PyCAMA report generated by tropl2-proc

tropl2-proc

2025-05-26 (03:53)

1 Short Introduction

1.1 The list of parameters

You may want to keep the list given in table 1 at hand when viewing the results.

2 Definitions

The averages shown here are unweighed averages:

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i \tag{1}$$

with N the number of observations in the dataset.

The spread of the measurements is indicated with the variance V(x), or rather the standard deviation $\sigma(x) = \sqrt{V(x)}$.

$$V(x) = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2$$
(2)

We also report the more robust statistics median, minimum, maximum, various percentiles and inter quartile range.

The median m is the value of parameter x for which half of the observations of x is smaller than m:

$$P(x \le m) = P(x \ge m) = \int_{-\infty}^{m} f(x) \, \mathrm{d}x = \frac{1}{2}$$
(3)

with f(x) the probability density function.

The median is a special case of a percentile. Instead of $\frac{1}{2}$ in equation 3, other threshold values can be used. We report results for 1%, 5%, 10%, 15.9%, 25%, 75%, 84.1%, 90%, 95% and 99%. The inter quartile range is the difference between the 75% and 25% percentiles. Similarly the minimum and maximum values correspond to the 0% and 100% percentiles respectively.

For normally distributed parameters the mean and median are the same, while the $\mu \pm \sigma$ values and the 15.9% and 84.1% percentiles coincide.

To get a measure for the relation of one variable $x_{(k)}$ with another $x_{(l)}$, we calculate the covariance matrix C_{kl} .

$$C_{kl} = C(x_{(k)}, x_{(l)}) = \frac{1}{N-1} \sum_{i=1}^{N} (x_{(k),i} - \overline{x_{(k)}}) (x_{(l),i} - \overline{x_{(l)}})$$
(4)

Rather than a dimensionally dependent covariance, it is often easier to interpret a correlation matrix R_{kl} , a matrix of Pearson's *r* coefficients:

$$R_{kl} = R(x_{(k)}, x_{(l)}) = \frac{C_{kl}}{\sqrt{C_{kk}C_{ll}}} = \frac{C_{kl}}{\sqrt{V(x_k)V(x_l)}}$$
(5)

The diagonal elements of the covariance matrix are the variances of the elements, $V(x_{(k)}) = C_{kk}$ and obviously $R_{kk} = 1$.

Table 1: Parameterlist and	basic statistics	for the anal	ysi
----------------------------	------------------	--------------	-----

	Table 1: Parameterl	ist and basic s	statistics for the ar	nalysis			
Variable	mean $\pm \sigma$	Count	Mode	IQR	Median	Minimum	Maximum
qa value [1]	0.941 ± 0.152	23324560	0.995	0.0	1.000	0.350	1.000
cloud pressure crb [hPa]	795 ± 204	23324560	$1.015 imes 10^3$	288	868	130	1.060×10^3
cloud pressure crb precision [hPa]	2.72 ± 10.21	23324560	0.750	1.44	0.651	$9.766 imes10^{-4}$	1.556×10^{3}
cloud fraction crb [1]	0.448 ± 0.378	23324560	0.996	0.769	0.348	0.0	1.000
cloud fraction crb precision [1]	$(2.309 \pm 11.978) \times 10^{-4}$	23324560	$2.500 imes10^{-4}$	$5.620 imes10^{-5}$	$8.458 imes10^{-5}$	$3.120 imes 10^{-8}$	0.264
scene albedo [1]	0.441 ± 0.313	23324560	$1.500 imes10^{-2}$	0.556	0.403	-3.648×10^{-3}	6.89
scene albedo precision [1]	$(8.275 \pm 9.179) \times 10^{-5}$	23324560	$2.500 imes10^{-4}$	$6.026 imes10^{-5}$	$5.430 imes 10^{-5}$	1.065×10^{-5}	5.722×10^{-3}
apparent scene pressure [hPa]	828 ± 180	23324560	1.008×10^3	230	891	130	$1.058 imes 10^3$
apparent scene pressure precision [hPa]	1.08 ± 2.08	23324560	0.500	0.545	0.443	0.162	65.8
chi square [1]	$(0.239 \pm 3.607) \times 10^5$	23324560	0.150	$2.661 imes 10^4$	$1.338 imes 10^4$	42.2	$2.738 imes 10^8$
number of iterations [1]	3.38 ± 1.04	23324560	3.23	1.000	3.00	1.000	14.0
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.396 \pm 6.748) \times 10^{-9}$	23324560	$7.500 imes 10^{-10}$	$5.051 imes10^{-9}$	$1.132 imes 10^{-9}$	$-2.203 imes10^{-6}$	$1.676 imes 10^{-6}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.817 \pm 0.773) \times 10^{-9}$	23324560	$8.500 imes 10^{-10}$	$1.204 imes10^{-9}$	$1.750 imes 10^{-9}$	$4.175 imes 10^{-10}$	5.792×10^{-9}
chi square fluorescence [1]	$(0.594 \pm 1.001) \times 10^5$	23324560	750	$5.595 imes 10^4$	2.472×10^4	94.7	$2.550 imes 10^6$
degrees of freedom fluorescence [1]	6.00 ± 0.00	23324560	5.95	0.0	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	23324560	49.7	0.0	50.0	46.0	50.0
wavelength calibration offset [nm]	$(3.490 \pm 8.757) \times 10^{-3}$	23324560	3.600×10^{-3}	5.905×10^{-3}	3.454×10^{-3}	-0.217	0.174

			Table 2:	Percentile rang	jes					
Variable	1 %	5 %	10 %	15.9 %	25 %	75 %	84.1 %	90%	95 %	99 %
qa value [1]	0.500	0.500	0.700	0.900	1.000	1.000	1.000	1.000	1.000	1.000
cloud pressure crb [hPa]	255	379	462	550	670	957	983	1.001×10^3	1.011×10^{3}	1.021×10^3
cloud pressure crb precision [hPa]	0.128	0.230	0.253	0.278	0.329	1.76	3.05	5.13	10.3	34.5
cloud fraction crb [1]	$3.071 imes 10^{-4}$	$9.905 imes10^{-3}$	$2.230 imes10^{-2}$	$4.196 imes 10^{-2}$	$8.380 imes10^{-2}$	0.853	1.000	1.000	1.000	1.000
cloud fraction crb precision [1]	$2.087 imes10^{-5}$	$2.445 imes 10^{-5}$	$2.825 imes 10^{-5}$	3.469×10^{-5}	$4.859 imes 10^{-5}$	$1.048 imes 10^{-4}$	$1.739 imes 10^{-4}$	$3.201 imes 10^{-4}$	$6.987 imes10^{-4}$	3.131×10^{-3}
scene albedo [1]	$7.926 imes 10^{-3}$	$1.960 imes 10^{-2}$	$3.770 imes 10^{-2}$	$7.123 imes 10^{-2}$	0.159	0.715	0.818	0.876	0.939	1.06
scene albedo precision [1]	1.345×10^{-5}	1.644×10^{-5}	$2.108 imes 10^{-5}$	2.723×10^{-5}	3.429×10^{-5}	9.454×10^{-5}	1.252×10^{-4}	1.659×10^{-4}	$2.482 imes 10^{-4}$	4.800×10^{-4}
apparent scene pressure [hPa]	334	440	533	626	736	965	988	1.003×10^{3}	1.012×10^{3}	1.022×10^{3}
apparent scene pressure precision [hPa]	0.213	0.239	0.257	0.277	0.310	0.855	1.42	2.30	4.17	10.6
chi square [1]	203	498	1.058×10^{3}	2.005×10^{3}	4.124×10^{3}	3.073×10^{4}	4.224×10^{4}	5.338×10^4	6.555×10^{4}	8.544×10^{4}
number of iterations [1]	2.00	2.00	2.00	3.00	3.00	4.00	4.00	5.00	5.00	6.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	-1.491×10^{-8}	-7.143×10^{-9}	-4.194×10^{-9}	-2.517×10^{-9}	-1.050×10^{-9}	4.002×10^{-9}	$5.969 imes 10^{-9}$	$7.847 imes 10^{-9}$	$1.046 imes 10^{-8}$	1.606×10^{-8}
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$6.821 imes 10^{-10}$	7.939×10^{-10}	8.728×10^{-10}	9.648×10^{-10}	1.137×10^{-9}	2.341×10^{-9}	2.662×10^{-9}	2.838×10^{-9}	3.183×10^{-9}	3.831×10^{-9}
chi square fluorescence [1]	382	1.001×10^{3}	2.098×10^{3}	3.812×10^{3}	7.502×10^{3}	6.345×10^{4}	1.013×10^{5}	1.534×10^{5}	2.509×10^{5}	4.994×10^{5}
degrees of freedom fluorescence [1]	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$-2.495 imes 10^{-2}$	-9.366×10^{-3}	-4.217×10^{-3}	-1.551×10^{-3}	5.478×10^{-4}	6.453×10^{-3}	8.632×10^{-3}	1.136×10^{-2}	1.652×10^{-2}	3.145×10^{-2}

Table 3	8: Parameterlist and basic s	tatistics for	the analysis for	observations in	the northern hen	nisphere		
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.911 ± 0.180	15193506	0.1000	1.000	0.350	1.000	0.900	1.000
cloud pressure crb [hPa]	803 ± 201	15193506	275	874	130	1.060×10^{3}	688	963
cloud pressure crb precision [hPa]	1.97 ± 7.72	15193506	1.11	0.515	$9.766 imes 10^{-4}$	1.548×10^{3}	0.290	1.39
cloud fraction crb [1]	0.512 ± 0.392	15193506	0.887	0.456	0.0	1.000	0.113	1.000
cloud fraction crb precision [1]	$(2.990 \pm 14.756) \times 10^{-4}$	15193506	$4.820 imes 10^{-5}$	9.762×10^{-5}	$3.120 imes 10^{-8}$	0.264	$5.196 imes 10^{-5}$	$1.002 imes 10^{-4}$
scene albedo [1]	0.515 ± 0.311	15193506	0.552	0.521	$-2.074 imes 10^{-3}$	3.43	0.244	0.795
scene albedo precision [1]	$(8.210 \pm 9.083) \times 10^{-5}$	15193506	$5.900 imes 10^{-5}$	$5.401 imes 10^{-5}$	$1.065 imes10^{-5}$	$1.930 imes 10^{-3}$	$3.394 imes10^{-5}$	$9.294 imes10^{-5}$
apparent scene pressure [hPa]	841 ± 167	15193506	211	898	130	1.058×10^3	757	968
apparent scene pressure precision [hPa]	0.669 ± 1.067	15193506	0.309	0.372	0.163	58.2	0.285	0.595
chi square [1]	$(0.320 \pm 4.466) \times 10^5$	15193506	$3.289 imes 10^4$	2.122×10^4	77.4	$2.738 imes 10^8$	$8.154 imes 10^3$	$4.104 imes10^4$
number of iterations [1]	3.59 ± 1.15	15193506	1.000	3.00	1.000	14.0	3.00	4.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(2.032 \pm 7.662) \times 10^{-9}$	15193506	$6.397 imes10^{-9}$	$1.845 imes 10^{-9}$	$-2.203 imes10^{-6}$	$1.676 imes10^{-6}$	$-1.065 imes 10^{-9}$	$5.332 imes 10^{-9}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(2.036 \pm 0.763) \times 10^{-9}$	15193506	1.167×10^{-9}	$2.044 imes 10^{-9}$	$4.175 imes 10^{-10}$	$5.792 imes 10^{-9}$	$1.422 imes 10^{-9}$	$2.589 imes10^{-9}$
chi square fluorescence [1]	$(0.689 \pm 1.057) \times 10^5$	15193506	$6.029 imes 10^4$	$3.384 imes 10^4$	116	$2.550 imes 10^6$	$1.408 imes 10^4$	$7.437 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	15193506	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	15193506	0.0	50.0	46.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(3.502 \pm 7.079) \times 10^{-3}$	15193506	4.973×10^{-3}	3.431×10^{-3}	-7.901×10^{-2}	9.282×10^{-2}	$9.842 imes 10^{-4}$	5.958×10^{-3}

Table 4	4: Parameterlist and basic s	tatistics for	the analysis for	observations in	the southern hem	nisphere		
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.997 ± 0.026	8131054	0.0	1.000	0.350	1.000	1.000	1.000
cloud pressure crb [hPa]	779 ± 209	8131054	322	859	130	1.035×10^3	623	945
cloud pressure crb precision [hPa]	4.12 ± 13.58	8131054	2.31	0.940	$2.527 imes 10^{-2}$	1.556×10^{3}	0.472	2.78
cloud fraction crb [1]	0.330 ± 0.318	8131054	0.519	0.216	0.0	1.000	$4.769 imes 10^{-2}$	0.567
cloud fraction crb precision [1]	$(1.037 \pm 1.504) \times 10^{-4}$	8131054	$6.746 imes 10^{-5}$	$7.381 imes10^{-5}$	$2.603 imes 10^{-6}$	8.420×10^{-2}	4.239×10^{-5}	1.099×10^{-4}
scene albedo [1]	0.302 ± 0.265	8131054	0.415	0.248	-3.648×10^{-3}	6.89	$6.095 imes 10^{-2}$	0.476
scene albedo precision [1]	$(8.397 \pm 9.355) \times 10^{-5}$	8131054	$6.298 imes10^{-5}$	$5.491 imes10^{-5}$	1.164×10^{-5}	5.722×10^{-3}	$3.495 imes 10^{-5}$	$9.792 imes10^{-5}$
apparent scene pressure [hPa]	803 ± 199	8131054	287	879	130	$1.035 imes 10^3$	672	959
apparent scene pressure precision [hPa]	1.84 ± 3.06	8131054	1.36	0.694	0.162	65.8	0.428	1.79
chi square [1]	$(0.861 \pm 0.953) imes 10^4$	8131054	$1.105 imes 10^4$	5.632×10^{3}	42.2	$1.454 imes 10^6$	1.489×10^{3}	1.254×10^4
number of iterations [1]	2.98 ± 0.66	8131054	0.0	3.00	1.000	14.0	3.00	3.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(2.078 \pm 43.314) \times 10^{-10}$	8131054	$3.007 imes 10^{-9}$	$4.833 imes 10^{-10}$	$-1.273 imes 10^{-6}$	$1.287 imes10^{-6}$	-1.031×10^{-9}	$1.976 imes10^{-9}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.409 \pm 0.609) \times 10^{-9}$	8131054	8.542×10^{-10}	$1.259 imes 10^{-9}$	$5.393 imes 10^{-10}$	$5.226 imes 10^{-9}$	$9.073 imes 10^{-10}$	$1.762 imes10^{-9}$
chi square fluorescence [1]	$(0.418 \pm 0.859) \times 10^5$	8131054	3.294×10^4	9.464×10^{3}	94.7	$2.000 imes 10^6$	2.608×10^{3}	3.555×10^4
degrees of freedom fluorescence [1]	6.00 ± 0.00	8131054	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	8131054	0.0	50.0	47.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(3.466 \pm 11.241) \times 10^{-3}$	8131054	8.476×10^{-3}	3.526×10^{-3}	-0.217	0.174	-6.991×10^{-4}	7.777×10^{-3}

S

	Table 5: Parameterlist and	d basic statis	tics for the ana	lysis for observa	tions over water			
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.948 ± 0.137	15729770	0.0	1.000	0.350	1.000	1.000	1.000
cloud pressure crb [hPa]	809 ± 203	15729770	275	889	130	1.059×10^{3}	691	965
cloud pressure crb precision [hPa]	2.71 ± 10.42	15729770	1.27	0.627	1.526×10^{-3}	1.556×10^{3}	0.338	1.61
cloud fraction crb [1]	0.442 ± 0.368	15729770	0.715	0.361	0.0	1.000	8.245×10^{-2}	0.797
cloud fraction crb precision [1]	$(2.193 \pm 12.106) \times 10^{-4}$	15729770	6.368×10^{-5}	6.830×10^{-5}	3.120×10^{-8}	0.246	3.632×10^{-5}	$1.000 imes 10^{-4}$
scene albedo [1]	0.393 ± 0.321	15729770	0.601	0.337	-3.648×10^{-3}	6.89	$7.976 imes 10^{-2}$	0.680
scene albedo precision [1]	$(8.185 \pm 9.026) \times 10^{-5}$	15729770	$6.850 imes 10^{-5}$	$5.621 imes 10^{-5}$	$1.065 imes 10^{-5}$	5.722×10^{-3}	$2.980 imes 10^{-5}$	$9.829 imes10^{-5}$
apparent scene pressure [hPa]	831 ± 189	15729770	235	903	130	1.042×10^{3}	739	974
apparent scene pressure precision [hPa]	1.39 ± 2.46	15729770	0.939	0.545	0.162	65.8	0.331	1.27
chi square [1]	$(0.184 \pm 1.445) \times 10^5$	15729770	2.329×10^4	8.489×10^{3}	42.2	2.511×10^{8}	2.400×10^{3}	2.570×10^{4}
number of iterations [1]	3.17 ± 0.96	15729770	0.0	3.00	1.000	14.0	3.00	3.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(9.496 \pm 56.094) \times 10^{-10}$	15729770	4.269×10^{-9}	$7.818 imes 10^{-10}$	$-2.203 imes 10^{-6}$	$1.676 imes 10^{-6}$	-1.103×10^{-9}	3.166×10^{-9}
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.656 \pm 0.744) \times 10^{-9}$	15729770	$1.165 imes 10^{-9}$	1.502×10^{-9}	4.569×10^{-10}	5.792×10^{-9}	1.013×10^{-9}	2.177×10^{-9}
chi square fluorescence [1]	$(0.453 \pm 0.854) \times 10^5$	15729770	4.356×10^4	1.882×10^4	94.7	2.499×10^{6}	5.256×10^{3}	$4.881 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	15729770	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	15729770	0.0	50.0	47.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(3.442 \pm 9.843) \times 10^{-3}$	15729770	6.572×10^{-3}	3.406×10^{-3}	-0.217	0.174	1.761×10^{-4}	6.748×10^{-3}

Table 6:	Parameterlist and	basic statistics	for the analysis	for observations over 1	and
	i arameternst and	basic statistics	for the analysis	101 00servations over 1	anu

Variable	$ $ mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.912 ± 0.191	5420650	0.0	1.000	0.350	1.000	1.000	1.000
cloud pressure crb [hPa]	765 ± 202	5420650	284	815	130	1.031×10^3	649	933
cloud pressure crb precision [hPa]	2.82 ± 9.76	5420650	1.88	0.792	$1.953 imes 10^{-3}$	1.548×10^3	0.308	2.19
cloud fraction crb [1]	0.457 ± 0.403	5420650	0.920	0.291	0.0	1.000	$8.007 imes 10^{-2}$	1.000
cloud fraction crb precision [1]	$(2.651 \pm 11.769) \times 10^{-4}$	5420650	$5.011 imes 10^{-5}$	$1.000 imes 10^{-4}$	$5.221 imes 10^{-7}$	0.210	$7.415 imes 10^{-5}$	$1.243 imes10^{-4}$
scene albedo [1]	0.546 ± 0.271	5420650	0.478	0.494	2.009×10^{-3}	3.20	0.308	0.786
scene albedo precision [1]	$(8.616 \pm 9.562) \times 10^{-5}$	5420650	$4.750 imes 10^{-5}$	$5.156 imes10^{-5}$	$1.154 imes10^{-5}$	$1.764 imes 10^{-3}$	$3.858 imes10^{-5}$	$8.608 imes10^{-5}$
apparent scene pressure [hPa]	822 ± 153	5420650	212	863	130	1.042×10^{3}	733	945
apparent scene pressure precision [hPa]	0.424 ± 0.256	5420650	0.196	0.364	0.168	12.9	0.282	0.478
chi square [1]	$(0.328 \pm 4.684) \times 10^5$	5420650	2.451×10^4	$2.126 imes 10^4$	189	$2.738 imes 10^8$	1.232×10^4	$3.684 imes 10^4$
number of iterations [1]	3.86 ± 1.09	5420650	1.000	4.00	1.000	14.0	3.00	4.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(2.191 \pm 8.151) \times 10^{-9}$	5420650	$6.575 imes 10^{-9}$	$2.094 imes 10^{-9}$	$-1.565 imes 10^{-6}$	1.600×10^{-6}	$-9.440 imes 10^{-10}$	5.631×10^{-9}
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(2.142 \pm 0.708) \times 10^{-9}$	5420650	$1.006 imes 10^{-9}$	$2.137 imes 10^{-9}$	$4.175 imes 10^{-10}$	$5.776 imes 10^{-9}$	$1.645 imes 10^{-9}$	$2.650 imes 10^{-9}$
chi square fluorescence [1]	$(0.841 \pm 1.133) \times 10^5$	5420650	$8.877 imes10^4$	3.844×10^4	130	$2.283 imes10^{6}$	$1.482 imes 10^4$	$1.036 imes 10^5$
degrees of freedom fluorescence [1]	6.00 ± 0.00	5420650	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	5420650	0.0	50.0	46.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(3.522\pm5.251)\times10^{-3}$	5420650	4.589×10^{-3}	3.483×10^{-3}	-5.796×10^{-2}	0.117	1.221×10^{-3}	5.811×10^{-3}

Granule outlines

Figure 1: Outline of the granules.

4 Input data monitoring

Figure 2: Input data per granule

5 Warnings and errors

Figure 3: Fraction of pixels with specific warnings and errors during processing

6 World maps

Figure 4: Map of "Cloud pressure" for 2025-05-24 to 2025-05-24

Figure 5: Map of "Cloud fraction" for 2025-05-24 to 2025-05-24

Figure 6: Map of "Scene albedo" for 2025-05-24 to 2025-05-24

Figure 7: Map of "Apparent scene pressure" for 2025-05-24 to 2025-05-24

2025-05-24

Figure 8: Map of "Fluorescence" for 2025-05-24 to 2025-05-24

Figure 9: Map of the number of observations for 2025-05-24 to 2025-05-24

7 Zonal average

Figure 10: Zonal average of "QA value" for 2025-05-24 to 2025-05-24.

Figure 11: Zonal average of "Cloud pressure" for 2025-05-24 to 2025-05-24.

Figure 12: Zonal average of "Cloud pressure precision" for 2025-05-24 to 2025-05-24.

Figure 13: Zonal average of "Cloud fraction" for 2025-05-24 to 2025-05-24.

Figure 14: Zonal average of "Cloud fraction precision" for 2025-05-24 to 2025-05-24.

Figure 15: Zonal average of "Scene albedo" for 2025-05-24 to 2025-05-24.

Figure 16: Zonal average of "Scene albedo precision" for 2025-05-24 to 2025-05-24.

Figure 17: Zonal average of "Apparent scene pressure" for 2025-05-24 to 2025-05-24.

Figure 18: Zonal average of "Apparent scene pressure precision" for 2025-05-24 to 2025-05-24.

Figure 19: Zonal average of " χ^2 " for 2025-05-24 to 2025-05-24.

Figure 20: Zonal average of "Number of iterations" for 2025-05-24 to 2025-05-24.

Figure 21: Zonal average of "Fluorescence" for 2025-05-24 to 2025-05-24.

Figure 22: Zonal average of "Fluorescence precision" for 2025-05-24 to 2025-05-24.

Figure 23: Zonal average of " χ^2 of fluorescence retrieval" for 2025-05-24 to 2025-05-24.

Figure 24: Zonal average of "Degrees of freedom for signal of fluorescence retrieval" for 2025-05-24 to 2025-05-24.

Figure 25: Zonal average of "Number of points in the spectrum" for 2025-05-24 to 2025-05-24.

Figure 26: Zonal average of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-05-24 to 2025-05-24.

8 Histograms

The definitions of the parameters given in this section can be found in section 2.

Figure 27: Histogram of "QA value" for 2025-05-24 to 2025-05-24

Figure 28: Histogram of "Cloud pressure" for 2025-05-24 to 2025-05-24

Figure 29: Histogram of "Cloud pressure precision" for 2025-05-24 to 2025-05-24

Figure 30: Histogram of "Cloud fraction" for 2025-05-24 to 2025-05-24

Figure 31: Histogram of "Cloud fraction precision" for 2025-05-24 to 2025-05-24

Figure 32: Histogram of "Scene albedo" for 2025-05-24 to 2025-05-24

Figure 33: Histogram of "Scene albedo precision" for 2025-05-24 to 2025-05-24

Figure 34: Histogram of "Apparent scene pressure" for 2025-05-24 to 2025-05-24

Figure 35: Histogram of "Apparent scene pressure precision" for 2025-05-24 to 2025-05-24

Figure 36: Histogram of " χ^2 " for 2025-05-24 to 2025-05-24

Figure 37: Histogram of "Number of iterations" for 2025-05-24 to 2025-05-24

Figure 38: Histogram of "Fluorescence" for 2025-05-24 to 2025-05-24

Figure 39: Histogram of "Fluorescence precision" for 2025-05-24 to 2025-05-24

Figure 40: Histogram of " χ^2 of fluorescence retrieval" for 2025-05-24 to 2025-05-24

Figure 41: Histogram of "Degrees of freedom for signal of fluorescence retrieval" for 2025-05-24 to 2025-05-24

Figure 42: Histogram of "Number of points in the spectrum" for 2025-05-24 to 2025-05-24

Figure 43: Histogram of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-05-24 to 2025-05-24

9 Along track statistics

The TROPOMI instrument uses different binned detector rows for different viewing directions. In this section statistics are presented for each of the binned rows in the instrument.

Figure 44: Along track statistics of "QA value" for 2025-05-24 to 2025-05-24

Figure 45: Along track statistics of "Cloud pressure" for 2025-05-24 to 2025-05-24

Figure 46: Along track statistics of "Cloud pressure precision" for 2025-05-24 to 2025-05-24

Figure 47: Along track statistics of "Cloud fraction" for 2025-05-24 to 2025-05-24

Figure 48: Along track statistics of "Cloud fraction precision" for 2025-05-24 to 2025-05-24

Figure 49: Along track statistics of "Scene albedo" for 2025-05-24 to 2025-05-24

Figure 50: Along track statistics of "Scene albedo precision" for 2025-05-24 to 2025-05-24

Figure 51: Along track statistics of "Apparent scene pressure" for 2025-05-24 to 2025-05-24

Figure 52: Along track statistics of "Apparent scene pressure precision" for 2025-05-24 to 2025-05-24

Figure 53: Along track statistics of " χ^2 " for 2025-05-24 to 2025-05-24

Figure 54: Along track statistics of "Number of iterations" for 2025-05-24 to 2025-05-24

Figure 55: Along track statistics of "Fluorescence" for 2025-05-24 to 2025-05-24

Figure 56: Along track statistics of "Fluorescence precision" for 2025-05-24 to 2025-05-24

Figure 57: Along track statistics of " χ^2 of fluorescence retrieval" for 2025-05-24 to 2025-05-24

Figure 58: Along track statistics of "Degrees of freedom for signal of fluorescence retrieval" for 2025-05-24 to 2025-05-24

Figure 59: Along track statistics of "Number of points in the spectrum" for 2025-05-24 to 2025-05-24

Figure 60: Along track statistics of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-05-24 to 2025-05-24

10 Coincidence density

To investigate the relation between parameters scatter density plots are produced. These include some 'hidden' parameters, latitude and the solar- and viewing geometries, in addition to all configured parameters. All combinations of pairs of parameters are included *once*, in one direction alone.

Contents

1	Short Introduction	1
	1.1 The list of parameters	1
2	Definitions	1
3	Granule outlines	8
4	Input data monitoring	9
5	Warnings and errors	10
6	World maps	11
7	Zonal average	17
8	Histograms	34
9	Along track statistics	51
10	Coincidence density	68
11	Copyright information of 'PyCAMA'	68

List of Figures

1	Outline of the granules.	8
2	Input data per granule	9
3	Fraction of pixels with specific warnings and errors during processing	10
4	Map of "Cloud pressure" for 2025-05-24 to 2025-05-24	11
5	Map of "Cloud fraction" for 2025-05-24 to 2025-05-24	12
6	Map of "Scene albedo" for 2025-05-24 to 2025-05-24	13
7	Map of "Apparent scene pressure" for 2025-05-24 to 2025-05-24	14
8	Map of "Fluorescence" for 2025-05-24 to 2025-05-24	15
9	Map of the number of observations for 2025-05-24 to 2025-05-24	16
10	Zonal average of "QA value" for 2025-05-24 to 2025-05-24.	17
11	Zonal average of "Cloud pressure" for 2025-05-24 to 2025-05-24.	18
12	Zonal average of "Cloud pressure precision" for 2025-05-24 to 2025-05-24.	19
13	Zonal average of "Cloud fraction" for 2025-05-24 to 2025-05-24.	20
14	Zonal average of "Cloud fraction precision" for 2025-05-24 to 2025-05-24.	21
15	Zonal average of "Scene albedo" for 2025-05-24 to 2025-05-24.	22
16	Zonal average of "Scene albedo precision" for 2025-05-24 to 2025-05-24.	23
17	Zonal average of "Apparent scene pressure" for 2025-05-24 to 2025-05-24.	24
18	Zonal average of "Apparent scene pressure precision" for 2025-05-24 to 2025-05-24.	25
19	Zonal average of " χ^2 " for 2025-05-24 to 2025-05-24	26
20	Zonal average of "Number of iterations" for 2025-05-24 to 2025-05-24.	27
21	Zonal average of "Fluorescence" for 2025-05-24 to 2025-05-24.	28
22	Zonal average of "Fluorescence precision" for 2025-05-24 to 2025-05-24.	29
23	Zonal average of " χ^2 of fluorescence retrieval" for 2025-05-24 to 2025-05-24	30
24	Zonal average of "Degrees of freedom for signal of fluorescence retrieval" for 2025-05-24 to 2025-05-24.	31
25	Zonal average of "Number of points in the spectrum" for 2025-05-24 to 2025-05-24.	32
26	Zonal average of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-05-24 to 2025-05-24	33
27	Histogram of "QA value" for 2025-05-24 to 2025-05-24	34
28	Histogram of "Cloud pressure" for 2025-05-24 to 2025-05-24	35
29	Histogram of "Cloud pressure precision" for 2025-05-24 to 2025-05-24	36

30	Histogram of "Cloud fraction" for 2025-05-24 to 2025-05-24	37
31	Histogram of "Cloud fraction precision" for 2025-05-24 to 2025-05-24	38
32	Histogram of "Scene albedo" for 2025-05-24 to 2025-05-24	39
33	Histogram of "Scene albedo precision" for 2025-05-24 to 2025-05-24	40
34	Histogram of "Apparent scene pressure" for 2025-05-24 to 2025-05-24	41
35	Histogram of "Apparent scene pressure precision" for 2025-05-24 to 2025-05-24	42
36	Histogram of " χ^2 " for 2025-05-24 to 2025-05-24	43
37	Histogram of "Number of iterations" for 2025-05-24 to 2025-05-24	44
38	Histogram of "Fluorescence" for 2025-05-24 to 2025-05-24	45
39	Histogram of "Fluorescence precision" for 2025-05-24 to 2025-05-24	46
40	Histogram of " χ^2 of fluorescence retrieval" for 2025-05-24 to 2025-05-24	47
41	Histogram of "Degrees of freedom for signal of fluorescence retrieval" for 2025-05-24 to 2025-05-24	48
42	Histogram of "Number of points in the spectrum" for 2025-05-24 to 2025-05-24	49
43	Histogram of "Spectral offset $(\lambda_{true} - \lambda_{nominal})$ " for 2025-05-24 to 2025-05-24	50
44	Along track statistics of "QA value" for 2025-05-24 to 2025-05-24	51
45	Along track statistics of "Cloud pressure" for 2025-05-24 to 2025-05-24	52
46	Along track statistics of "Cloud pressure precision" for 2025-05-24 to 2025-05-24	53
47	Along track statistics of "Cloud fraction" for 2025-05-24 to 2025-05-24	54
48	Along track statistics of "Cloud fraction precision" for 2025-05-24 to 2025-05-24	55
49	Along track statistics of "Scene albedo" for 2025-05-24 to 2025-05-24	56
50	Along track statistics of "Scene albedo precision" for 2025-05-24 to 2025-05-24	57
51	Along track statistics of "Apparent scene pressure" for 2025-05-24 to 2025-05-24	58
52	Along track statistics of "Apparent scene pressure precision" for 2025-05-24 to 2025-05-24	59
53	Along track statistics of " χ^2 " for 2025-05-24 to 2025-05-24	60
54	Along track statistics of "Number of iterations" for 2025-05-24 to 2025-05-24	61
55	Along track statistics of "Fluorescence" for 2025-05-24 to 2025-05-24	62
56	Along track statistics of "Fluorescence precision" for 2025-05-24 to 2025-05-24	63
57	Along track statistics of " χ^2 of fluorescence retrieval" for 2025-05-24 to 2025-05-24	64
58	Along track statistics of "Degrees of freedom for signal of fluorescence retrieval" for 2025-05-24 to 2025-05-24	65
59	Along track statistics of "Number of points in the spectrum" for 2025-05-24 to 2025-05-24	66
60	Along track statistics of "Spectral offset $(\lambda_{true} - \lambda_{nominal})$ " for 2025-05-24 to 2025-05-24	67

List of Tables

1	Parameterlist and basic statistics for the analysis
2	Percentile ranges
3	Parameterlist and basic statistics for the analysis for observations in the northern hemisphere
4	Parameterlist and basic statistics for the analysis for observations in the southern hemisphere
5	Parameterlist and basic statistics for the analysis for observations over water
6	Parameterlist and basic statistics for the analysis for observations over land

11 Copyright information of 'PyCAMA'

Copyright © 2005-2023, Maarten Sneep (KNMI).

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
- 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

This software is provided by the copyright holders and contributors "as is" and any express or implied warranties, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose are disclaimed. In no event shall the copyright holder or contributors be liable for any direct, indirect, incidental, special, exemplary, or consequential damages (including, but not limited to, procurement of substitute goods or services; loss of use, data, or profits; or business interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence or otherwise) arising in any way out of the use of this software, even if advised of the possibility of such damage.

Maarten Sneep (maarten.sneep@knmi.nl).