PyCAMA report generated by tropl2-proc

tropl2-proc

2025-05-01 (03:15)

1 Short Introduction

1.1 The list of parameters

You may want to keep the list given in table 1 at hand when viewing the results.

2 Definitions

The averages shown here are unweighed averages:

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i \tag{1}$$

with N the number of observations in the dataset.

The spread of the measurements is indicated with the variance V(x), or rather the standard deviation $\sigma(x) = \sqrt{V(x)}$.

$$V(x) = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2$$
(2)

We also report the more robust statistics median, minimum, maximum, various percentiles and inter quartile range.

The median m is the value of parameter x for which half of the observations of x is smaller than m:

$$P(x \le m) = P(x \ge m) = \int_{-\infty}^{m} f(x) \, \mathrm{d}x = \frac{1}{2}$$
(3)

with f(x) the probability density function.

The median is a special case of a percentile. Instead of $\frac{1}{2}$ in equation 3, other threshold values can be used. We report results for 1%, 5%, 10%, 15.9%, 25%, 75%, 84.1%, 90%, 95% and 99%. The inter quartile range is the difference between the 75% and 25% percentiles. Similarly the minimum and maximum values correspond to the 0% and 100% percentiles respectively.

For normally distributed parameters the mean and median are the same, while the $\mu \pm \sigma$ values and the 15.9% and 84.1% percentiles coincide.

To get a measure for the relation of one variable $x_{(k)}$ with another $x_{(l)}$, we calculate the covariance matrix C_{kl} .

$$C_{kl} = C(x_{(k)}, x_{(l)}) = \frac{1}{N-1} \sum_{i=1}^{N} (x_{(k),i} - \overline{x_{(k)}}) (x_{(l),i} - \overline{x_{(l)}})$$
(4)

Rather than a dimensionally dependent covariance, it is often easier to interpret a correlation matrix R_{kl} , a matrix of Pearson's *r* coefficients:

$$R_{kl} = R(x_{(k)}, x_{(l)}) = \frac{C_{kl}}{\sqrt{C_{kk}C_{ll}}} = \frac{C_{kl}}{\sqrt{V(x_k)V(x_l)}}$$
(5)

The diagonal elements of the covariance matrix are the variances of the elements, $V(x_{(k)}) = C_{kk}$ and obviously $R_{kk} = 1$.

Table 1: Parameterlist and basic statistics for the analysis
--

	Table 1: Parameterl	ist and basic s	statistics for the ar	nalysis			
Variable	mean $\pm \sigma$	Count	Mode	IQR	Median	Minimum	Maximum
qa value [1]	0.907 ± 0.187	23330165	0.995	0.0	1.000	0.350	1.000
cloud pressure crb [hPa]	809 ± 196	23330165	$1.005 imes 10^3$	269	876	130	1.061×10^{3}
cloud pressure crb precision [hPa]	2.72 ± 10.66	23330165	0.750	1.34	0.607	$1.221 imes 10^{-4}$	1.500×10^3
cloud fraction crb [1]	0.460 ± 0.388	23330165	0.996	0.856	0.357	0.0	1.000
cloud fraction crb precision [1]	$(2.472 \pm 12.944) \times 10^{-4}$	23330165	$2.500 imes10^{-4}$	$5.556 imes10^{-5}$	$8.261 imes10^{-5}$	$7.182 imes10^{-9}$	0.860
scene albedo [1]	0.446 ± 0.328	23330165	$1.500 imes10^{-2}$	0.601	0.400	-1.055×10^{-2}	4.86
scene albedo precision [1]	$(8.395 \pm 9.794) \times 10^{-5}$	23330165	$2.500 imes10^{-4}$	$6.238 imes 10^{-5}$	$5.407 imes 10^{-5}$	1.071×10^{-5}	8.538×10^{-3}
apparent scene pressure [hPa]	839 ± 172	23330165	1.008×10^3	220	897	130	1.065×10^3
apparent scene pressure precision [hPa]	1.07 ± 2.07	23330165	0.500	0.540	0.446	8.160×10^{-2}	62.3
chi square [1]	$(0.230 \pm 2.280) \times 10^5$	23330165	0.150	2.641×10^4	$1.400 imes 10^4$	48.7	3.089×10^8
number of iterations [1]	3.43 ± 1.06	23330165	3.23	1.000	3.00	1.000	14.0
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.320\pm6.016)\times10^{-9}$	23330165	2.500×10^{-10}	$5.204 imes10^{-9}$	$1.103 imes 10^{-9}$	-1.655×10^{-6}	$1.778 imes10^{-6}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.772 \pm 0.737) \times 10^{-9}$	23330165	$8.500 imes 10^{-10}$	$1.127 imes 10^{-9}$	1.702×10^{-9}	$4.318 imes 10^{-10}$	5.757×10^{-9}
chi square fluorescence [1]	$(0.489 \pm 0.877) \times 10^5$	23330165	750	$4.119 imes 10^4$	$1.834 imes 10^4$	93.8	$3.024 imes 10^6$
degrees of freedom fluorescence [1]	6.00 ± 0.00	23330165	5.95	0.0	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	23330165	49.7	0.0	50.0	45.0	50.0
wavelength calibration offset [nm]	$(3.073 \pm 8.863) \times 10^{-3}$	23330165	$2.800 imes 10^{-3}$	$5.696 imes 10^{-3}$	3.060×10^{-3}	-0.157	0.459

			Table 2:	Percentile rang	es					
Variable	1 %	5%	10 %	15.9 %	25 %	75 %	84.1 %	90 %	95 %	99 %
qa value [1]	0.500	0.500	0.500	0.500	1.000	1.000	1.000	1.000	1.000	1.000
cloud pressure crb [hPa]	263	405	499	584	696	965	990	1.004×10^3	1.013×10^3	1.026×10^3
cloud pressure crb precision [hPa]	0.110	0.227	0.253	0.279	0.330	1.67	2.95	5.07	10.3	34.6
cloud fraction crb [1]	$5.234 imes10^{-4}$	$9.505 imes10^{-3}$	$2.144 imes10^{-2}$	$4.042 imes 10^{-2}$	$8.226 imes10^{-2}$	0.938	1.000	1.000	1.000	1.000
cloud fraction crb precision [1]	$2.049 imes 10^{-5}$	$2.345 imes 10^{-5}$	$2.648 imes 10^{-5}$	$3.105 imes 10^{-5}$	4.444×10^{-5}	$1.000 imes 10^{-4}$	$1.387 imes10^{-4}$	$2.304 imes 10^{-4}$	$6.778 imes10^{-4}$	4.164×10^{-3}
scene albedo [1]	$7.394 imes 10^{-3}$	$1.876 imes10^{-2}$	$3.476 imes 10^{-2}$	$6.241 imes 10^{-2}$	0.138	0.739	0.844	0.902	0.961	1.11
scene albedo precision [1]	1.325×10^{-5}	$1.580 imes10^{-5}$	$1.958 imes10^{-5}$	$2.495 imes 10^{-5}$	3.297×10^{-5}	$9.535 imes 10^{-5}$	1.260×10^{-4}	$1.688 imes 10^{-4}$	2.562×10^{-4}	5.272×10^{-4}
apparent scene pressure [hPa]	341	473	566	653	752	971	992	1.005×10^{3}	1.014×10^{3}	1.026×10^{3}
apparent scene pressure precision [hPa]	0.213	0.240	0.260	0.282	0.317	0.857	1.45	2.33	4.13	10.1
chi square [1]	220	513	1.077×10^{3}	2.138×10^{3}	4.499×10^{3}	3.091×10^{4}	4.301×10^{4}	5.415×10^{4}	6.995×10^{4}	1.026×10^{5}
number of iterations [1]	2.00	2.00	2.00	3.00	3.00	4.00	4.00	5.00	5.00	6.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	-1.495×10^{-8}	-7.120×10^{-9}	-4.216×10^{-9}	-2.569×10^{-9}	-1.153×10^{-9}	4.051×10^{-9}	5.881×10^{-9}	7.630×10^{-9}	1.009×10^{-8}	1.522×10^{-8}
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$7.015 imes 10^{-10}$	8.049×10^{-10}	8.792×10^{-10}	$9.718 imes 10^{-10}$	1.136×10^{-9}	2.264×10^{-9}	2.565×10^{-9}	2.771×10^{-9}	3.090×10^{-9}	3.769×10^{-9}
chi square fluorescence [1]	368	965	1.891×10^{3}	3.304×10^{3}	6.211×10^{3}	4.740×10^{4}	$8.187 imes 10^4$	1.289×10^{5}	2.195×10^{5}	4.379×10^{5}
degrees of freedom fluorescence [1]	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0
wavelength calibration offset [nm]	-2.596×10^{-2}	-9.979×10^{-3}	-4.613×10^{-3}	-1.871×10^{-3}	$2.398 imes 10^{-4}$	5.936×10^{-3}	8.095×10^{-3}	$1.088 imes 10^{-2}$	$1.621 imes 10^{-2}$	3.158×10^{-2}

Table 3. Parameterlist and basic statistics for the ana	lysis for observations in the northern hemisphere
Table 5. I drameternist and busic statistics for the and	Tysis for observations in the northern nemisphere

Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.854 ± 0.219	14388186	0.500	1.000	0.350	1.000	0.500	1.000
cloud pressure crb [hPa]	828 ± 192	14388186	253	897	130	1.061×10^{3}	725	977
cloud pressure crb precision [hPa]	2.14 ± 8.68	14388186	1.03	0.480	$1.221 imes 10^{-4}$	1.500×10^3	0.288	1.32
cloud fraction crb [1]	0.531 ± 0.409	14388186	0.894	0.489	0.0	1.000	0.106	1.000
cloud fraction crb precision [1]	$(3.370 \pm 16.282) \times 10^{-4}$	14388186	$5.141 imes 10^{-5}$	$9.963 imes10^{-5}$	$7.182 imes 10^{-9}$	0.860	$4.859 imes10^{-5}$	$1.000 imes 10^{-4}$
scene albedo [1]	0.526 ± 0.334	14388186	0.609	0.538	$-2.070 imes 10^{-3}$	4.33	0.221	0.830
scene albedo precision [1]	$(8.519 \pm 9.755) \times 10^{-5}$	14388186	$6.607 imes10^{-5}$	$5.497 imes10^{-5}$	$1.071 imes 10^{-5}$	2.567×10^{-3}	$3.268 imes10^{-5}$	$9.875 imes 10^{-5}$
apparent scene pressure [hPa]	861 ± 158	14388186	197	918	130	$1.065 imes 10^3$	783	980
apparent scene pressure precision [hPa]	0.703 ± 1.147	14388186	0.314	0.377	0.151	53.8	0.290	0.604
chi square [1]	$(0.312 \pm 2.895) \times 10^5$	14388186	$3.458 imes 10^4$	$2.240 imes 10^4$	78.4	$3.089 imes 10^8$	$8.588 imes 10^3$	$4.316 imes 10^4$
number of iterations [1]	3.69 ± 1.15	14388186	1.000	3.00	1.000	14.0	3.00	4.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(2.094\pm 6.688) imes 10^{-9}$	14388186	6.471×10^{-9}	$2.065 imes 10^{-9}$	$-1.655 imes 10^{-6}$	$1.778 imes10^{-6}$	-1.031×10^{-9}	$5.440 imes 10^{-9}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.970\pm0.728) imes10^{-9}$	14388186	$1.097 imes10^{-9}$	$1.933 imes 10^{-9}$	$4.318 imes 10^{-10}$	5.757×10^{-9}	$1.387 imes10^{-9}$	$2.484 imes10^{-9}$
chi square fluorescence [1]	$(0.517 \pm 0.851) \times 10^5$	14388186	4.061×10^4	$2.174 imes 10^4$	97.6	$3.024 imes 10^6$	$1.015 imes 10^4$	$5.076 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	14388186	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	14388186	0.0	50.0	45.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(3.032 \pm 7.125) \times 10^{-3}$	14388186	4.591×10^{-3}	2.991×10^{-3}	-8.243×10^{-2}	8.662×10^{-2}	$7.070 imes 10^{-4}$	$5.298 imes 10^{-3}$

Table	4: Parameterlist and basic st	atistics for	the analysis for	observations in	the southern hem	isphere		
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.992 ± 0.051	8941979	0.0	1.000	0.350	1.000	1.000	1.000
cloud pressure crb [hPa]	778 ± 199	8941979	296	844	130	1.031×10^{3}	641	937
cloud pressure crb precision [hPa]	3.65 ± 13.19	8941979	1.95	0.823	1.270×10^{-2}	1.020×10^3	0.446	2.39
cloud fraction crb [1]	0.346 ± 0.322	8941979	0.543	0.244	0.0	1.000	$5.293 imes10^{-2}$	0.596
cloud fraction crb precision [1]	$(1.027 \pm 2.683) \times 10^{-4}$	8941979	$6.486 imes10^{-5}$	7.167×10^{-5}	$4.340 imes 10^{-7}$	0.175	$3.914 imes10^{-5}$	$1.040 imes10^{-4}$
scene albedo [1]	0.317 ± 0.273	8941979	0.438	0.266	-1.055×10^{-2}	4.86	$6.415 imes10^{-2}$	0.502
scene albedo precision [1]	$(8.195 \pm 9.852) \times 10^{-5}$	8941979	$5.685 imes10^{-5}$	$5.273 imes 10^{-5}$	1.130×10^{-5}	$8.538 imes 10^{-3}$	$3.341 imes 10^{-5}$	$9.026 imes 10^{-5}$
apparent scene pressure [hPa]	804 ± 186	8941979	262	865	130	1.031×10^3	689	951
apparent scene pressure precision [hPa]	1.67 ± 2.91	8941979	1.17	0.631	8.160×10^{-2}	62.3	0.410	1.58
chi square [1]	$(0.968 \pm 2.033) \times 10^4$	8941979	$1.253 imes 10^4$	$6.888 imes 10^3$	48.7	2.690×10^{7}	1.882×10^{3}	$1.441 imes 10^4$
number of iterations [1]	3.00 ± 0.70	8941979	0.0	3.00	1.000	14.0	3.00	3.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(7.555 \pm 446.616) \times 10^{-11}$	8941979	$3.270 imes 10^{-9}$	$3.735 imes 10^{-10}$	$-6.292 imes 10^{-7}$	$5.184 imes10^{-7}$	-1.283×10^{-9}	$1.987 imes10^{-9}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.453 \pm 0.633) \times 10^{-9}$	8941979	$8.794 imes10^{-10}$	1.316×10^{-9}	$5.279 imes 10^{-10}$	$5.333 imes 10^{-9}$	9.292×10^{-10}	$1.809 imes10^{-9}$
chi square fluorescence [1]	$(0.446 \pm 0.915) \times 10^5$	8941979	$3.859 imes 10^4$	1.042×10^4	93.8	$1.731 imes 10^{6}$	2.834×10^3	$4.142 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	8941979	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	8941979	0.0	50.0	48.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(3.138 \pm 11.101) \times 10^{-3}$	8941979	$8.308 imes 10^{-3}$	3.254×10^{-3}	-0.157	0.459	-9.445×10^{-4}	7.363×10^{-3}

	Table 5: Parameterlist and	d basic statis	stics for the ana	lysis for observa	tions over water			
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.916 ± 0.175	16220562	0.1000	1.000	0.350	1.000	0.900	1.000
cloud pressure crb [hPa]	822 ± 194	16220562	258	891	130	1.036×10^{3}	717	974
cloud pressure crb precision [hPa]	2.78 ± 11.23	16220562	1.26	0.604	$1.221 imes 10^{-4}$	1.202×10^3	0.342	1.60
cloud fraction crb [1]	0.447 ± 0.379	16220562	0.768	0.357	0.0	1.000	7.559×10^{-2}	0.844
cloud fraction crb precision [1]	$(2.572 \pm 13.594) \times 10^{-4}$	16220562	$6.696 imes10^{-5}$	$6.623 imes 10^{-5}$	$7.182 imes 10^{-9}$	0.860	$3.304 imes10^{-5}$	$1.000 imes 10^{-4}$
scene albedo [1]	0.388 ± 0.327	16220562	0.614	0.317	-1.055×10^{-2}	4.86	7.256×10^{-2}	0.686
scene albedo precision [1]	$(8.290 \pm 9.509) \times 10^{-5}$	16220562	7.449×10^{-5}	$5.504 imes10^{-5}$	$1.071 imes10^{-5}$	$8.538 imes10^{-3}$	2.734×10^{-5}	$1.018 imes10^{-4}$
apparent scene pressure [hPa]	841 ± 180	16220562	224	905	130	1.064×10^{3}	756	980
apparent scene pressure precision [hPa]	1.37 ± 2.41	16220562	0.931	0.563	$8.160 imes 10^{-2}$	62.3	0.351	1.28
chi square [1]	$(0.187 \pm 1.894) \times 10^5$	16220562	2.164×10^4	$8.808 imes 10^3$	48.7	$2.558 imes 10^8$	$2.538 imes 10^3$	$2.418 imes10^4$
number of iterations [1]	3.23 ± 1.00	16220562	0.0	3.00	1.000	14.0	3.00	3.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(8.507 \pm 54.780) \times 10^{-10}$	16220562	4.309×10^{-9}	$7.145 imes 10^{-10}$	$-1.655 imes 10^{-6}$	$1.436 imes 10^{-6}$	-1.179×10^{-9}	3.129×10^{-9}
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.585 \pm 0.688) \times 10^{-9}$	16220562	$1.012 imes 10^{-9}$	$1.442 imes 10^{-9}$	$4.318 imes 10^{-10}$	$5.570 imes10^{-9}$	1.009×10^{-9}	$2.021 imes 10^{-9}$
chi square fluorescence [1]	$(0.352 \pm 0.679) \times 10^5$	16220562	$2.988 imes 10^4$	1.449×10^4	93.8	$3.024 imes 10^6$	4.324×10^{3}	3.420×10^4
degrees of freedom fluorescence [1]	6.00 ± 0.00	16220562	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	16220562	0.0	50.0	45.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(3.046 \pm 9.971) \times 10^{-3}$	16220562	$6.397 imes10^{-3}$	$3.033 imes10^{-3}$	-0.157	0.459	$-1.311 imes10^{-4}$	$6.266 imes10^{-3}$

	Table 6: Parameterlist an	d basic stat	istics for the ana	alysis for observ	vations over land			
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.873 ± 0.221	5078789	0.300	1.000	0.350	1.000	0.700	1.000
cloud pressure crb [hPa]	775 ± 195	5078789	272	822	130	1.059×10^{3}	665	937
cloud pressure crb precision [hPa]	2.61 ± 9.33	5078789	1.59	0.628	$3.662 imes 10^{-4}$	1.418×10^3	0.298	1.88
cloud fraction crb [1]	0.495 ± 0.411	5078789	0.907	0.358	0.0	1.000	$9.295 imes10^{-2}$	1.000
cloud fraction crb precision [1]	$(2.344 \pm 11.931) \times 10^{-4}$	5078789	$3.112 imes 10^{-5}$	$1.000 imes 10^{-4}$	$5.789 imes10^{-8}$	0.497	$7.533 imes10^{-5}$	$1.065 imes10^{-4}$
scene albedo [1]	0.591 ± 0.290	5078789	0.524	0.545	$2.625 imes 10^{-2}$	4.26	0.332	0.856
scene albedo precision [1]	$(9.041 \pm 10.919) \times 10^{-5}$	5078789	$4.694 imes 10^{-5}$	5.330×10^{-5}	$1.406 imes10^{-5}$	$1.593 imes 10^{-3}$	$3.880 imes 10^{-5}$	$8.575 imes10^{-5}$
apparent scene pressure [hPa]	829 ± 148	5078789	210	869	130	1.055×10^3	740	950
apparent scene pressure precision [hPa]	0.380 ± 0.148	5078789	0.169	0.347	0.163	5.27	0.274	0.444
chi square [1]	$(0.321 \pm 1.790) \times 10^5$	5078789	$2.705 imes 10^4$	$2.380 imes 10^4$	334	$2.224 imes 10^8$	1.433×10^4	$4.139 imes 10^4$
number of iterations [1]	3.90 ± 1.06	5078789	1.000	4.00	1.000	14.0	3.00	4.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(2.181 \pm 6.704) \times 10^{-9}$	5078789	$7.146 imes 10^{-9}$	$2.428 imes 10^{-9}$	-1.501×10^{-6}	$1.146 imes 10^{-6}$	-1.224×10^{-9}	$5.923 imes 10^{-9}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(2.198 \pm 0.659) \times 10^{-9}$	5078789	$8.774 imes 10^{-10}$	$2.185 imes 10^{-9}$	$4.884 imes 10^{-10}$	5.577×10^{-9}	$1.759 imes 10^{-9}$	$2.637 imes 10^{-9}$
chi square fluorescence [1]	$(0.784 \pm 1.131) \times 10^5$	5078789	$8.077 imes 10^4$	$3.054 imes 10^4$	190	$1.731 imes 10^6$	1.239×10^4	$9.316 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	5078789	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	5078789	0.0	50.0	48.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(3.089 \pm 4.831) \times 10^{-3}$	5078789	4.355×10^{-3}	3.079×10^{-3}	$-6.567 imes 10^{-2}$	6.615×10^{-2}	$9.124 imes10^{-4}$	$5.268 imes 10^{-3}$

Granule outlines

Figure 1: Outline of the granules.

4 Input data monitoring

Figure 2: Input data per granule

5 Warnings and errors

Figure 3: Fraction of pixels with specific warnings and errors during processing

6 World maps

Figure 4: Map of "Cloud pressure" for 2025-04-29 to 2025-04-30

Figure 5: Map of "Cloud fraction" for 2025-04-29 to 2025-04-30

Figure 6: Map of "Scene albedo" for 2025-04-29 to 2025-04-30

Figure 7: Map of "Apparent scene pressure" for 2025-04-29 to 2025-04-30

Figure 8: Map of "Fluorescence" for 2025-04-29 to 2025-04-30

Figure 9: Map of the number of observations for 2025-04-29 to 2025-04-30

7 Zonal average

Figure 10: Zonal average of "QA value" for 2025-04-29 to 2025-04-30.

Figure 11: Zonal average of "Cloud pressure" for 2025-04-29 to 2025-04-30.

Figure 12: Zonal average of "Cloud pressure precision" for 2025-04-29 to 2025-04-30.

Figure 13: Zonal average of "Cloud fraction" for 2025-04-29 to 2025-04-30.

Figure 14: Zonal average of "Cloud fraction precision" for 2025-04-29 to 2025-04-30.

Figure 15: Zonal average of "Scene albedo" for 2025-04-29 to 2025-04-30.

Figure 16: Zonal average of "Scene albedo precision" for 2025-04-29 to 2025-04-30.

Figure 17: Zonal average of "Apparent scene pressure" for 2025-04-29 to 2025-04-30.

Figure 18: Zonal average of "Apparent scene pressure precision" for 2025-04-29 to 2025-04-30.

Figure 19: Zonal average of " χ^2 " for 2025-04-29 to 2025-04-30.

Figure 20: Zonal average of "Number of iterations" for 2025-04-29 to 2025-04-30.

Figure 21: Zonal average of "Fluorescence" for 2025-04-29 to 2025-04-30.

Figure 22: Zonal average of "Fluorescence precision" for 2025-04-29 to 2025-04-30.

Figure 23: Zonal average of " χ^2 of fluorescence retrieval" for 2025-04-29 to 2025-04-30.

Figure 24: Zonal average of "Degrees of freedom for signal of fluorescence retrieval" for 2025-04-29 to 2025-04-30.

Figure 25: Zonal average of "Number of points in the spectrum" for 2025-04-29 to 2025-04-30.

Figure 26: Zonal average of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-04-29 to 2025-04-30.

8 Histograms

The definitions of the parameters given in this section can be found in section 2.

Figure 27: Histogram of "QA value" for 2025-04-29 to 2025-04-30

Figure 28: Histogram of "Cloud pressure" for 2025-04-29 to 2025-04-30

Figure 29: Histogram of "Cloud pressure precision" for 2025-04-29 to 2025-04-30

Figure 30: Histogram of "Cloud fraction" for 2025-04-29 to 2025-04-30

Figure 31: Histogram of "Cloud fraction precision" for 2025-04-29 to 2025-04-30

Figure 32: Histogram of "Scene albedo" for 2025-04-29 to 2025-04-30

Figure 33: Histogram of "Scene albedo precision" for 2025-04-29 to 2025-04-30

Figure 34: Histogram of "Apparent scene pressure" for 2025-04-29 to 2025-04-30

Figure 35: Histogram of "Apparent scene pressure precision" for 2025-04-29 to 2025-04-30

Figure 36: Histogram of " χ^2 " for 2025-04-29 to 2025-04-30

Figure 37: Histogram of "Number of iterations" for 2025-04-29 to 2025-04-30

Figure 38: Histogram of "Fluorescence" for 2025-04-29 to 2025-04-30

Figure 39: Histogram of "Fluorescence precision" for 2025-04-29 to 2025-04-30

Figure 40: Histogram of " χ^2 of fluorescence retrieval" for 2025-04-29 to 2025-04-30

Figure 41: Histogram of "Degrees of freedom for signal of fluorescence retrieval" for 2025-04-29 to 2025-04-30

Figure 42: Histogram of "Number of points in the spectrum" for 2025-04-29 to 2025-04-30

Figure 43: Histogram of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-04-29 to 2025-04-30

9 Along track statistics

The TROPOMI instrument uses different binned detector rows for different viewing directions. In this section statistics are presented for each of the binned rows in the instrument.

Figure 44: Along track statistics of "QA value" for 2025-04-29 to 2025-04-30

Figure 45: Along track statistics of "Cloud pressure" for 2025-04-29 to 2025-04-30

Figure 46: Along track statistics of "Cloud pressure precision" for 2025-04-29 to 2025-04-30

Figure 47: Along track statistics of "Cloud fraction" for 2025-04-29 to 2025-04-30

Figure 48: Along track statistics of "Cloud fraction precision" for 2025-04-29 to 2025-04-30

Figure 49: Along track statistics of "Scene albedo" for 2025-04-29 to 2025-04-30

Figure 50: Along track statistics of "Scene albedo precision" for 2025-04-29 to 2025-04-30

Figure 51: Along track statistics of "Apparent scene pressure" for 2025-04-29 to 2025-04-30

Figure 52: Along track statistics of "Apparent scene pressure precision" for 2025-04-29 to 2025-04-30

Figure 53: Along track statistics of " χ^2 " for 2025-04-29 to 2025-04-30

Figure 54: Along track statistics of "Number of iterations" for 2025-04-29 to 2025-04-30

Figure 55: Along track statistics of "Fluorescence" for 2025-04-29 to 2025-04-30

Figure 56: Along track statistics of "Fluorescence precision" for 2025-04-29 to 2025-04-30

Figure 57: Along track statistics of " χ^2 of fluorescence retrieval" for 2025-04-29 to 2025-04-30

Figure 58: Along track statistics of "Degrees of freedom for signal of fluorescence retrieval" for 2025-04-29 to 2025-04-30

Figure 59: Along track statistics of "Number of points in the spectrum" for 2025-04-29 to 2025-04-30

Figure 60: Along track statistics of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-04-29 to 2025-04-30

10 Coincidence density

To investigate the relation between parameters scatter density plots are produced. These include some 'hidden' parameters, latitude and the solar- and viewing geometries, in addition to all configured parameters. All combinations of pairs of parameters are included *once*, in one direction alone.

Contents

1	Short Introduction	1
	1.1 The list of parameters	1
2	Definitions	1
3	Granule outlines	8
4	Input data monitoring	9
5	Warnings and errors	10
6	World maps	11
7	Zonal average	17
8	Histograms	34
9	Along track statistics	51
10	Coincidence density	68
11	Copyright information of 'PyCAMA'	68

List of Figures

1	Outline of the granules.	8
2	Input data per granule	9
3	Fraction of pixels with specific warnings and errors during processing	10
4	Map of "Cloud pressure" for 2025-04-29 to 2025-04-30	11
5	Map of "Cloud fraction" for 2025-04-29 to 2025-04-30	12
6	Map of "Scene albedo" for 2025-04-29 to 2025-04-30	13
7	Map of "Apparent scene pressure" for 2025-04-29 to 2025-04-30	14
8	Map of "Fluorescence" for 2025-04-29 to 2025-04-30	15
9	Map of the number of observations for 2025-04-29 to 2025-04-30	16
10	Zonal average of "QA value" for 2025-04-29 to 2025-04-30.	17
11	Zonal average of "Cloud pressure" for 2025-04-29 to 2025-04-30.	18
12	Zonal average of "Cloud pressure precision" for 2025-04-29 to 2025-04-30.	19
13	Zonal average of "Cloud fraction" for 2025-04-29 to 2025-04-30.	20
14	Zonal average of "Cloud fraction precision" for 2025-04-29 to 2025-04-30.	21
15	Zonal average of "Scene albedo" for 2025-04-29 to 2025-04-30.	22
16	Zonal average of "Scene albedo precision" for 2025-04-29 to 2025-04-30.	23
17	Zonal average of "Apparent scene pressure" for 2025-04-29 to 2025-04-30.	24
18	Zonal average of "Apparent scene pressure precision" for 2025-04-29 to 2025-04-30.	25
19	Zonal average of " χ^2 " for 2025-04-29 to 2025-04-30	26
20	Zonal average of "Number of iterations" for 2025-04-29 to 2025-04-30.	27
21	Zonal average of "Fluorescence" for 2025-04-29 to 2025-04-30.	28
22	Zonal average of "Fluorescence precision" for 2025-04-29 to 2025-04-30.	29
23	Zonal average of " χ^2 of fluorescence retrieval" for 2025-04-29 to 2025-04-30	30
24	Zonal average of "Degrees of freedom for signal of fluorescence retrieval" for 2025-04-29 to 2025-04-30.	31
25	Zonal average of "Number of points in the spectrum" for 2025-04-29 to 2025-04-30.	32
26	Zonal average of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-04-29 to 2025-04-30	33
27	Histogram of "QA value" for 2025-04-29 to 2025-04-30	34
28	Histogram of "Cloud pressure" for 2025-04-29 to 2025-04-30	35
29	Histogram of "Cloud pressure precision" for 2025-04-29 to 2025-04-30	36

30	Histogram of "Cloud fraction" for 2025-04-29 to 2025-04-30	37
31	Histogram of "Cloud fraction precision" for 2025-04-29 to 2025-04-30	38
32	Histogram of "Scene albedo" for 2025-04-29 to 2025-04-30	39
33	Histogram of "Scene albedo precision" for 2025-04-29 to 2025-04-30	40
34	Histogram of "Apparent scene pressure" for 2025-04-29 to 2025-04-30	41
35	Histogram of "Apparent scene pressure precision" for 2025-04-29 to 2025-04-30	42
36	Histogram of " χ^2 " for 2025-04-29 to 2025-04-30	43
37	Histogram of "Number of iterations" for 2025-04-29 to 2025-04-30	44
38	Histogram of "Fluorescence" for 2025-04-29 to 2025-04-30	45
39	Histogram of "Fluorescence precision" for 2025-04-29 to 2025-04-30	46
40	Histogram of " χ^2 of fluorescence retrieval" for 2025-04-29 to 2025-04-30	47
41	Histogram of "Degrees of freedom for signal of fluorescence retrieval" for 2025-04-29 to 2025-04-30	48
42	Histogram of "Number of points in the spectrum" for 2025-04-29 to 2025-04-30	49
43	Histogram of "Spectral offset $(\lambda_{true} - \lambda_{nominal})$ " for 2025-04-29 to 2025-04-30	50
44	Along track statistics of "QA value" for 2025-04-29 to 2025-04-30	51
45	Along track statistics of "Cloud pressure" for 2025-04-29 to 2025-04-30	52
46	Along track statistics of "Cloud pressure precision" for 2025-04-29 to 2025-04-30	53
47	Along track statistics of "Cloud fraction" for 2025-04-29 to 2025-04-30	54
48	Along track statistics of "Cloud fraction precision" for 2025-04-29 to 2025-04-30	55
49	Along track statistics of "Scene albedo" for 2025-04-29 to 2025-04-30	56
50	Along track statistics of "Scene albedo precision" for 2025-04-29 to 2025-04-30	57
51	Along track statistics of "Apparent scene pressure" for 2025-04-29 to 2025-04-30	58
52	Along track statistics of "Apparent scene pressure precision" for 2025-04-29 to 2025-04-30	59
53	Along track statistics of " χ^2 " for 2025-04-29 to 2025-04-30	60
54	Along track statistics of "Number of iterations" for 2025-04-29 to 2025-04-30	61
55	Along track statistics of "Fluorescence" for 2025-04-29 to 2025-04-30	62
56	Along track statistics of "Fluorescence precision" for 2025-04-29 to 2025-04-30	63
57	Along track statistics of " χ^2 of fluorescence retrieval" for 2025-04-29 to 2025-04-30	64
58	Along track statistics of "Degrees of freedom for signal of fluorescence retrieval" for 2025-04-29 to 2025-04-30	65
59	Along track statistics of "Number of points in the spectrum" for 2025-04-29 to 2025-04-30	66
60	Along track statistics of "Spectral offset $(\lambda_{true} - \lambda_{nominal})$ " for 2025-04-29 to 2025-04-30	67

List of Tables

1	Parameterlist and basic statistics for the analysis
2	Percentile ranges
3	Parameterlist and basic statistics for the analysis for observations in the northern hemisphere
4	Parameterlist and basic statistics for the analysis for observations in the southern hemisphere
5	Parameterlist and basic statistics for the analysis for observations over water
6	Parameterlist and basic statistics for the analysis for observations over land

11 Copyright information of 'PyCAMA'

Copyright © 2005-2023, Maarten Sneep (KNMI).

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
- 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

This software is provided by the copyright holders and contributors "as is" and any express or implied warranties, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose are disclaimed. In no event shall the copyright holder or contributors be liable for any direct, indirect, incidental, special, exemplary, or consequential damages (including, but not limited to, procurement of substitute goods or services; loss of use, data, or profits; or business interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence or otherwise) arising in any way out of the use of this software, even if advised of the possibility of such damage.

Maarten Sneep (maarten.sneep@knmi.nl).