histogram of " χ^2 of fluorescence retrieval" for 2025-04-25 to 2025-04-26

Figure 41: Histogram of "Degrees of freedom for signal of fluorescence retrieval" for 2025-04-25 to 2025-04-26

Figure 42: Histogram of "Number of points in the spectrum" for 2025-04-25 to 2025-04-26

Figure 43: Histogram of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-04-25 to 2025-04-26

9 Along track statistics

The TROPOMI instrument uses different binned detector rows for different viewing directions. In this section statistics are presented for each of the binned rows in the instrument.

Figure 44: Along track statistics of "QA value" for 2025-04-25 to 2025-04-26

Figure 45: Along track statistics of "Cloud pressure" for 2025-04-25 to 2025-04-26

Figure 46: Along track statistics of "Cloud pressure precision" for 2025-04-25 to 2025-04-26

Figure 47: Along track statistics of "Cloud fraction" for 2025-04-25 to 2025-04-26

Figure 48: Along track statistics of "Cloud fraction precision" for 2025-04-25 to 2025-04-26

Figure 49: Along track statistics of "Scene albedo" for 2025-04-25 to 2025-04-26

Figure 50: Along track statistics of "Scene albedo precision" for 2025-04-25 to 2025-04-26

Figure 51: Along track statistics of "Apparent scene pressure" for 2025-04-25 to 2025-04-26

Figure 52: Along track statistics of "Apparent scene pressure precision" for 2025-04-25 to 2025-04-26

Figure 53: Along track statistics of " χ^2 " for 2025-04-25 to 2025-04-26

Figure 54: Along track statistics of "Number of iterations" for 2025-04-25 to 2025-04-26

Figure 55: Along track statistics of "Fluorescence" for 2025-04-25 to 2025-04-26

Figure 56: Along track statistics of "Fluorescence precision" for 2025-04-25 to 2025-04-26

Figure 57: Along track statistics of " χ^2 of fluorescence retrieval" for 2025-04-25 to 2025-04-26

Figure 58: Along track statistics of "Degrees of freedom for signal of fluorescence retrieval" for 2025-04-25 to 2025-04-26

Figure 59: Along track statistics of "Number of points in the spectrum" for 2025-04-25 to 2025-04-26

Figure 60: Along track statistics of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-04-25 to 2025-04-26

10 Coincidence density

To investigate the relation between parameters scatter density plots are produced. These include some 'hidden' parameters, latitude and the solar- and viewing geometries, in addition to all configured parameters. All combinations of pairs of parameters are included *once*, in one direction alone.

Contents

1	Short Introduction	1
	1.1 The list of parameters	1
2	Definitions	1
3	Granule outlines	8
4	Input data monitoring	9
5	Warnings and errors	10
6	World maps	11
7	Zonal average	17
8	Histograms	34
9	Along track statistics	51
10	Coincidence density	68
11	Copyright information of 'PyCAMA'	68

List of Figures

1	Outline of the granules.	8
2	Input data per granule	9
3	Fraction of pixels with specific warnings and errors during processing	10
4	Map of "Cloud pressure" for 2025-04-25 to 2025-04-26	11
5	Map of "Cloud fraction" for 2025-04-25 to 2025-04-26	12
6	Map of "Scene albedo" for 2025-04-25 to 2025-04-26	13
7	Map of "Apparent scene pressure" for 2025-04-25 to 2025-04-26	14
8	Map of "Fluorescence" for 2025-04-25 to 2025-04-26	15
9	Map of the number of observations for 2025-04-25 to 2025-04-26	16
10	Zonal average of "QA value" for 2025-04-25 to 2025-04-26.	17
11	Zonal average of "Cloud pressure" for 2025-04-25 to 2025-04-26.	18
12	Zonal average of "Cloud pressure precision" for 2025-04-25 to 2025-04-26.	19
13	Zonal average of "Cloud fraction" for 2025-04-25 to 2025-04-26.	20
14	Zonal average of "Cloud fraction precision" for 2025-04-25 to 2025-04-26.	21
15	Zonal average of "Scene albedo" for 2025-04-25 to 2025-04-26	22
16	Zonal average of "Scene albedo precision" for 2025-04-25 to 2025-04-26.	23
17	Zonal average of "Apparent scene pressure" for 2025-04-25 to 2025-04-26.	24
18	Zonal average of "Apparent scene pressure precision" for 2025-04-25 to 2025-04-26	25
19	Zonal average of " χ^2 " for 2025-04-25 to 2025-04-26	26
20	Zonal average of "Number of iterations" for 2025-04-25 to 2025-04-26.	27
21	Zonal average of "Fluorescence" for 2025-04-25 to 2025-04-26.	28
22	Zonal average of "Fluorescence precision" for 2025-04-25 to 2025-04-26.	29
23	Zonal average of " χ^2 of fluorescence retrieval" for 2025-04-25 to 2025-04-26	30
24	Zonal average of "Degrees of freedom for signal of fluorescence retrieval" for 2025-04-25 to 2025-04-26.	31
25	Zonal average of "Number of points in the spectrum" for 2025-04-25 to 2025-04-26	32
26	Zonal average of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-04-25 to 2025-04-26	33
27	Histogram of "QA value" for 2025-04-25 to 2025-04-26	34
28	Histogram of "Cloud pressure" for 2025-04-25 to 2025-04-26	35
29	Histogram of "Cloud pressure precision" for 2025-04-25 to 2025-04-26	36

30	Histogram of "Cloud fraction" for 2025-04-25 to 2025-04-26	37
31	Histogram of "Cloud fraction precision" for 2025-04-25 to 2025-04-26	38
32	Histogram of "Scene albedo" for 2025-04-25 to 2025-04-26	39
33	Histogram of "Scene albedo precision" for 2025-04-25 to 2025-04-26	40
34	Histogram of "Apparent scene pressure" for 2025-04-25 to 2025-04-26	41
35	Histogram of "Apparent scene pressure precision" for 2025-04-25 to 2025-04-26	42
36	Histogram of " χ^2 " for 2025-04-25 to 2025-04-26	43
37	Histogram of "Number of iterations" for 2025-04-25 to 2025-04-26	44
38	Histogram of "Fluorescence" for 2025-04-25 to 2025-04-26	45
39	Histogram of "Fluorescence precision" for 2025-04-25 to 2025-04-26	46
40	Histogram of " χ^2 of fluorescence retrieval" for 2025-04-25 to 2025-04-26	47
41	Histogram of "Degrees of freedom for signal of fluorescence retrieval" for 2025-04-25 to 2025-04-26	48
42	Histogram of "Number of points in the spectrum" for 2025-04-25 to 2025-04-26	49
43	Histogram of "Spectral offset $(\lambda_{true} - \lambda_{nominal})$ " for 2025-04-25 to 2025-04-26	50
44	Along track statistics of "QA value" for 2025-04-25 to 2025-04-26	51
45	Along track statistics of "Cloud pressure" for 2025-04-25 to 2025-04-26	52
46	Along track statistics of "Cloud pressure precision" for 2025-04-25 to 2025-04-26	53
47	Along track statistics of "Cloud fraction" for 2025-04-25 to 2025-04-26	54
48	Along track statistics of "Cloud fraction precision" for 2025-04-25 to 2025-04-26	55
49	Along track statistics of "Scene albedo" for 2025-04-25 to 2025-04-26	56
50	Along track statistics of "Scene albedo precision" for 2025-04-25 to 2025-04-26	57
51	Along track statistics of "Apparent scene pressure" for 2025-04-25 to 2025-04-26	58
52	Along track statistics of "Apparent scene pressure precision" for 2025-04-25 to 2025-04-26	59
53	Along track statistics of " χ^2 " for 2025-04-25 to 2025-04-26	60
54	Along track statistics of "Number of iterations" for 2025-04-25 to 2025-04-26	61
55	Along track statistics of "Fluorescence" for 2025-04-25 to 2025-04-26	62
56	Along track statistics of "Fluorescence precision" for 2025-04-25 to 2025-04-26	63
57	Along track statistics of " χ^2 of fluorescence retrieval" for 2025-04-25 to 2025-04-26	64
58	Along track statistics of "Degrees of freedom for signal of fluorescence retrieval" for 2025-04-25 to 2025-04-26	65
59	Along track statistics of "Number of points in the spectrum" for 2025-04-25 to 2025-04-26	66
60	Along track statistics of "Spectral offset $(\lambda_{true} - \lambda_{nominal})$ " for 2025-04-25 to 2025-04-26	67

List of Tables

1	Parameterlist and basic statistics for the analysis
2	Percentile ranges
3	Parameterlist and basic statistics for the analysis for observations in the northern hemisphere
4	Parameterlist and basic statistics for the analysis for observations in the southern hemisphere
5	Parameterlist and basic statistics for the analysis for observations over water
6	Parameterlist and basic statistics for the analysis for observations over land

11 Copyright information of 'PyCAMA'

Copyright © 2005-2023, Maarten Sneep (KNMI).

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
- 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

This software is provided by the copyright holders and contributors "as is" and any express or implied warranties, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose are disclaimed. In no event shall the copyright holder or contributors be liable for any direct, indirect, incidental, special, exemplary, or consequential damages (including, but not limited to, procurement of substitute goods or services; loss of use, data, or profits; or business interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence or otherwise) arising in any way out of the use of this software, even if advised of the possibility of such damage.

Maarten Sneep (maarten.sneep@knmi.nl).