PyCAMA report generated by tropl2-proc

tropl2-proc

2025-05-19 (03:15)

1 Short Introduction

1.1 The list of parameters

You may want to keep the list given in table 1 at hand when viewing the results.

2 Definitions

The averages shown here are unweighed averages:

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i \tag{1}$$

with N the number of observations in the dataset.

The spread of the measurements is indicated with the variance V(x), or rather the standard deviation $\sigma(x) = \sqrt{V(x)}$.

$$V(x) = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2$$
(2)

We also report the more robust statistics median, minimum, maximum, various percentiles and inter quartile range.

The median m is the value of parameter x for which half of the observations of x is smaller than m:

$$P(x \le m) = P(x \ge m) = \int_{-\infty}^{m} f(x) \, \mathrm{d}x = \frac{1}{2}$$
(3)

with f(x) the probability density function.

The median is a special case of a percentile. Instead of $\frac{1}{2}$ in equation 3, other threshold values can be used. We report results for 1%, 5%, 10%, 15.9%, 25%, 75%, 84.1%, 90%, 95% and 99%. The inter quartile range is the difference between the 75% and 25% percentiles. Similarly the minimum and maximum values correspond to the 0% and 100% percentiles respectively.

For normally distributed parameters the mean and median are the same, while the $\mu \pm \sigma$ values and the 15.9% and 84.1% percentiles coincide.

To get a measure for the relation of one variable $x_{(k)}$ with another $x_{(l)}$, we calculate the covariance matrix C_{kl} .

$$C_{kl} = C(x_{(k)}, x_{(l)}) = \frac{1}{N-1} \sum_{i=1}^{N} (x_{(k),i} - \overline{x_{(k)}}) (x_{(l),i} - \overline{x_{(l)}})$$
(4)

Rather than a dimensionally dependent covariance, it is often easier to interpret a correlation matrix R_{kl} , a matrix of Pearson's *r* coefficients:

$$R_{kl} = R(x_{(k)}, x_{(l)}) = \frac{C_{kl}}{\sqrt{C_{kk}C_{ll}}} = \frac{C_{kl}}{\sqrt{V(x_k)V(x_l)}}$$
(5)

The diagonal elements of the covariance matrix are the variances of the elements, $V(x_{(k)}) = C_{kk}$ and obviously $R_{kk} = 1$.

	Table 1: Parameterl	ist and basic s	statistics for the ar	nalysis			
Variable	mean $\pm \sigma$	Count	Mode	IQR	Median	Minimum	Maximum
qa value [1]	0.913 ± 0.182	23152329	0.995	0.0	1.000	0.350	1.000
cloud pressure crb [hPa]	806 ± 200	23152329	$1.015 imes 10^3$	273	876	130	1.062×10^{3}
cloud pressure crb precision [hPa]	2.58 ± 9.65	23152329	0.750	1.38	0.618	$3.052 imes 10^{-4}$	1.555×10^{3}
cloud fraction crb [1]	0.458 ± 0.386	23152329	0.996	0.833	0.352	0.0	1.000
cloud fraction crb precision [1]	$(2.445 \pm 10.468) \times 10^{-4}$	23152329	$2.500 imes10^{-4}$	$5.374 imes10^{-5}$	8.275×10^{-5}	$1.035 imes10^{-8}$	0.341
scene albedo [1]	0.440 ± 0.321	23152329	1.500×10^{-2}	0.585	0.399	-5.019×10^{-3}	4.75
scene albedo precision [1]	$(8.202 \pm 9.337) \times 10^{-5}$	23152329	$2.500 imes 10^{-4}$	$5.890 imes10^{-5}$	$5.408 imes10^{-5}$	$1.081 imes 10^{-5}$	$1.580 imes10^{-2}$
apparent scene pressure [hPa]	835 ± 176	23152329	1.008×10^3	224	895	130	1.062×10^3
apparent scene pressure precision [hPa]	1.10 ± 2.05	23152329	0.500	0.577	0.445	0.118	69.4
chi square [1]	$(0.239 \pm 3.249) \times 10^5$	23152329	0.150	$2.771 imes 10^4$	1.356×10^4	47.6	$4.038 imes 10^8$
number of iterations [1]	3.41 ± 1.05	23152329	3.23	1.000	3.00	1.000	14.0
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.473 \pm 6.729) \times 10^{-9}$	23152329	$7.500 imes 10^{-10}$	$5.168 imes10^{-9}$	1.137×10^{-9}	-1.760×10^{-6}	$2.455 imes 10^{-6}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.809 \pm 0.775) \times 10^{-9}$	23152329	$8.500 imes 10^{-10}$	$1.208 imes10^{-9}$	1.739×10^{-9}	4.515×10^{-10}	$5.835 imes 10^{-9}$
chi square fluorescence [1]	$(0.565 \pm 0.934) \times 10^5$	23152329	750	$5.291 imes 10^4$	$2.473 imes 10^4$	89.5	$8.718 imes10^6$
degrees of freedom fluorescence [1]	6.00 ± 0.00	23152329	5.95	0.0	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	23152329	49.7	0.0	50.0	42.0	50.0
wavelength calibration offset [nm]	$(3.350\pm 8.820) \times 10^{-3}$	23152329	$3.600 imes 10^{-3}$	$5.763 imes 10^{-3}$	3.342×10^{-3}	-0.282	0.290

			Table 2:	Percentile rang	es					
Variable	1 %	5%	10 %	15.9 %	25 %	75 %	84.1 %	90 %	95 %	99 %
qa value [1]	0.500	0.500	0.500	0.700	1.000	1.000	1.000	1.000	1.000	1.000
cloud pressure crb [hPa]	261	391	483	576	693	966	990	1.004×10^3	1.013×10^3	1.022×10^3
cloud pressure crb precision [hPa]	0.102	0.219	0.245	0.269	0.317	1.70	2.95	5.02	9.89	31.9
cloud fraction crb [1]	$1.332 imes 10^{-3}$	$1.054 imes10^{-2}$	$2.312 imes 10^{-2}$	$4.237 imes 10^{-2}$	$8.372 imes 10^{-2}$	0.917	1.000	1.000	1.000	1.000
cloud fraction crb precision [1]	$2.110 imes10^{-5}$	$2.426 imes 10^{-5}$	$2.761 imes 10^{-5}$	$3.296 imes 10^{-5}$	4.626×10^{-5}	$1.000 imes 10^{-4}$	$1.583 imes10^{-4}$	$2.954 imes 10^{-4}$	$8.957 imes10^{-4}$	3.556×10^{-3}
scene albedo [1]	$7.768 imes 10^{-3}$	$1.887 imes10^{-2}$	$3.538 imes10^{-2}$	$6.345 imes 10^{-2}$	0.139	0.724	0.827	0.887	0.947	1.07
scene albedo precision [1]	1.333×10^{-5}	1.611×10^{-5}	$2.012 imes 10^{-5}$	2.600×10^{-5}	$3.385 imes 10^{-5}$	9.274×10^{-5}	$1.223 imes 10^{-4}$	1.632×10^{-4}	$2.475 imes 10^{-4}$	$4.877 imes10^{-4}$
apparent scene pressure [hPa]	336	453	553	647	747	971	992	1.006×10^{3}	1.013×10^{3}	1.022×10^{3}
apparent scene pressure precision [hPa]	0.213	0.237	0.256	0.276	0.310	0.887	1.50	2.45	4.45	10.3
chi square [1]	203	472	985	1.894×10^{3}	3.953×10^{3}	3.166×10^{4}	4.415×10^{4}	5.503×10^{4}	6.802×10^{4}	9.398×10^{4}
number of iterations [1]	2.00	2.00	2.00	3.00	3.00	4.00	4.00	5.00	5.00	6.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$-1.497 imes 10^{-8}$	-7.106×10^{-9}	-4.160×10^{-9}	-2.494×10^{-9}	-1.052×10^{-9}	4.116×10^{-9}	6.129×10^{-9}	8.059×10^{-9}	$1.076 imes10^{-8}$	$1.656 imes 10^{-8}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$6.831 imes 10^{-10}$	$7.904 imes 10^{-10}$	8.675×10^{-10}	9.581×10^{-10}	1.126×10^{-9}	2.333×10^{-9}	2.657×10^{-9}	2.832×10^{-9}	3.178×10^{-9}	3.829×10^{-9}
chi square fluorescence [1]	384	956	1.940×10^{3}	3.514×10^{3}	6.995×10^{3}	5.990×10^{4}	9.406×10^{4}	1.452×10^{5}	2.405×10^{5}	4.758×10^{5}
degrees of freedom fluorescence [1]	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0
wavelength calibration offset [nm]	-2.540×10^{-2}	-9.636×10^{-3}	-4.364×10^{-3}	-1.646×10^{-3}	$4.719 imes10^{-4}$	6.235×10^{-3}	8.393×10^{-3}	$1.117 imes 10^{-2}$	1.648×10^{-2}	$3.163 imes 10^{-2}$

Table 3	3: Parameterlist and basic s	tatistics for	the analysis for	observations in	the northern hen	nisphere		
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.865 ± 0.213	14818979	0.1000	1.000	0.350	1.000	0.900	1.000
cloud pressure crb [hPa]	819 ± 196	14818979	261	891	130	1.062×10^{3}	713	975
cloud pressure crb precision [hPa]	1.79 ± 7.16	14818979	0.980	0.455	$3.052 imes 10^{-4}$	1.555×10^{3}	0.275	1.25
cloud fraction crb [1]	0.537 ± 0.401	14818979	0.882	0.512	0.0	1.000	0.118	1.000
cloud fraction crb precision [1]	$(3.245 \pm 12.959) \times 10^{-4}$	14818979	$4.950 imes 10^{-5}$	9.732×10^{-5}	$1.035 imes 10^{-8}$	0.341	$5.050 imes 10^{-5}$	$1.000 imes 10^{-4}$
scene albedo [1]	0.523 ± 0.320	14818979	0.570	0.544	$-1.966 imes 10^{-3}$	4.61	0.239	0.810
scene albedo precision [1]	$(8.207 \pm 9.281) \times 10^{-5}$	14818979	$5.812 imes 10^{-5}$	$5.436 imes 10^{-5}$	$1.081 imes 10^{-5}$	$5.308 imes 10^{-3}$	3.399×10^{-5}	$9.211 imes 10^{-5}$
apparent scene pressure [hPa]	850 ± 165	14818979	206	908	130	1.062×10^{3}	769	976
apparent scene pressure precision [hPa]	0.702 ± 1.258	14818979	0.313	0.367	0.118	62.2	0.281	0.594
chi square [1]	$(0.324 \pm 4.058) \times 10^5$	14818979	3.531×10^4	2.221×10^4	69.0	$4.038 imes 10^8$	8.149×10^{3}	4.346×10^4
number of iterations [1]	3.64 ± 1.14	14818979	1.000	3.00	1.000	14.0	3.00	4.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(2.208 \pm 7.665) \times 10^{-9}$	14818979	6.636×10^{-9}	1.992×10^{-9}	$-1.760 imes 10^{-6}$	$2.455 imes 10^{-6}$	-1.044×10^{-9}	$5.592 imes 10^{-9}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(2.044 \pm 0.763) \times 10^{-9}$	14818979	$1.179 imes 10^{-9}$	2.063×10^{-9}	$4.515 imes 10^{-10}$	5.835×10^{-9}	$1.417 imes 10^{-9}$	$2.596 imes 10^{-9}$
chi square fluorescence [1]	$(0.651 \pm 0.979) \times 10^5$	14818979	$5.475 imes 10^4$	3.347×10^4	115	$8.718 imes10^{6}$	1.387×10^4	$6.862 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	14818979	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	14818979	0.0	50.0	42.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(3.333 \pm 6.860) \times 10^{-3}$	14818979	4.657×10^{-3}	3.303×10^{-3}	-8.082×10^{-2}	8.530×10^{-2}	$9.726 imes 10^{-4}$	5.630×10^{-3}

Table 4	4: Parameterlist and basic s	tatistics for	the analysis for	observations in	the southern herr	nisphere		
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.997 ± 0.030	8333350	0.0	1.000	0.350	1.000	1.000	1.000
cloud pressure crb [hPa]	783 ± 204	8333350	297	854	130	1.032×10^{3}	649	945
cloud pressure crb precision [hPa]	3.98 ± 12.82	8333350	2.33	0.968	$4.504 imes 10^{-2}$	926	0.489	2.82
cloud fraction crb [1]	0.317 ± 0.311	8333350	0.492	0.199	0.0	1.000	$4.588 imes10^{-2}$	0.538
cloud fraction crb precision [1]	$(1.023 \pm 1.636) \times 10^{-4}$	8333350	$6.733 imes 10^{-5}$	7.039×10^{-5}	$2.077 imes10^{-6}$	0.147	$4.034 imes10^{-5}$	$1.077 imes10^{-4}$
scene albedo [1]	0.292 ± 0.263	8333350	0.401	0.235	$-5.019 imes10^{-3}$	4.75	$5.665 imes10^{-2}$	0.457
scene albedo precision [1]	$(8.193 \pm 9.437) \times 10^{-5}$	8333350	$6.029 imes 10^{-5}$	$5.354 imes10^{-5}$	1.169×10^{-5}	1.580×10^{-2}	$3.363 imes10^{-5}$	$9.392 imes 10^{-5}$
apparent scene pressure [hPa]	808 ± 191	8333350	264	875	130	1.032×10^{3}	696	959
apparent scene pressure precision [hPa]	1.81 ± 2.83	8333350	1.42	0.705	0.167	69.4	0.438	1.85
chi square [1]	$(0.866 \pm 0.968) imes 10^4$	8333350	$1.145 imes 10^4$	5.528×10^3	47.6	$1.786 imes 10^6$	1.413×10^{3}	$1.286 imes 10^4$
number of iterations [1]	2.99 ± 0.66	8333350	0.0	3.00	1.000	14.0	3.00	3.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.669 \pm 43.215) \times 10^{-10}$	8333350	$2.984 imes10^{-9}$	$4.625 imes 10^{-10}$	$-1.225 imes10^{-6}$	$9.223 imes 10^{-7}$	-1.060×10^{-9}	$1.925 imes 10^{-9}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.392 \pm 0.601) \times 10^{-9}$	8333350	8.426×10^{-10}	$1.244 imes 10^{-9}$	$5.396 imes 10^{-10}$	$5.558 imes 10^{-9}$	$8.980 imes 10^{-10}$	$1.741 imes 10^{-9}$
chi square fluorescence [1]	$(0.413 \pm 0.825) \times 10^5$	8333350	3.468×10^4	9.202×10^{3}	89.5	$2.198 imes 10^6$	2.521×10^3	$3.720 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	8333350	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	8333350	0.0	50.0	48.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(3.379 \pm 11.510) \times 10^{-3}$	8333350	8.843×10^{-3}	3.467×10^{-3}	-0.282	0.290	-9.802×10^{-4}	7.863×10^{-3}

S

	Table 5: Parameterlist and	d basic statis	stics for the ana	lysis for observa	tions over water			
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.922 ± 0.168	15721075	0.0	1.000	0.350	1.000	1.000	1.000
cloud pressure crb [hPa]	821 ± 199	15721075	258	897	130	1.033×10^{3}	718	976
cloud pressure crb precision [hPa]	2.77 ± 10.37	15721075	1.35	0.637	$3.052 imes 10^{-4}$	684	0.334	1.69
cloud fraction crb [1]	0.436 ± 0.376	15721075	0.744	0.333	0.0	1.000	$7.337 imes10^{-2}$	0.817
cloud fraction crb precision [1]	$(2.339 \pm 9.678) \times 10^{-4}$	15721075	$6.565 imes10^{-5}$	$6.534 imes10^{-5}$	$1.035 imes 10^{-8}$	0.211	$3.435 imes 10^{-5}$	$1.000 imes 10^{-4}$
scene albedo [1]	0.377 ± 0.322	15721075	0.598	0.297	$-5.019 imes10^{-3}$	4.75	$7.095 imes10^{-2}$	0.669
scene albedo precision [1]	$(8.038 \pm 9.179) \times 10^{-5}$	15721075	$6.915 imes10^{-5}$	$5.478 imes10^{-5}$	$1.081 imes 10^{-5}$	$1.580 imes10^{-2}$	$2.807 imes10^{-5}$	$9.723 imes 10^{-5}$
apparent scene pressure [hPa]	839 ± 185	15721075	226	909	130	1.033×10^3	755	981
apparent scene pressure precision [hPa]	1.43 ± 2.41	15721075	1.02	0.583	0.130	69.4	0.343	1.36
chi square [1]	$(0.196 \pm 3.667) \times 10^5$	15721075	2.252×10^4	$7.918 imes 10^3$	47.6	$4.038 imes 10^8$	2.172×10^3	$2.470 imes 10^4$
number of iterations [1]	3.20 ± 0.98	15721075	0.0	3.00	1.000	14.0	3.00	3.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(8.991 \pm 54.746) \times 10^{-10}$	15721075	$4.170 imes 10^{-9}$	$7.294 imes 10^{-10}$	$-1.760 imes 10^{-6}$	$1.936 imes 10^{-6}$	$-1.117 imes 10^{-9}$	3.052×10^{-9}
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.612\pm0.722)\times10^{-9}$	15721075	$1.110 imes 10^{-9}$	1.450×10^{-9}	$4.515 imes 10^{-10}$	5.716×10^{-9}	$9.984 imes 10^{-10}$	2.109×10^{-9}
chi square fluorescence [1]	$(0.421 \pm 0.753) \times 10^5$	15721075	$4.248 imes 10^4$	$1.767 imes 10^4$	89.5	$8.718 imes10^{6}$	4.437×10^3	$4.692 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	15721075	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	15721075	0.0	50.0	43.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(3.331 \pm 9.968) \times 10^{-3}$	15721075	6.595×10^{-3}	3.311×10^{-3}	-0.282	0.290	3.736×10^{-5}	6.633×10^{-3}

	Table 6: Parameterlist an	nd basic sta	tistics for the an	alysis for obser	vations over land			
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.879 ± 0.216	5295785	0.0	1.000	0.350	1.000	1.000	1.000
cloud pressure crb [hPa]	774 ± 195	5295785	271	821	130	1.052×10^{3}	663	934
cloud pressure crb precision [hPa]	2.26 ± 8.18	5295785	1.55	0.607	$7.324 imes10^{-4}$	1.555×10^{3}	0.285	1.84
cloud fraction crb [1]	0.499 ± 0.406	5295785	0.903	0.381	0.0	1.000	$9.681 imes 10^{-2}$	1.000
cloud fraction crb precision [1]	$(2.814 \pm 12.425) \times 10^{-4}$	5295785	$4.129 imes 10^{-5}$	$1.000 imes 10^{-4}$	$1.841 imes10^{-8}$	0.341	$7.575 imes 10^{-5}$	$1.170 imes10^{-4}$
scene albedo [1]	0.579 ± 0.272	5295785	0.483	0.543	1.196×10^{-2}	4.61	0.335	0.818
scene albedo precision [1]	$(8.677 \pm 9.687) \times 10^{-5}$	5295785	$4.564 imes 10^{-5}$	$5.333 imes 10^{-5}$	$1.369 imes 10^{-5}$	1.790×10^{-3}	$3.908 imes 10^{-5}$	$8.472 imes 10^{-5}$
apparent scene pressure [hPa]	824 ± 149	5295785	208	863	130	1.052×10^3	736	944
apparent scene pressure precision [hPa]	0.390 ± 0.196	5295785	0.175	0.347	0.131	12.8	0.273	0.448
chi square [1]	$(0.328 \pm 1.898) \times 10^5$	5295785	$2.659 imes 10^4$	$2.314 imes 10^4$	144	$1.157 imes 10^8$	$1.373 imes 10^4$	$4.032 imes 10^4$
number of iterations [1]	3.88 ± 1.05	5295785	1.000	4.00	1.000	14.0	3.00	4.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(2.520\pm7.854)\times10^{-9}$	5295785	$7.078 imes10^{-9}$	2.455×10^{-9}	-1.381×10^{-6}	$2.038 imes10^{-6}$	$-8.692 imes 10^{-10}$	$6.208 imes10^{-9}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(2.214 \pm 0.694) \times 10^{-9}$	5295785	9.522×10^{-10}	2.218×10^{-9}	$4.863 imes 10^{-10}$	$5.822 imes 10^{-9}$	$1.742 imes 10^{-9}$	2.694×10^{-9}
chi square fluorescence [1]	$(0.825 \pm 1.116) \times 10^5$	5295785	$7.711 imes 10^4$	$3.887 imes 10^4$	115	$2.081 imes 10^6$	$1.712 imes 10^4$	$9.424 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	5295785	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	5295785	0.0	50.0	48.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(3.338 \pm 4.956) \times 10^{-3}$	5295785	4.284×10^{-3}	3.345×10^{-3}	-5.322×10^{-2}	0.235	1.200×10^{-3}	$5.485 imes 10^{-3}$

Granule outlines

Figure 1: Outline of the granules.

4 Input data monitoring

Figure 2: Input data per granule

5 Warnings and errors

Figure 3: Fraction of pixels with specific warnings and errors during processing

6 World maps

Figure 4: Map of "Cloud pressure" for 2025-05-17 to 2025-05-18

Figure 5: Map of "Cloud fraction" for 2025-05-17 to 2025-05-18

Figure 6: Map of "Scene albedo" for 2025-05-17 to 2025-05-18

Figure 7: Map of "Apparent scene pressure" for 2025-05-17 to 2025-05-18

Figure 8: Map of "Fluorescence" for 2025-05-17 to 2025-05-18

Figure 9: Map of the number of observations for 2025-05-17 to 2025-05-18

7 Zonal average

Figure 10: Zonal average of "QA value" for 2025-05-17 to 2025-05-18.

Figure 11: Zonal average of "Cloud pressure" for 2025-05-17 to 2025-05-18.

Figure 12: Zonal average of "Cloud pressure precision" for 2025-05-17 to 2025-05-18.

Figure 13: Zonal average of "Cloud fraction" for 2025-05-17 to 2025-05-18.

Figure 14: Zonal average of "Cloud fraction precision" for 2025-05-17 to 2025-05-18.

Figure 15: Zonal average of "Scene albedo" for 2025-05-17 to 2025-05-18.

Figure 16: Zonal average of "Scene albedo precision" for 2025-05-17 to 2025-05-18.

Figure 17: Zonal average of "Apparent scene pressure" for 2025-05-17 to 2025-05-18.

Figure 18: Zonal average of "Apparent scene pressure precision" for 2025-05-17 to 2025-05-18.

Figure 19: Zonal average of " χ^2 " for 2025-05-17 to 2025-05-18.

Figure 20: Zonal average of "Number of iterations" for 2025-05-17 to 2025-05-18.

Figure 21: Zonal average of "Fluorescence" for 2025-05-17 to 2025-05-18.

Figure 22: Zonal average of "Fluorescence precision" for 2025-05-17 to 2025-05-18.

Figure 23: Zonal average of " χ^2 of fluorescence retrieval" for 2025-05-17 to 2025-05-18.

Figure 24: Zonal average of "Degrees of freedom for signal of fluorescence retrieval" for 2025-05-17 to 2025-05-18.

Figure 25: Zonal average of "Number of points in the spectrum" for 2025-05-17 to 2025-05-18.

Figure 26: Zonal average of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-05-17 to 2025-05-18.

8 Histograms

The definitions of the parameters given in this section can be found in section 2.

Figure 27: Histogram of "QA value" for 2025-05-17 to 2025-05-18

Figure 28: Histogram of "Cloud pressure" for 2025-05-17 to 2025-05-18

Figure 29: Histogram of "Cloud pressure precision" for 2025-05-17 to 2025-05-18

Figure 30: Histogram of "Cloud fraction" for 2025-05-17 to 2025-05-18

Figure 31: Histogram of "Cloud fraction precision" for 2025-05-17 to 2025-05-18

Figure 32: Histogram of "Scene albedo" for 2025-05-17 to 2025-05-18

Figure 33: Histogram of "Scene albedo precision" for 2025-05-17 to 2025-05-18

Figure 34: Histogram of "Apparent scene pressure" for 2025-05-17 to 2025-05-18

Figure 35: Histogram of "Apparent scene pressure precision" for 2025-05-17 to 2025-05-18

Figure 36: Histogram of " χ^2 " for 2025-05-17 to 2025-05-18

Figure 37: Histogram of "Number of iterations" for 2025-05-17 to 2025-05-18

Figure 38: Histogram of "Fluorescence" for 2025-05-17 to 2025-05-18

Figure 39: Histogram of "Fluorescence precision" for 2025-05-17 to 2025-05-18

Figure 40: Histogram of " χ^2 of fluorescence retrieval" for 2025-05-17 to 2025-05-18

Figure 41: Histogram of "Degrees of freedom for signal of fluorescence retrieval" for 2025-05-17 to 2025-05-18

Figure 42: Histogram of "Number of points in the spectrum" for 2025-05-17 to 2025-05-18

Figure 43: Histogram of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-05-17 to 2025-05-18

9 Along track statistics

The TROPOMI instrument uses different binned detector rows for different viewing directions. In this section statistics are presented for each of the binned rows in the instrument.

Figure 44: Along track statistics of "QA value" for 2025-05-17 to 2025-05-18

Figure 45: Along track statistics of "Cloud pressure" for 2025-05-17 to 2025-05-18

Figure 46: Along track statistics of "Cloud pressure precision" for 2025-05-17 to 2025-05-18

Figure 47: Along track statistics of "Cloud fraction" for 2025-05-17 to 2025-05-18

Figure 48: Along track statistics of "Cloud fraction precision" for 2025-05-17 to 2025-05-18

Figure 49: Along track statistics of "Scene albedo" for 2025-05-17 to 2025-05-18

Figure 50: Along track statistics of "Scene albedo precision" for 2025-05-17 to 2025-05-18

Figure 51: Along track statistics of "Apparent scene pressure" for 2025-05-17 to 2025-05-18

Figure 52: Along track statistics of "Apparent scene pressure precision" for 2025-05-17 to 2025-05-18

Figure 53: Along track statistics of " χ^2 " for 2025-05-17 to 2025-05-18

Figure 54: Along track statistics of "Number of iterations" for 2025-05-17 to 2025-05-18

Figure 55: Along track statistics of "Fluorescence" for 2025-05-17 to 2025-05-18

Figure 56: Along track statistics of "Fluorescence precision" for 2025-05-17 to 2025-05-18

Figure 57: Along track statistics of " χ^2 of fluorescence retrieval" for 2025-05-17 to 2025-05-18

Figure 58: Along track statistics of "Degrees of freedom for signal of fluorescence retrieval" for 2025-05-17 to 2025-05-18

Figure 59: Along track statistics of "Number of points in the spectrum" for 2025-05-17 to 2025-05-18

Figure 60: Along track statistics of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-05-17 to 2025-05-18

10 Coincidence density

To investigate the relation between parameters scatter density plots are produced. These include some 'hidden' parameters, latitude and the solar- and viewing geometries, in addition to all configured parameters. All combinations of pairs of parameters are included *once*, in one direction alone.

Contents

1	Short Introduction	1
	1.1 The list of parameters	1
2	Definitions	1
3	Granule outlines	8
4	Input data monitoring	9
5	Warnings and errors	10
6	World maps	11
7	Zonal average	17
8	Histograms	34
9	Along track statistics	51
10	Coincidence density	68
11	Copyright information of 'PyCAMA'	68

List of Figures

1	Outline of the granules.	8
2	Input data per granule	9
3	Fraction of pixels with specific warnings and errors during processing	10
4	Map of "Cloud pressure" for 2025-05-17 to 2025-05-18	11
5	Map of "Cloud fraction" for 2025-05-17 to 2025-05-18	12
6	Map of "Scene albedo" for 2025-05-17 to 2025-05-18	13
7	Map of "Apparent scene pressure" for 2025-05-17 to 2025-05-18	14
8	Map of "Fluorescence" for 2025-05-17 to 2025-05-18	15
9	Map of the number of observations for 2025-05-17 to 2025-05-18	16
10	Zonal average of "QA value" for 2025-05-17 to 2025-05-18	17
11	Zonal average of "Cloud pressure" for 2025-05-17 to 2025-05-18.	18
12	Zonal average of "Cloud pressure precision" for 2025-05-17 to 2025-05-18	19
13	Zonal average of "Cloud fraction" for 2025-05-17 to 2025-05-18.	20
14	Zonal average of "Cloud fraction precision" for 2025-05-17 to 2025-05-18.	21
15	Zonal average of "Scene albedo" for 2025-05-17 to 2025-05-18	22
16	Zonal average of "Scene albedo precision" for 2025-05-17 to 2025-05-18.	23
17	Zonal average of "Apparent scene pressure" for 2025-05-17 to 2025-05-18.	24
18	Zonal average of "Apparent scene pressure precision" for 2025-05-17 to 2025-05-18.	25
19	Zonal average of " χ^2 " for 2025-05-17 to 2025-05-18	26
20	Zonal average of "Number of iterations" for 2025-05-17 to 2025-05-18.	27
21	Zonal average of "Fluorescence" for 2025-05-17 to 2025-05-18.	28
22	Zonal average of "Fluorescence precision" for 2025-05-17 to 2025-05-18.	29
23	Zonal average of " χ^2 of fluorescence retrieval" for 2025-05-17 to 2025-05-18	30
24	Zonal average of "Degrees of freedom for signal of fluorescence retrieval" for 2025-05-17 to 2025-05-18.	31
25	Zonal average of "Number of points in the spectrum" for 2025-05-17 to 2025-05-18.	32
26	Zonal average of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-05-17 to 2025-05-18	33
27	Histogram of "QA value" for 2025-05-17 to 2025-05-18	34
28	Histogram of "Cloud pressure" for 2025-05-17 to 2025-05-18	35
29	Histogram of "Cloud pressure precision" for 2025-05-17 to 2025-05-18	36

30	Histogram of "Cloud fraction" for 2025-05-17 to 2025-05-18	37
31	Histogram of "Cloud fraction precision" for 2025-05-17 to 2025-05-18	38
32	Histogram of "Scene albedo" for 2025-05-17 to 2025-05-18	39
33	Histogram of "Scene albedo precision" for 2025-05-17 to 2025-05-18	40
34	Histogram of "Apparent scene pressure" for 2025-05-17 to 2025-05-18	41
35	Histogram of "Apparent scene pressure precision" for 2025-05-17 to 2025-05-18	42
36	Histogram of " χ^2 " for 2025-05-17 to 2025-05-18	43
37	Histogram of "Number of iterations" for 2025-05-17 to 2025-05-18	44
38	Histogram of "Fluorescence" for 2025-05-17 to 2025-05-18	45
39	Histogram of "Fluorescence precision" for 2025-05-17 to 2025-05-18	46
40	Histogram of " χ^2 of fluorescence retrieval" for 2025-05-17 to 2025-05-18	47
41	Histogram of "Degrees of freedom for signal of fluorescence retrieval" for 2025-05-17 to 2025-05-18	48
42	Histogram of "Number of points in the spectrum" for 2025-05-17 to 2025-05-18	49
43	Histogram of "Spectral offset $(\lambda_{true} - \lambda_{nominal})$ " for 2025-05-17 to 2025-05-18	50
44	Along track statistics of "QA value" for 2025-05-17 to 2025-05-18	51
45	Along track statistics of "Cloud pressure" for 2025-05-17 to 2025-05-18	52
46	Along track statistics of "Cloud pressure precision" for 2025-05-17 to 2025-05-18	53
47	Along track statistics of "Cloud fraction" for 2025-05-17 to 2025-05-18	54
48	Along track statistics of "Cloud fraction precision" for 2025-05-17 to 2025-05-18	55
49	Along track statistics of "Scene albedo" for 2025-05-17 to 2025-05-18	56
50	Along track statistics of "Scene albedo precision" for 2025-05-17 to 2025-05-18	57
51	Along track statistics of "Apparent scene pressure" for 2025-05-17 to 2025-05-18	58
52	Along track statistics of "Apparent scene pressure precision" for 2025-05-17 to 2025-05-18	59
53	Along track statistics of " χ^2 " for 2025-05-17 to 2025-05-18	60
54	Along track statistics of "Number of iterations" for 2025-05-17 to 2025-05-18	61
55	Along track statistics of "Fluorescence" for 2025-05-17 to 2025-05-18	62
56	Along track statistics of "Fluorescence precision" for 2025-05-17 to 2025-05-18	63
57	Along track statistics of " χ^2 of fluorescence retrieval" for 2025-05-17 to 2025-05-18	64
58	Along track statistics of "Degrees of freedom for signal of fluorescence retrieval" for 2025-05-17 to 2025-05-18	65
59	Along track statistics of "Number of points in the spectrum" for 2025-05-17 to 2025-05-18	66
60	Along track statistics of "Spectral offset $(\lambda_{true} - \lambda_{nominal})$ " for 2025-05-17 to 2025-05-18	67

List of Tables

1	Parameterlist and basic statistics for the analysis
2	Percentile ranges
3	Parameterlist and basic statistics for the analysis for observations in the northern hemisphere
4	Parameterlist and basic statistics for the analysis for observations in the southern hemisphere
5	Parameterlist and basic statistics for the analysis for observations over water
6	Parameterlist and basic statistics for the analysis for observations over land

11 Copyright information of 'PyCAMA'

Copyright © 2005-2023, Maarten Sneep (KNMI).

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
- 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

This software is provided by the copyright holders and contributors "as is" and any express or implied warranties, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose are disclaimed. In no event shall the copyright holder or contributors be liable for any direct, indirect, incidental, special, exemplary, or consequential damages (including, but not limited to, procurement of substitute goods or services; loss of use, data, or profits; or business interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence or otherwise) arising in any way out of the use of this software, even if advised of the possibility of such damage.

Maarten Sneep (maarten.sneep@knmi.nl).