PyCAMA report generated by tropl2-proc

tropl2-proc

2025-05-20 (06:00)

1 Short Introduction

1.1 The list of parameters

You may want to keep the list given in table 1 at hand when viewing the results.

2 Definitions

The averages shown here are unweighed averages:

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i \tag{1}$$

with N the number of observations in the dataset.

The spread of the measurements is indicated with the variance V(x), or rather the standard deviation $\sigma(x) = \sqrt{V(x)}$.

$$V(x) = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2$$
(2)

We also report the more robust statistics median, minimum, maximum, various percentiles and inter quartile range.

The median m is the value of parameter x for which half of the observations of x is smaller than m:

$$P(x \le m) = P(x \ge m) = \int_{-\infty}^{m} f(x) \, \mathrm{d}x = \frac{1}{2}$$
(3)

with f(x) the probability density function.

The median is a special case of a percentile. Instead of $\frac{1}{2}$ in equation 3, other threshold values can be used. We report results for 1%, 5%, 10%, 15.9%, 25%, 75%, 84.1%, 90%, 95% and 99%. The inter quartile range is the difference between the 75% and 25% percentiles. Similarly the minimum and maximum values correspond to the 0% and 100% percentiles respectively.

For normally distributed parameters the mean and median are the same, while the $\mu \pm \sigma$ values and the 15.9% and 84.1% percentiles coincide.

To get a measure for the relation of one variable $x_{(k)}$ with another $x_{(l)}$, we calculate the covariance matrix C_{kl} .

$$C_{kl} = C(x_{(k)}, x_{(l)}) = \frac{1}{N-1} \sum_{i=1}^{N} (x_{(k),i} - \overline{x_{(k)}}) (x_{(l),i} - \overline{x_{(l)}})$$
(4)

Rather than a dimensionally dependent covariance, it is often easier to interpret a correlation matrix R_{kl} , a matrix of Pearson's *r* coefficients:

$$R_{kl} = R(x_{(k)}, x_{(l)}) = \frac{C_{kl}}{\sqrt{C_{kk}C_{ll}}} = \frac{C_{kl}}{\sqrt{V(x_k)V(x_l)}}$$
(5)

The diagonal elements of the covariance matrix are the variances of the elements, $V(x_{(k)}) = C_{kk}$ and obviously $R_{kk} = 1$.

Table 1: Parameterlist and basic statistics for the analyst	si
---	----

	Table 1: Parameterl	ist and basic s	statistics for the ar	nalysis			
Variable	mean $\pm \sigma$	Count	Mode	IQR	Median	Minimum	Maximum
qa value [1]	0.915 ± 0.181	23200133	0.995	0.0	1.000	0.350	1.000
cloud pressure crb [hPa]	808 ± 198	23200133	$1.015 imes 10^3$	272	876	130	1.057×10^3
cloud pressure crb precision [hPa]	2.68 ± 9.79	23200133	0.750	1.46	0.627	$1.831 imes 10^{-4}$	1.530×10^3
cloud fraction crb [1]	0.454 ± 0.386	23200133	0.996	0.828	0.344	0.0	1.000
cloud fraction crb precision [1]	$(2.499 \pm 11.776) \times 10^{-4}$	23200133	$2.500 imes10^{-4}$	$5.546 imes10^{-5}$	$8.422 imes 10^{-5}$	$4.215 imes10^{-9}$	0.577
scene albedo [1]	0.439 ± 0.320	23200133	$1.500 imes10^{-2}$	0.587	0.400	$-2.639 imes 10^{-3}$	5.41
scene albedo precision [1]	$(8.099 \pm 8.878) \times 10^{-5}$	23200133	$2.500 imes10^{-4}$	$5.983 imes 10^{-5}$	$5.438 imes 10^{-5}$	1.060×10^{-5}	5.458×10^{-3}
apparent scene pressure [hPa]	838 ± 175	23200133	1.008×10^3	220	897	130	1.056×10^3
apparent scene pressure precision [hPa]	1.12 ± 2.10	23200133	0.500	0.593	0.443	6.674×10^{-2}	67.3
chi square [1]	$(0.243 \pm 3.703) \times 10^5$	23200133	0.150	$2.818 imes10^4$	$1.374 imes 10^4$	52.5	3.707×10^{8}
number of iterations [1]	3.40 ± 1.04	23200133	3.23	1.000	3.00	1.000	14.0
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.478 \pm 6.603) \times 10^{-9}$	23200133	$7.500 imes 10^{-10}$	5.156×10^{-9}	1.136×10^{-9}	-1.837×10^{-6}	2.447×10^{-6}
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.808 \pm 0.778) \times 10^{-9}$	23200133	$8.500 imes 10^{-10}$	$1.208 imes 10^{-9}$	1.734×10^{-9}	$4.486 imes 10^{-10}$	5.824×10^{-9}
chi square fluorescence [1]	$(0.578 \pm 0.976) \times 10^5$	23200133	750	$5.253 imes 10^4$	$2.458 imes 10^4$	92.0	$3.698 imes 10^6$
degrees of freedom fluorescence [1]	6.00 ± 0.00	23200133	5.95	0.0	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	23200133	49.7	0.0	50.0	44.0	50.0
wavelength calibration offset [nm]	$(3.365 \pm 8.771) \times 10^{-3}$	23200133	3.600×10^{-3}	$5.763 imes 10^{-3}$	$3.353 imes 10^{-3}$	-0.199	0.150

			Table 2:	Percentile rang	jes					
Variable	1 %	5%	10 %	15.9 %	25 %	75 %	84.1 %	90 %	95 %	99 %
qa value [1]	0.500	0.500	0.500	0.900	1.000	1.000	1.000	1.000	1.000	1.000
cloud pressure crb [hPa]	267	395	489	580	695	966	990	1.004×10^3	1.013×10^{3}	1.023×10^{3}
cloud pressure crb precision [hPa]	$9.698 imes10^{-2}$	0.220	0.245	0.269	0.318	1.78	3.08	5.19	10.2	34.6
cloud fraction crb [1]	$1.173 imes 10^{-3}$	$9.985 imes10^{-3}$	$2.216 imes10^{-2}$	$4.074 imes10^{-2}$	$8.053 imes10^{-2}$	0.908	1.000	1.000	1.000	1.000
cloud fraction crb precision [1]	$2.075 imes 10^{-5}$	$2.400 imes 10^{-5}$	$2.727 imes 10^{-5}$	3.241×10^{-5}	4.634×10^{-5}	$1.018 imes10^{-4}$	$1.613 imes 10^{-4}$	$2.968 imes 10^{-4}$	$8.356 imes 10^{-4}$	$3.708 imes 10^{-3}$
scene albedo [1]	$7.563 imes 10^{-3}$	$1.841 imes 10^{-2}$	$3.418 imes10^{-2}$	$6.138 imes10^{-2}$	0.137	0.723	0.827	0.887	0.946	1.06
scene albedo precision [1]	$1.332 imes 10^{-5}$	$1.602 imes10^{-5}$	$2.004 imes10^{-5}$	$2.599 imes10^{-5}$	$3.384 imes10^{-5}$	$9.367 imes 10^{-5}$	$1.220 imes10^{-4}$	$1.597 imes10^{-4}$	$2.354 imes10^{-4}$	$4.736 imes10^{-4}$
apparent scene pressure [hPa]	334	456	557	650	752	972	992	1.006×10^{3}	1.014×10^{3}	1.023×10^{3}
apparent scene pressure precision [hPa]	0.213	0.237	0.255	0.276	0.309	0.902	1.56	2.51	4.46	10.5
chi square [1]	195	467	944	1.817×10^{3}	3.881×10^{3}	3.206×10^{4}	4.433×10^{4}	5.516×10^4	6.841×10^{4}	9.255×10^{4}
number of iterations [1]	2.00	2.00	2.00	3.00	3.00	4.00	4.00	5.00	5.00	6.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	-1.509×10^{-8}	-7.188×10^{-9}	-4.137×10^{-9}	-2.455×10^{-9}	-1.027×10^{-9}	4.129×10^{-9}	6.131×10^{-9}	8.067×10^{-9}	$1.079 imes10^{-8}$	1.659×10^{-8}
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$6.764 imes 10^{-10}$	$7.898 imes 10^{-10}$	$8.675 imes 10^{-10}$	$9.550 imes 10^{-10}$	1.123×10^{-9}	2.331×10^{-9}	2.660×10^{-9}	2.835×10^{-9}	3.192×10^{-9}	3.832×10^{-9}
chi square fluorescence [1]	378	984	1.985×10^{3}	3.543×10^{3}	7.072×10^{3}	5.960×10^{4}	9.487×10^{4}	1.478×10^{5}	2.503×10^{5}	4.993×10^{5}
degrees of freedom fluorescence [1]	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$-2.513 imes 10^{-2}$	-9.570×10^{-3}	-4.341×10^{-3}	-1.627×10^{-3}	$4.886 imes 10^{-4}$	6.252×10^{-3}	8.416×10^{-3}	$1.118 imes10^{-2}$	1.643×10^{-2}	3.145×10^{-2}

Table 3	B: Parameterlist and basic s	tatistics for	the analysis for	observations in	the northern hen	nisphere		
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.869 ± 0.211	14905822	0.1000	1.000	0.350	1.000	0.900	1.000
cloud pressure crb [hPa]	822 ± 194	14905822	258	893	130	1.057×10^{3}	717	975
cloud pressure crb precision [hPa]	1.91 ± 6.96	14905822	1.11	0.473	$1.831 imes 10^{-4}$	1.530×10^{3}	0.277	1.38
cloud fraction crb [1]	0.525 ± 0.403	14905822	0.892	0.479	0.0	1.000	0.108	1.000
cloud fraction crb precision [1]	$(3.317 \pm 14.585) \times 10^{-4}$	14905822	$4.967 imes10^{-5}$	$9.823 imes 10^{-5}$	$4.215 imes 10^{-9}$	0.577	$5.033 imes10^{-5}$	$1.000 imes 10^{-4}$
scene albedo [1]	0.517 ± 0.322	14905822	0.580	0.535	-1.760×10^{-3}	3.59	0.226	0.807
scene albedo precision [1]	$(8.012 \pm 8.768) \times 10^{-5}$	14905822	$5.838 imes10^{-5}$	$5.466 imes 10^{-5}$	$1.060 imes 10^{-5}$	4.725×10^{-3}	3.372×10^{-5}	$9.210 imes 10^{-5}$
apparent scene pressure [hPa]	855 ± 161	14905822	199	912	130	1.056×10^{3}	778	977
apparent scene pressure precision [hPa]	0.734 ± 1.247	14905822	0.326	0.367	$6.674 imes10^{-2}$	67.3	0.283	0.609
chi square [1]	$(0.329 \pm 4.617) \times 10^5$	14905822	$3.555 imes 10^4$	$2.253 imes 10^4$	62.8	3.707×10^8	$7.989 imes 10^3$	$4.354 imes 10^4$
number of iterations [1]	3.63 ± 1.13	14905822	1.000	3.00	1.000	14.0	3.00	4.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(2.169 \pm 7.507) \times 10^{-9}$	14905822	6.603×10^{-9}	$1.932 imes 10^{-9}$	$-1.837 imes 10^{-6}$	2.447×10^{-6}	-1.040×10^{-9}	$5.563 imes 10^{-9}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(2.032 \pm 0.771) \times 10^{-9}$	14905822	$1.189 imes10^{-9}$	$2.051 imes 10^{-9}$	$4.486 imes 10^{-10}$	$5.824 imes 10^{-9}$	1.400×10^{-9}	$2.589 imes10^{-9}$
chi square fluorescence [1]	$(0.673 \pm 1.030) \times 10^5$	14905822	$5.572 imes 10^4$	$3.350 imes 10^4$	132	$3.698 imes 10^6$	$1.384 imes10^4$	$6.957 imes10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	14905822	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	14905822	0.0	50.0	44.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(3.369\pm 6.958) imes 10^{-3}$	14905822	4.696×10^{-3}	3.327×10^{-3}	-9.736×10^{-2}	8.973×10^{-2}	9.892×10^{-4}	5.686×10^{-3}

Table 4	4: Parameterlist and basic s	tatistics for	the analysis for	observations in	the southern herr	nisphere		
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.997 ± 0.029	8294311	0.0	1.000	0.350	1.000	1.000	1.000
cloud pressure crb [hPa]	783 ± 203	8294311	300	852	130	1.034×10^{3}	646	946
cloud pressure crb precision [hPa]	4.07 ± 13.34	8294311	2.26	0.929	$5.115 imes 10^{-2}$	1.350×10^{3}	0.475	2.73
cloud fraction crb [1]	0.327 ± 0.316	8294311	0.513	0.212	0.0	1.000	$4.795 imes10^{-2}$	0.561
cloud fraction crb precision [1]	$(1.028 \pm 1.495) \times 10^{-4}$	8294311	$6.824 imes 10^{-5}$	$7.121 imes 10^{-5}$	$1.942 imes 10^{-6}$	$5.527 imes 10^{-2}$	$4.106 imes10^{-5}$	$1.093 imes10^{-4}$
scene albedo [1]	0.300 ± 0.265	8294311	0.412	0.243	$-2.639 imes10^{-3}$	5.41	$6.064 imes10^{-2}$	0.473
scene albedo precision [1]	$(8.256 \pm 9.071) \times 10^{-5}$	8294311	$6.276 imes 10^{-5}$	$5.384 imes10^{-5}$	1.170×10^{-5}	$5.458 imes 10^{-3}$	$3.403 imes 10^{-5}$	$9.678 imes10^{-5}$
apparent scene pressure [hPa]	806 ± 193	8294311	270	871	130	1.034×10^3	690	960
apparent scene pressure precision [hPa]	1.81 ± 2.97	8294311	1.35	0.684	$7.761 imes10^{-2}$	60.4	0.431	1.78
chi square [1]	$(0.878 \pm 1.182) imes 10^4$	8294311	$1.146 imes 10^4$	5.749×10^{3}	52.5	1.479×10^{7}	1.522×10^{3}	$1.299 imes 10^4$
number of iterations [1]	2.98 ± 0.66	8294311	0.0	3.00	1.000	14.0	3.00	3.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(2.356 \pm 42.742) \times 10^{-10}$	8294311	$3.007 imes 10^{-9}$	$4.965 imes 10^{-10}$	$-4.682 imes 10^{-7}$	5.159×10^{-7}	$-1.013 imes 10^{-9}$	$1.994 imes 10^{-9}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.406 \pm 0.611) \times 10^{-9}$	8294311	$8.471 imes 10^{-10}$	$1.257 imes 10^{-9}$	5.402×10^{-10}	$5.718 imes10^{-9}$	$9.068 imes 10^{-10}$	$1.754 imes 10^{-9}$
chi square fluorescence [1]	$(0.408 \pm 0.846) \times 10^5$	8294311	3.232×10^4	9.428×10^3	92.0	$1.650 imes 10^6$	2.636×10^3	3.496×10^4
degrees of freedom fluorescence [1]	6.00 ± 0.00	8294311	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	8294311	0.0	50.0	48.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(3.357 \pm 11.322) \times 10^{-3}$	8294311	8.723×10^{-3}	3.435×10^{-3}	-0.199	0.150	-9.532×10^{-4}	7.770×10^{-3}

S

	Table 5: Parameterlist and	d basic statis	stics for the ana	lysis for observa	tions over water			
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75% percentile
qa value [1]	0.924 ± 0.167	15752547	0.0	1.000	0.350	1.000	1.000	1.000
cloud pressure crb [hPa]	822 ± 198	15752547	256	897	130	$1.035 imes 10^3$	719	975
cloud pressure crb precision [hPa]	2.88 ± 10.64	15752547	1.44	0.642	$1.831 imes 10^{-4}$	1.033×10^3	0.333	1.77
cloud fraction crb [1]	0.435 ± 0.378	15752547	0.749	0.330	0.0	1.000	$7.031 imes 10^{-2}$	0.820
cloud fraction crb precision [1]	$(2.465 \pm 11.250) \times 10^{-4}$	15752547	6.610×10^{-5}	6.599×10^{-5}	$2.450 imes 10^{-8}$	0.577	3.390×10^{-5}	$1.000 imes 10^{-4}$
scene albedo [1]	0.379 ± 0.323	15752547	0.605	0.301	$-2.639 imes 10^{-3}$	5.41	6.867×10^{-2}	0.673
scene albedo precision [1]	$(8.004 \pm 8.703) \times 10^{-5}$	15752547	$7.033 imes 10^{-5}$	$5.558 imes10^{-5}$	1.060×10^{-5}	$5.458 imes10^{-3}$	$2.813 imes10^{-5}$	$9.846 imes 10^{-5}$
apparent scene pressure [hPa]	841 ± 185	15752547	220	911	130	$1.035 imes 10^3$	760	980
apparent scene pressure precision [hPa]	1.46 ± 2.47	15752547	1.08	0.579	7.761×10^{-2}	67.3	0.342	1.42
chi square [1]	$(0.204 \pm 4.278) \times 10^5$	15752547	$2.280 imes 10^4$	$7.912 imes 10^3$	52.5	$3.707 imes 10^8$	2.100×10^{3}	$2.490 imes 10^4$
number of iterations [1]	3.21 ± 0.98	15752547	0.0	3.00	1.000	14.0	3.00	3.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(9.468 \pm 56.801) \times 10^{-10}$	15752547	4.179×10^{-9}	7.343×10^{-10}	-1.260×10^{-6}	$2.447 imes10^{-6}$	-1.082×10^{-9}	3.098×10^{-9}
fluorescence precision [mol s ⁻¹ m ⁻² nm ⁻¹ sr ⁻¹]	$(1.612\pm0.730)\times10^{-9}$	15752547	1.112×10^{-9}	1.446×10^{-9}	$4.486 imes 10^{-10}$	$5.787 imes10^{-9}$	$9.951 imes 10^{-10}$	2.107×10^{-9}
chi square fluorescence [1]	$(0.426 \pm 0.787) \times 10^5$	15752547	$4.227 imes 10^4$	$1.806 imes 10^4$	92.0	$3.698 imes 10^6$	4.568×10^{3}	$4.684 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	15752547	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	15752547	0.0	50.0	47.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(3.343 \pm 9.885) \times 10^{-3}$	15752547	6.528×10^{-3}	3.330×10^{-3}	-0.199	0.150	8.656×10^{-5}	6.614×10^{-3}

	Table 6: Parameterlist ar	nd basic sta	tistics for the an	alysis for obser	vations over land			
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.882 ± 0.214	5306139	0.0	1.000	0.350	1.000	1.000	1.000
cloud pressure crb [hPa]	778 ± 192	5306139	270	819	130	1.040×10^{3}	668	938
cloud pressure crb precision [hPa]	2.31 ± 7.69	5306139	1.58	0.618	$7.324 imes 10^{-4}$	1.530×10^{3}	0.290	1.87
cloud fraction crb [1]	0.492 ± 0.406	5306139	0.905	0.362	0.0	1.000	$9.458 imes 10^{-2}$	1.000
cloud fraction crb precision [1]	$(2.672 \pm 13.081) \times 10^{-4}$	5306139	3.776×10^{-5}	$1.000 imes10^{-4}$	$6.354 imes10^{-8}$	0.414	$7.627 imes 10^{-5}$	$1.140 imes10^{-4}$
scene albedo [1]	0.576 ± 0.271	5306139	0.486	0.536	$2.061 imes 10^{-2}$	3.59	0.335	0.821
scene albedo precision [1]	$(8.477 \pm 9.395) \times 10^{-5}$	5306139	$4.443 imes 10^{-5}$	$5.318 imes10^{-5}$	$1.237 imes 10^{-5}$	1.741×10^{-3}	$3.937 imes 10^{-5}$	$8.380 imes10^{-5}$
apparent scene pressure [hPa]	828 ± 147	5306139	208	864	130	1.040×10^3	740	949
apparent scene pressure precision [hPa]	0.390 ± 0.193	5306139	0.174	0.344	$6.674 imes10^{-2}$	6.91	0.273	0.447
chi square [1]	$(0.323 \pm 1.887) \times 10^5$	5306139	$2.626 imes 10^4$	$2.384 imes 10^4$	249	$1.739 imes 10^8$	$1.417 imes 10^4$	$4.043 imes 10^4$
number of iterations [1]	3.86 ± 1.03	5306139	1.000	4.00	1.000	14.0	3.00	4.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(2.432 \pm 7.620) \times 10^{-9}$	5306139	$7.038 imes10^{-9}$	$2.428 imes10^{-9}$	$-1.837 imes10^{-6}$	$1.542 imes 10^{-6}$	$-9.008 imes 10^{-10}$	6.137×10^{-9}
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(2.216\pm0.692)\times10^{-9}$	5306139	$9.546 imes 10^{-10}$	2.219×10^{-9}	$4.509 imes 10^{-10}$	5.810×10^{-9}	$1.740 imes10^{-9}$	2.694×10^{-9}
chi square fluorescence [1]	$(0.857 \pm 1.180) \times 10^5$	5306139	$8.406 imes 10^4$	$3.811 imes 10^4$	172	$1.708 imes10^{6}$	$1.658 imes 10^4$	1.006×10^5
degrees of freedom fluorescence [1]	6.00 ± 0.00	5306139	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	5306139	0.0	50.0	44.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(3.348\pm5.052) imes10^{-3}$	5306139	4.356×10^{-3}	3.346×10^{-3}	$-5.715 imes 10^{-2}$	$9.574 imes 10^{-2}$	1.175×10^{-3}	5.532×10^{-3}

Granule outlines

Figure 1: Outline of the granules.

4 Input data monitoring

Figure 2: Input data per granule

5 Warnings and errors

Figure 3: Fraction of pixels with specific warnings and errors during processing

6 World maps

Figure 4: Map of "Cloud pressure" for 2025-05-18 to 2025-05-19

Figure 5: Map of "Cloud fraction" for 2025-05-18 to 2025-05-19

Figure 6: Map of "Scene albedo" for 2025-05-18 to 2025-05-19

Figure 7: Map of "Apparent scene pressure" for 2025-05-18 to 2025-05-19

2025-05-18

Figure 8: Map of "Fluorescence" for 2025-05-18 to 2025-05-19

Figure 9: Map of the number of observations for 2025-05-18 to 2025-05-19

7 Zonal average

Figure 10: Zonal average of "QA value" for 2025-05-18 to 2025-05-19.

Figure 11: Zonal average of "Cloud pressure" for 2025-05-18 to 2025-05-19.

Figure 12: Zonal average of "Cloud pressure precision" for 2025-05-18 to 2025-05-19.

Figure 13: Zonal average of "Cloud fraction" for 2025-05-18 to 2025-05-19.

Figure 14: Zonal average of "Cloud fraction precision" for 2025-05-18 to 2025-05-19.

Figure 15: Zonal average of "Scene albedo" for 2025-05-18 to 2025-05-19.

Figure 16: Zonal average of "Scene albedo precision" for 2025-05-18 to 2025-05-19.

Figure 17: Zonal average of "Apparent scene pressure" for 2025-05-18 to 2025-05-19.

Figure 18: Zonal average of "Apparent scene pressure precision" for 2025-05-18 to 2025-05-19.

Figure 19: Zonal average of " χ^2 " for 2025-05-18 to 2025-05-19.

Figure 20: Zonal average of "Number of iterations" for 2025-05-18 to 2025-05-19.

Figure 21: Zonal average of "Fluorescence" for 2025-05-18 to 2025-05-19.

Figure 22: Zonal average of "Fluorescence precision" for 2025-05-18 to 2025-05-19.

Figure 23: Zonal average of " χ^2 of fluorescence retrieval" for 2025-05-18 to 2025-05-19.

Figure 24: Zonal average of "Degrees of freedom for signal of fluorescence retrieval" for 2025-05-18 to 2025-05-19.

Figure 25: Zonal average of "Number of points in the spectrum" for 2025-05-18 to 2025-05-19.

Figure 26: Zonal average of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-05-18 to 2025-05-19.

8 Histograms

The definitions of the parameters given in this section can be found in section 2.

Figure 27: Histogram of "QA value" for 2025-05-18 to 2025-05-19

Figure 28: Histogram of "Cloud pressure" for 2025-05-18 to 2025-05-19

Figure 29: Histogram of "Cloud pressure precision" for 2025-05-18 to 2025-05-19

Figure 30: Histogram of "Cloud fraction" for 2025-05-18 to 2025-05-19

Figure 31: Histogram of "Cloud fraction precision" for 2025-05-18 to 2025-05-19

Figure 32: Histogram of "Scene albedo" for 2025-05-18 to 2025-05-19

Figure 33: Histogram of "Scene albedo precision" for 2025-05-18 to 2025-05-19

Figure 34: Histogram of "Apparent scene pressure" for 2025-05-18 to 2025-05-19

Figure 35: Histogram of "Apparent scene pressure precision" for 2025-05-18 to 2025-05-19

Figure 36: Histogram of " χ^2 " for 2025-05-18 to 2025-05-19

Figure 37: Histogram of "Number of iterations" for 2025-05-18 to 2025-05-19

Figure 38: Histogram of "Fluorescence" for 2025-05-18 to 2025-05-19

Figure 39: Histogram of "Fluorescence precision" for 2025-05-18 to 2025-05-19

Figure 40: Histogram of " χ^2 of fluorescence retrieval" for 2025-05-18 to 2025-05-19

Figure 41: Histogram of "Degrees of freedom for signal of fluorescence retrieval" for 2025-05-18 to 2025-05-19

Figure 42: Histogram of "Number of points in the spectrum" for 2025-05-18 to 2025-05-19

Figure 43: Histogram of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-05-18 to 2025-05-19

9 Along track statistics

The TROPOMI instrument uses different binned detector rows for different viewing directions. In this section statistics are presented for each of the binned rows in the instrument.

Figure 44: Along track statistics of "QA value" for 2025-05-18 to 2025-05-19

Figure 45: Along track statistics of "Cloud pressure" for 2025-05-18 to 2025-05-19

Figure 46: Along track statistics of "Cloud pressure precision" for 2025-05-18 to 2025-05-19

Figure 47: Along track statistics of "Cloud fraction" for 2025-05-18 to 2025-05-19

Figure 48: Along track statistics of "Cloud fraction precision" for 2025-05-18 to 2025-05-19

Figure 49: Along track statistics of "Scene albedo" for 2025-05-18 to 2025-05-19

Figure 50: Along track statistics of "Scene albedo precision" for 2025-05-18 to 2025-05-19

Figure 51: Along track statistics of "Apparent scene pressure" for 2025-05-18 to 2025-05-19

Figure 52: Along track statistics of "Apparent scene pressure precision" for 2025-05-18 to 2025-05-19

Figure 53: Along track statistics of " χ^2 " for 2025-05-18 to 2025-05-19

Figure 54: Along track statistics of "Number of iterations" for 2025-05-18 to 2025-05-19

Figure 55: Along track statistics of "Fluorescence" for 2025-05-18 to 2025-05-19

Figure 56: Along track statistics of "Fluorescence precision" for 2025-05-18 to 2025-05-19

Figure 57: Along track statistics of " χ^2 of fluorescence retrieval" for 2025-05-18 to 2025-05-19

Figure 58: Along track statistics of "Degrees of freedom for signal of fluorescence retrieval" for 2025-05-18 to 2025-05-19

Figure 59: Along track statistics of "Number of points in the spectrum" for 2025-05-18 to 2025-05-19

Figure 60: Along track statistics of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-05-18 to 2025-05-19

10 Coincidence density

To investigate the relation between parameters scatter density plots are produced. These include some 'hidden' parameters, latitude and the solar- and viewing geometries, in addition to all configured parameters. All combinations of pairs of parameters are included *once*, in one direction alone.

Contents

1	Short Introduction	1
	1.1 The list of parameters	1
2	Definitions	1
3	Granule outlines	8
4	Input data monitoring	9
5	Warnings and errors	10
6	World maps	11
7	Zonal average	17
8	Histograms	34
9	Along track statistics	51
10	Coincidence density	68
11	Copyright information of 'PyCAMA'	68

List of Figures

1	Outline of the granules.	8
2	Input data per granule	9
3	Fraction of pixels with specific warnings and errors during processing	10
4	Map of "Cloud pressure" for 2025-05-18 to 2025-05-19	11
5	Map of "Cloud fraction" for 2025-05-18 to 2025-05-19	12
6	Map of "Scene albedo" for 2025-05-18 to 2025-05-19	13
7	Map of "Apparent scene pressure" for 2025-05-18 to 2025-05-19	14
8	Map of "Fluorescence" for 2025-05-18 to 2025-05-19	15
9	Map of the number of observations for 2025-05-18 to 2025-05-19	16
10	Zonal average of "QA value" for 2025-05-18 to 2025-05-19.	17
11	Zonal average of "Cloud pressure" for 2025-05-18 to 2025-05-19.	18
12	Zonal average of "Cloud pressure precision" for 2025-05-18 to 2025-05-19.	19
13	Zonal average of "Cloud fraction" for 2025-05-18 to 2025-05-19.	20
14	Zonal average of "Cloud fraction precision" for 2025-05-18 to 2025-05-19.	21
15	Zonal average of "Scene albedo" for 2025-05-18 to 2025-05-19.	22
16	Zonal average of "Scene albedo precision" for 2025-05-18 to 2025-05-19.	23
17	Zonal average of "Apparent scene pressure" for 2025-05-18 to 2025-05-19.	24
18	Zonal average of "Apparent scene pressure precision" for 2025-05-18 to 2025-05-19.	25
19	Zonal average of " χ^2 " for 2025-05-18 to 2025-05-19	26
20	Zonal average of "Number of iterations" for 2025-05-18 to 2025-05-19.	27
21	Zonal average of "Fluorescence" for 2025-05-18 to 2025-05-19.	28
22	Zonal average of "Fluorescence precision" for 2025-05-18 to 2025-05-19.	29
23	Zonal average of " χ^2 of fluorescence retrieval" for 2025-05-18 to 2025-05-19	30
24	Zonal average of "Degrees of freedom for signal of fluorescence retrieval" for 2025-05-18 to 2025-05-19.	31
25	Zonal average of "Number of points in the spectrum" for 2025-05-18 to 2025-05-19.	32
26	Zonal average of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-05-18 to 2025-05-19	33
27	Histogram of "QA value" for 2025-05-18 to 2025-05-19	34
28	Histogram of "Cloud pressure" for 2025-05-18 to 2025-05-19	35
29	Histogram of "Cloud pressure precision" for 2025-05-18 to 2025-05-19	36

30	Histogram of "Cloud fraction" for 2025-05-18 to 2025-05-19	37
31	Histogram of "Cloud fraction precision" for 2025-05-18 to 2025-05-19	38
32	Histogram of "Scene albedo" for 2025-05-18 to 2025-05-19	39
33	Histogram of "Scene albedo precision" for 2025-05-18 to 2025-05-19	40
34	Histogram of "Apparent scene pressure" for 2025-05-18 to 2025-05-19	41
35	Histogram of "Apparent scene pressure precision" for 2025-05-18 to 2025-05-19	42
36	Histogram of " χ^2 " for 2025-05-18 to 2025-05-19	43
37	Histogram of "Number of iterations" for 2025-05-18 to 2025-05-19	44
38	Histogram of "Fluorescence" for 2025-05-18 to 2025-05-19	45
39	Histogram of "Fluorescence precision" for 2025-05-18 to 2025-05-19	46
40	Histogram of " χ^2 of fluorescence retrieval" for 2025-05-18 to 2025-05-19	47
41	Histogram of "Degrees of freedom for signal of fluorescence retrieval" for 2025-05-18 to 2025-05-19	48
42	Histogram of "Number of points in the spectrum" for 2025-05-18 to 2025-05-19	49
43	Histogram of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-05-18 to 2025-05-19	50
44	Along track statistics of "QA value" for 2025-05-18 to 2025-05-19	51
45	Along track statistics of "Cloud pressure" for 2025-05-18 to 2025-05-19	52
46	Along track statistics of "Cloud pressure precision" for 2025-05-18 to 2025-05-19	53
47	Along track statistics of "Cloud fraction" for 2025-05-18 to 2025-05-19	54
48	Along track statistics of "Cloud fraction precision" for 2025-05-18 to 2025-05-19	55
49	Along track statistics of "Scene albedo" for 2025-05-18 to 2025-05-19	56
50	Along track statistics of "Scene albedo precision" for 2025-05-18 to 2025-05-19	57
51	Along track statistics of "Apparent scene pressure" for 2025-05-18 to 2025-05-19	58
52	Along track statistics of "Apparent scene pressure precision" for 2025-05-18 to 2025-05-19	59
53	Along track statistics of " χ^2 " for 2025-05-18 to 2025-05-19	60
54	Along track statistics of "Number of iterations" for 2025-05-18 to 2025-05-19	61
55	Along track statistics of "Fluorescence" for 2025-05-18 to 2025-05-19	62
56	Along track statistics of "Fluorescence precision" for 2025-05-18 to 2025-05-19	63
57	Along track statistics of " χ^2 of fluorescence retrieval" for 2025-05-18 to 2025-05-19	64
58	Along track statistics of "Degrees of freedom for signal of fluorescence retrieval" for 2025-05-18 to 2025-05-19	65
59	Along track statistics of "Number of points in the spectrum" for 2025-05-18 to 2025-05-19	66
60	Along track statistics of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-05-18 to 2025-05-19	67

List of Tables

1	Parameterlist and basic statistics for the analysis
2	Percentile ranges
3	Parameterlist and basic statistics for the analysis for observations in the northern hemisphere
4	Parameterlist and basic statistics for the analysis for observations in the southern hemisphere
5	Parameterlist and basic statistics for the analysis for observations over water
6	Parameterlist and basic statistics for the analysis for observations over land

11 Copyright information of 'PyCAMA'

Copyright © 2005-2023, Maarten Sneep (KNMI).

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
- 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

This software is provided by the copyright holders and contributors "as is" and any express or implied warranties, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose are disclaimed. In no event shall the copyright holder or contributors be liable for any direct, indirect, incidental, special, exemplary, or consequential damages (including, but not limited to, procurement of substitute goods or services; loss of use, data, or profits; or business interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence or otherwise) arising in any way out of the use of this software, even if advised of the possibility of such damage.

Maarten Sneep (maarten.sneep@knmi.nl).