PyCAMA report generated by tropl2-proc

tropl2-proc

2025-05-31 (03:15)

1 Short Introduction

1.1 The list of parameters

You may want to keep the list given in table 1 at hand when viewing the results.

2 Definitions

The averages shown here are unweighed averages:

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i \tag{1}$$

with N the number of observations in the dataset.

The spread of the measurements is indicated with the variance V(x), or rather the standard deviation $\sigma(x) = \sqrt{V(x)}$.

$$V(x) = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2$$
(2)

We also report the more robust statistics median, minimum, maximum, various percentiles and inter quartile range.

The median m is the value of parameter x for which half of the observations of x is smaller than m:

$$P(x \le m) = P(x \ge m) = \int_{-\infty}^{m} f(x) \, \mathrm{d}x = \frac{1}{2}$$
(3)

with f(x) the probability density function.

The median is a special case of a percentile. Instead of $\frac{1}{2}$ in equation 3, other threshold values can be used. We report results for 1%, 5%, 10%, 15.9%, 25%, 75%, 84.1%, 90%, 95% and 99%. The inter quartile range is the difference between the 75% and 25% percentiles. Similarly the minimum and maximum values correspond to the 0% and 100% percentiles respectively.

For normally distributed parameters the mean and median are the same, while the $\mu \pm \sigma$ values and the 15.9% and 84.1% percentiles coincide.

To get a measure for the relation of one variable $x_{(k)}$ with another $x_{(l)}$, we calculate the covariance matrix C_{kl} .

$$C_{kl} = C(x_{(k)}, x_{(l)}) = \frac{1}{N-1} \sum_{i=1}^{N} (x_{(k),i} - \overline{x_{(k)}}) (x_{(l),i} - \overline{x_{(l)}})$$
(4)

Rather than a dimensionally dependent covariance, it is often easier to interpret a correlation matrix R_{kl} , a matrix of Pearson's *r* coefficients:

$$R_{kl} = R(x_{(k)}, x_{(l)}) = \frac{C_{kl}}{\sqrt{C_{kk}C_{ll}}} = \frac{C_{kl}}{\sqrt{V(x_k)V(x_l)}}$$
(5)

The diagonal elements of the covariance matrix are the variances of the elements, $V(x_{(k)}) = C_{kk}$ and obviously $R_{kk} = 1$.

Table 1: Parameterlist and basic statistics for the analyst	si
---	----

	Table 1: Parameterl	ist and basic s	statistics for the ar	nalysis			
Variable	mean $\pm \sigma$	Count	Mode	IQR	Median	Minimum	Maximum
qa value [1]	0.954 ± 0.134	23392065	0.995	0.0	1.000	0.350	1.000
cloud pressure crb [hPa]	790 ± 208	23392065	$1.005 imes 10^3$	296	864	130	1.062×10^3
cloud pressure crb precision [hPa]	2.88 ± 10.93	23392065	0.750	1.44	0.673	$1.282 imes 10^{-3}$	1.515×10^3
cloud fraction crb [1]	0.435 ± 0.371	23392065	0.996	0.717	0.332	0.0	1.000
cloud fraction crb precision [1]	$(2.157 \pm 10.824) \times 10^{-4}$	23392065	$2.500 imes10^{-4}$	$6.127 imes10^{-5}$	$8.466 imes10^{-5}$	$4.083 imes 10^{-8}$	0.216
scene albedo [1]	0.429 ± 0.308	23392065	$1.500 imes10^{-2}$	0.536	0.389	$-2.075 imes10^{-2}$	5.08
scene albedo precision [1]	$(8.125 \pm 9.235) \times 10^{-5}$	23392065	$2.500 imes10^{-4}$	$5.894 imes 10^{-5}$	$5.420 imes 10^{-5}$	1.054×10^{-5}	1.484×10^{-2}
apparent scene pressure [hPa]	823 ± 184	23392065	1.008×10^3	243	889	130	1.062×10^3
apparent scene pressure precision [hPa]	1.11 ± 2.13	23392065	0.500	0.562	0.454	$6.993 imes10^{-2}$	73.4
chi square [1]	$(0.238 \pm 4.217) \times 10^5$	23392065	0.150	$2.495 imes 10^4$	$1.279 imes 10^4$	47.2	4.264×10^{8}
number of iterations [1]	3.34 ± 1.00	23392065	3.23	1.000	3.00	1.000	14.0
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.424 \pm 6.019) \times 10^{-9}$	23392065	$7.500 imes 10^{-10}$	4.883×10^{-9}	$1.093 imes 10^{-9}$	-1.654×10^{-6}	1.961×10^{-6}
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.802 \pm 0.772) \times 10^{-9}$	23392065	$8.500 imes 10^{-10}$	$1.198 imes 10^{-9}$	1.732×10^{-9}	$4.055 imes 10^{-10}$	5.796×10^{-9}
chi square fluorescence [1]	$(0.574 \pm 0.947) \times 10^5$	23392065	750	$5.620 imes 10^4$	$2.501 imes 10^4$	93.8	$2.904 imes 10^6$
degrees of freedom fluorescence [1]	6.00 ± 0.00	23392065	5.95	0.0	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	23392065	49.7	0.0	50.0	46.0	50.0
wavelength calibration offset [nm]	$(3.603 \pm 8.689) \times 10^{-3}$	23392065	3.600×10^{-3}	5.841×10^{-3}	3.568×10^{-3}	-0.143	0.256

	Table 2: Percentile ranges									
Variable	1 %	5 %	10 %	15.9 %	25 %	75 %	84.1 %	90 %	95 %	99 %
qa value [1]	0.500	0.500	0.900	1.000	1.000	1.000	1.000	1.000	1.000	1.000
cloud pressure crb [hPa]	244	368	452	540	661	958	985	1.001×10^3	1.011×10^{3}	1.021×10^3
cloud pressure crb precision [hPa]	0.132	0.233	0.257	0.284	0.341	1.78	3.08	5.26	10.6	39.1
cloud fraction crb [1]	0.0	$9.287 imes10^{-3}$	$2.219 imes10^{-2}$	$4.205 imes10^{-2}$	$8.307 imes10^{-2}$	0.800	1.000	1.000	1.000	1.000
cloud fraction crb precision [1]	2.067×10^{-5}	2.432×10^{-5}	$2.811 imes 10^{-5}$	3.420×10^{-5}	4.832×10^{-5}	1.096×10^{-4}	$1.801 imes 10^{-4}$	3.163×10^{-4}	$6.478 imes10^{-4}$	2.574×10^{-3}
scene albedo [1]	7.212×10^{-3}	$1.838 imes10^{-2}$	$3.729 imes 10^{-2}$	$7.037 imes 10^{-2}$	0.155	0.692	0.803	0.865	0.928	1.05
scene albedo precision [1]	1.353×10^{-5}	1.657×10^{-5}	2.113×10^{-5}	2.743×10^{-5}	3.441×10^{-5}	9.335×10^{-5}	1.226×10^{-4}	1.621×10^{-4}	2.352×10^{-4}	4.595×10^{-4}
apparent scene pressure [hPa]	327	428	522	615	724	967	990	1.003×10^{3}	1.012×10^{3}	1.022×10^{3}
apparent scene pressure precision [hPa]	0.213	0.240	0.259	0.280	0.313	0.876	1.44	2.40	4.50	10.9
chi square [1]	201	471	1.006×10^{3}	1.936×10^{3}	3.878×10^{3}	2.882×10^{4}	3.944×10^{4}	4.998×10^{4}	6.327×10^{4}	8.483×10^{4}
number of iterations [1]	2.00	2.00	2.00	3.00	3.00	4.00	4.00	5.00	5.00	6.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	-1.451×10^{-8}	$-6.789 imes 10^{-9}$	-3.970×10^{-9}	-2.380×10^{-9}	$-9.911 imes 10^{-10}$	$3.892 imes 10^{-9}$	$5.847 imes 10^{-9}$	$7.759 imes 10^{-9}$	$1.048 imes10^{-8}$	$1.641 imes 10^{-8}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$6.753 imes 10^{-10}$	$7.868 imes 10^{-10}$	$8.630 imes 10^{-10}$	$9.538 imes 10^{-10}$	$1.128 imes 10^{-9}$	2.326×10^{-9}	2.640×10^{-9}	2.833×10^{-9}	3.178×10^{-9}	3.817×10^{-9}
chi square fluorescence [1]	361	945	2.012×10^{3}	3.789×10^{3}	7.542×10^{3}	6.375×10^{4}	9.857×10^{4}	1.430×10^{5}	2.325×10^{5}	4.823×10^{5}
degrees of freedom fluorescence [1]	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0
wavelength calibration offset [nm]	-2.451×10^{-2}	-9.154×10^{-3}	-4.061×10^{-3}	-1.415×10^{-3}	$6.879 imes10^{-4}$	6.529×10^{-3}	8.698×10^{-3}	$1.141 imes 10^{-2}$	$1.654 imes 10^{-2}$	3.132×10^{-2}

Table 3: Parameterlist and basic statistics for the analysis for observations in the northern hemisphere	
Tuote of Turaneternist and cubie statistics for and statistics for cooler automs in the northern nerinspirere	

Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.931 ± 0.160	15355673	0.0	1.000	0.350	1.000	1.000	1.000
cloud pressure crb [hPa]	791 ± 209	15355673	295	860	130	1.062×10^3	667	962
cloud pressure crb precision [hPa]	2.06 ± 7.67	15355673	1.13	0.550	1.282×10^{-3}	1.515×10^{3}	0.297	1.42
cloud fraction crb [1]	0.492 ± 0.386	15355673	0.891	0.418	0.0	1.000	0.109	1.000
cloud fraction crb precision [1]	$(2.739 \pm 13.273) \times 10^{-4}$	15355673	$5.548 imes 10^{-5}$	$9.550 imes 10^{-5}$	$4.083 imes10^{-8}$	0.216	$5.176 imes10^{-5}$	$1.072 imes 10^{-4}$
scene albedo [1]	0.498 ± 0.308	15355673	0.544	0.493	$-1.932 imes 10^{-2}$	4.15	0.233	0.777
scene albedo precision [1]	$(7.978 \pm 8.703) \times 10^{-5}$	15355673	$5.781 imes10^{-5}$	$5.341 imes 10^{-5}$	$1.054 imes 10^{-5}$	$1.174 imes10^{-2}$	$3.405 imes 10^{-5}$	$9.186 imes10^{-5}$
apparent scene pressure [hPa]	830 ± 177	15355673	236	891	130	1.062×10^{3}	733	969
apparent scene pressure precision [hPa]	0.730 ± 1.306	15355673	0.327	0.379	7.239×10^{-2}	73.4	0.288	0.616
chi square [1]	$(0.318 \pm 5.202) \times 10^5$	15355673	3.061×10^{4}	$1.967 imes 10^4$	72.4	4.264×10^{8}	7.329×10^{3}	3.793×10^{4}
number of iterations [1]	3.54 ± 1.09	15355673	1.000	3.00	1.000	14.0	3.00	4.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(2.029 \pm 6.701) \times 10^{-9}$	15355673	$6.177 imes10^{-9}$	$1.703 imes 10^{-9}$	-1.654×10^{-6}	$1.961 imes 10^{-6}$	-1.020×10^{-9}	$5.157 imes 10^{-9}$
fluorescence precision [mol $s^{-1} m^{-2} nm^{-1} sr^{-1}$]	$(2.015\pm0.767) imes10^{-9}$	15355673	$1.162 imes 10^{-9}$	$2.000 imes 10^{-9}$	$4.055 imes 10^{-10}$	$5.796 imes 10^{-9}$	$1.403 imes 10^{-9}$	2.565×10^{-9}
chi square fluorescence [1]	$(0.663 \pm 0.974) \times 10^5$	15355673	6.246×10^4	3.429×10^4	110	$2.904 imes 10^6$	1.335×10^4	$7.581 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	15355673	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	15355673	0.0	50.0	46.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(3.610 \pm 7.028) \times 10^{-3}$	15355673	4.901×10^{-3}	3.547×10^{-3}	-8.151×10^{-2}	8.775×10^{-2}	1.127×10^{-3}	6.029×10^{-3}

Table	e 4: Parameterlist and basic s	statistics for	r the analysis for	r observations in	the southern her	nisphere		
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.998 ± 0.023	8036392	0.0	1.000	0.350	1.000	1.000	1.000
cloud pressure crb [hPa]	788 ± 208	8036392	304	869	130	1.033×10^{3}	647	951
cloud pressure crb precision [hPa]	4.45 ± 15.20	8036392	2.36	0.930	$2.539 imes 10^{-2}$	1.462×10^{3}	0.480	2.84
cloud fraction crb [1]	0.327 ± 0.313	8036392	0.513	0.217	0.0	1.000	$4.733 imes 10^{-2}$	0.561
cloud fraction crb precision [1]	$(1.043 \pm 1.578) \times 10^{-4}$	8036392	$6.979 imes10^{-5}$	7.430×10^{-5}	$2.295 imes10^{-6}$	9.430×10^{-2}	$4.186 imes 10^{-5}$	$1.117 imes10^{-4}$
scene albedo [1]	0.298 ± 0.261	8036392	0.411	0.242	-2.075×10^{-2}	5.08	$6.126 imes10^{-2}$	0.473
scene albedo precision [1]	$(8.404 \pm 10.168) \times 10^{-5}$	8036392	$6.158 imes10^{-5}$	5.585×10^{-5}	1.160×10^{-5}	1.484×10^{-2}	3.509×10^{-5}	9.666×10^{-5}
apparent scene pressure [hPa]	811 ± 196	8036392	267	886	130	1.033×10^{3}	696	963
apparent scene pressure precision [hPa]	1.85 ± 3.01	8036392	1.38	0.705	$6.993 imes 10^{-2}$	69.9	0.438	1.81
chi square [1]	$(0.863 \pm 1.005) \times 10^4$	8036392	$1.096 imes 10^4$	$5.495 imes 10^3$	47.2	$4.927 imes 10^6$	1.457×10^{3}	1.242×10^4
number of iterations [1]	2.97 ± 0.67	8036392	0.0	3.00	1.000	14.0	3.00	3.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(2.685 \pm 41.949) \times 10^{-10}$	8036392	2.949×10^{-9}	5.095×10^{-10}	-1.395×10^{-6}	7.635×10^{-7}	$-9.566 imes 10^{-10}$	$1.993 imes10^{-9}$
fluorescence precision [mol s ⁻¹ m ⁻² nm ⁻¹ sr ⁻¹]	$(1.396 \pm 0.601) \times 10^{-9}$	8036392	$8.359 imes 10^{-10}$	$1.247 imes 10^{-9}$	$5.324 imes10^{-10}$	5.119×10^{-9}	$9.043 imes 10^{-10}$	$1.740 imes10^{-9}$
chi square fluorescence [1]	$(0.403 \pm 0.868) \times 10^5$	8036392	$3.161 imes 10^4$	$1.022 imes 10^4$	93.8	$1.771 imes 10^6$	$2.788 imes 10^3$	3.440×10^4
degrees of freedom fluorescence [1]	6.00 ± 0.00	8036392	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	8036392	0.0	50.0	48.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(3.590 \pm 11.196) \times 10^{-3}$	8036392	8.537×10^{-3}	3.633×10^{-3}	-0.143	0.256	-6.241×10^{-4}	7.913×10^{-3}

	Table 5: Parameterlist and	l basic statis	stics for the ana	lysis for observa	tions over water			
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.961 ± 0.117	15675209	0.0	1.000	0.350	1.000	1.000	1.000
cloud pressure crb [hPa]	809 ± 203	15675209	273	887	130	1.033×10^3	693	967
cloud pressure crb precision [hPa]	3.04 ± 11.85	15675209	1.32	0.657	$2.197 imes 10^{-3}$	1.462×10^{3}	0.353	1.68
cloud fraction crb [1]	0.425 ± 0.361	15675209	0.670	0.338	0.0	1.000	$7.904 imes 10^{-2}$	0.749
cloud fraction crb precision [1]	$(2.095 \pm 11.466) \times 10^{-4}$	15675209	$6.581 imes10^{-5}$	$6.775 imes10^{-5}$	$4.083 imes 10^{-8}$	0.216	3.556×10^{-5}	$1.014 imes10^{-4}$
scene albedo [1]	0.381 ± 0.315	15675209	0.578	0.320	$-2.075 imes 10^{-2}$	5.08	$7.774 imes10^{-2}$	0.656
scene albedo precision [1]	$(8.066 \pm 9.387) \times 10^{-5}$	15675209	$6.685 imes10^{-5}$	$5.607 imes10^{-5}$	1.054×10^{-5}	$1.484 imes10^{-2}$	2.981×10^{-5}	$9.666 imes 10^{-5}$
apparent scene pressure [hPa]	832 ± 190	15675209	238	904	130	1.033×10^3	739	977
apparent scene pressure precision [hPa]	1.44 ± 2.52	15675209	0.956	0.563	$6.993 imes10^{-2}$	73.4	0.338	1.29
chi square [1]	$(0.180 \pm 1.968) \times 10^5$	15675209	$2.192 imes 10^4$	$8.098 imes 10^3$	47.2	$3.362 imes 10^8$	2.332×10^{3}	2.426×10^4
number of iterations [1]	3.14 ± 0.93	15675209	0.0	3.00	1.000	14.0	3.00	3.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(9.577 \pm 53.770) \times 10^{-10}$	15675209	$4.115 imes 10^{-9}$	$7.455 imes 10^{-10}$	$-1.350 imes 10^{-6}$	$1.961 imes10^{-6}$	-1.072×10^{-9}	$3.043 imes 10^{-9}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.638 \pm 0.735) \times 10^{-9}$	15675209	$1.142 imes 10^{-9}$	$1.482 imes 10^{-9}$	$4.680 imes 10^{-10}$	$5.796 imes 10^{-9}$	1.010×10^{-9}	2.152×10^{-9}
chi square fluorescence [1]	$(0.429\pm0.745)\times10^{5}$	15675209	$4.341 imes 10^4$	$1.911 imes 10^4$	93.8	$2.378 imes10^{6}$	5.144×10^3	$4.855 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	15675209	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	15675209	0.0	50.0	46.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(3.554 \pm 9.794) \times 10^{-3}$	15675209	6.592×10^{-3}	$3.508 imes 10^{-3}$	-0.143	0.256	2.675×10^{-4}	$6.859 imes 10^{-3}$

Table 6: Para	meterlist and b	asic statistic	es for the	analvsis fo	or observations	over land

Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.926 ± 0.177	5504334	0.0	1.000	0.350	1.000	1.000	1.000
cloud pressure crb [hPa]	751 ± 212	5504334	311	797	130	1.036×10^3	621	932
cloud pressure crb precision [hPa]	2.58 ± 8.67	5504334	1.74	0.754	$2.136 imes 10^{-3}$	1.515×10^{3}	0.310	2.05
cloud fraction crb [1]	0.458 ± 0.396	5504334	0.915	0.308	0.0	1.000	$8.512 imes10^{-2}$	1.000
cloud fraction crb precision [1]	$(2.403 \pm 9.794) \times 10^{-4}$	5504334	$5.358 imes10^{-5}$	$1.000 imes 10^{-4}$	$1.654 imes10^{-7}$	0.181	$7.400 imes 10^{-5}$	$1.276 imes10^{-4}$
scene albedo [1]	0.538 ± 0.268	5504334	0.468	0.487	$2.091 imes 10^{-3}$	3.79	0.303	0.771
scene albedo precision [1]	$(8.369 \pm 8.792) \times 10^{-5}$	5504334	$4.730 imes 10^{-5}$	$5.213 imes10^{-5}$	$1.155 imes10^{-5}$	$2.733 imes 10^{-3}$	$3.854 imes10^{-5}$	$8.584 imes10^{-5}$
apparent scene pressure [hPa]	805 ± 167	5504334	237	849	130	1.042×10^3	706	943
apparent scene pressure precision [hPa]	0.435 ± 0.325	5504334	0.200	0.364	7.239×10^{-2}	14.3	0.283	0.483
chi square [1]	$(0.343 \pm 6.132) \times 10^5$	5504334	$2.320 imes 10^4$	$2.056 imes 10^4$	89.1	$4.264 imes 10^8$	$1.192 imes 10^4$	$3.512 imes 10^4$
number of iterations [1]	3.80 ± 1.03	5504334	1.000	4.00	1.000	14.0	3.00	4.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(2.362\pm6.963)\times10^{-9}$	5504334	$6.341 imes10^{-9}$	2.123×10^{-9}	-1.654×10^{-6}	$1.175 imes10^{-6}$	$-6.672 imes 10^{-10}$	$5.673 imes10^{-9}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(2.138 \pm 0.721) \times 10^{-9}$	5504334	$1.023 imes 10^{-9}$	2.138×10^{-9}	4.055×10^{-10}	$5.763 imes10^{-9}$	$1.634 imes 10^{-9}$	2.657×10^{-9}
chi square fluorescence [1]	$(0.810 \pm 1.127) \times 10^5$	5504334	$8.428 imes 10^4$	$3.893 imes 10^4$	110	$2.848 imes 10^6$	$1.387 imes 10^4$	$9.814 imes10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	5504334	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	5504334	0.0	50.0	48.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(3.617 \pm 5.042) \times 10^{-3}$	5504334	$4.408 imes 10^{-3}$	$3.593 imes 10^{-3}$	-6.434×10^{-2}	8.761×10^{-2}	$1.408 imes 10^{-3}$	5.816×10^{-3}

Granule outlines

Figure 1: Outline of the granules.

4 Input data monitoring

Figure 2: Input data per granule

5 Warnings and errors

Figure 3: Fraction of pixels with specific warnings and errors during processing

6 World maps

Figure 4: Map of "Cloud pressure" for 2025-05-29 to 2025-05-29

Figure 5: Map of "Cloud fraction" for 2025-05-29 to 2025-05-29

Figure 6: Map of "Scene albedo" for 2025-05-29 to 2025-05-29

Figure 7: Map of "Apparent scene pressure" for 2025-05-29 to 2025-05-29

2025-05-29

Figure 8: Map of "Fluorescence" for 2025-05-29 to 2025-05-29

Figure 9: Map of the number of observations for 2025-05-29 to 2025-05-29

7 Zonal average

Figure 10: Zonal average of "QA value" for 2025-05-29 to 2025-05-29.

Figure 11: Zonal average of "Cloud pressure" for 2025-05-29 to 2025-05-29.

Figure 12: Zonal average of "Cloud pressure precision" for 2025-05-29 to 2025-05-29.

Figure 13: Zonal average of "Cloud fraction" for 2025-05-29 to 2025-05-29.

Figure 14: Zonal average of "Cloud fraction precision" for 2025-05-29 to 2025-05-29.

Figure 15: Zonal average of "Scene albedo" for 2025-05-29 to 2025-05-29.

Figure 16: Zonal average of "Scene albedo precision" for 2025-05-29 to 2025-05-29.

Figure 17: Zonal average of "Apparent scene pressure" for 2025-05-29 to 2025-05-29.

Figure 18: Zonal average of "Apparent scene pressure precision" for 2025-05-29 to 2025-05-29.

Figure 19: Zonal average of " χ^2 " for 2025-05-29 to 2025-05-29.

Figure 20: Zonal average of "Number of iterations" for 2025-05-29 to 2025-05-29.

Figure 21: Zonal average of "Fluorescence" for 2025-05-29 to 2025-05-29.

Figure 22: Zonal average of "Fluorescence precision" for 2025-05-29 to 2025-05-29.

Figure 23: Zonal average of " χ^2 of fluorescence retrieval" for 2025-05-29 to 2025-05-29.

Figure 24: Zonal average of "Degrees of freedom for signal of fluorescence retrieval" for 2025-05-29 to 2025-05-29.

Figure 25: Zonal average of "Number of points in the spectrum" for 2025-05-29 to 2025-05-29.

Figure 26: Zonal average of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-05-29 to 2025-05-29.

8 Histograms

The definitions of the parameters given in this section can be found in section 2.

Figure 27: Histogram of "QA value" for 2025-05-29 to 2025-05-29

Figure 28: Histogram of "Cloud pressure" for 2025-05-29 to 2025-05-29

Figure 29: Histogram of "Cloud pressure precision" for 2025-05-29 to 2025-05-29

Figure 30: Histogram of "Cloud fraction" for 2025-05-29 to 2025-05-29

Figure 31: Histogram of "Cloud fraction precision" for 2025-05-29 to 2025-05-29

Figure 32: Histogram of "Scene albedo" for 2025-05-29 to 2025-05-29

Figure 33: Histogram of "Scene albedo precision" for 2025-05-29 to 2025-05-29

Figure 34: Histogram of "Apparent scene pressure" for 2025-05-29 to 2025-05-29

Figure 35: Histogram of "Apparent scene pressure precision" for 2025-05-29 to 2025-05-29

Figure 36: Histogram of " χ^2 " for 2025-05-29 to 2025-05-29

Figure 37: Histogram of "Number of iterations" for 2025-05-29 to 2025-05-29

Figure 38: Histogram of "Fluorescence" for 2025-05-29 to 2025-05-29

Figure 39: Histogram of "Fluorescence precision" for 2025-05-29 to 2025-05-29

Figure 40: Histogram of " χ^2 of fluorescence retrieval" for 2025-05-29 to 2025-05-29

Figure 41: Histogram of "Degrees of freedom for signal of fluorescence retrieval" for 2025-05-29 to 2025-05-29

Figure 42: Histogram of "Number of points in the spectrum" for 2025-05-29 to 2025-05-29

Figure 43: Histogram of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-05-29 to 2025-05-29

9 Along track statistics

The TROPOMI instrument uses different binned detector rows for different viewing directions. In this section statistics are presented for each of the binned rows in the instrument.

Figure 44: Along track statistics of "QA value" for 2025-05-29 to 2025-05-29

Figure 45: Along track statistics of "Cloud pressure" for 2025-05-29 to 2025-05-29

Figure 46: Along track statistics of "Cloud pressure precision" for 2025-05-29 to 2025-05-29

Figure 47: Along track statistics of "Cloud fraction" for 2025-05-29 to 2025-05-29

Figure 48: Along track statistics of "Cloud fraction precision" for 2025-05-29 to 2025-05-29

Figure 49: Along track statistics of "Scene albedo" for 2025-05-29 to 2025-05-29

Figure 50: Along track statistics of "Scene albedo precision" for 2025-05-29 to 2025-05-29

Figure 51: Along track statistics of "Apparent scene pressure" for 2025-05-29 to 2025-05-29

Figure 52: Along track statistics of "Apparent scene pressure precision" for 2025-05-29 to 2025-05-29

Figure 53: Along track statistics of " χ^2 " for 2025-05-29 to 2025-05-29

Figure 54: Along track statistics of "Number of iterations" for 2025-05-29 to 2025-05-29

Figure 55: Along track statistics of "Fluorescence" for 2025-05-29 to 2025-05-29

Figure 56: Along track statistics of "Fluorescence precision" for 2025-05-29 to 2025-05-29

Figure 57: Along track statistics of " χ^2 of fluorescence retrieval" for 2025-05-29 to 2025-05-29

Figure 58: Along track statistics of "Degrees of freedom for signal of fluorescence retrieval" for 2025-05-29 to 2025-05-29

Figure 59: Along track statistics of "Number of points in the spectrum" for 2025-05-29 to 2025-05-29

Figure 60: Along track statistics of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-05-29 to 2025-05-29

10 Coincidence density

To investigate the relation between parameters scatter density plots are produced. These include some 'hidden' parameters, latitude and the solar- and viewing geometries, in addition to all configured parameters. All combinations of pairs of parameters are included *once*, in one direction alone.

Contents

1	Short Introduction	1
	1.1 The list of parameters	1
2	Definitions	1
3	Granule outlines	8
4	Input data monitoring	9
5	Warnings and errors	10
6	World maps	11
7	Zonal average	17
8	Histograms	34
9	Along track statistics	51
10	Coincidence density	68
11	Copyright information of 'PyCAMA'	68

List of Figures

1	Outline of the granules.	8
2	Input data per granule	9
3	Fraction of pixels with specific warnings and errors during processing	10
4	Map of "Cloud pressure" for 2025-05-29 to 2025-05-29	11
5	Map of "Cloud fraction" for 2025-05-29 to 2025-05-29	12
6	Map of "Scene albedo" for 2025-05-29 to 2025-05-29	13
7	Map of "Apparent scene pressure" for 2025-05-29 to 2025-05-29	14
8	Map of "Fluorescence" for 2025-05-29 to 2025-05-29	15
9	Map of the number of observations for 2025-05-29 to 2025-05-29	16
10	Zonal average of "QA value" for 2025-05-29 to 2025-05-29.	17
11	Zonal average of "Cloud pressure" for 2025-05-29 to 2025-05-29.	18
12	Zonal average of "Cloud pressure precision" for 2025-05-29 to 2025-05-29.	19
13	Zonal average of "Cloud fraction" for 2025-05-29 to 2025-05-29.	20
14	Zonal average of "Cloud fraction precision" for 2025-05-29 to 2025-05-29.	21
15	Zonal average of "Scene albedo" for 2025-05-29 to 2025-05-29.	22
16	Zonal average of "Scene albedo precision" for 2025-05-29 to 2025-05-29.	23
17	Zonal average of "Apparent scene pressure" for 2025-05-29 to 2025-05-29.	24
18	Zonal average of "Apparent scene pressure precision" for 2025-05-29 to 2025-05-29.	25
19	Zonal average of " χ^2 " for 2025-05-29 to 2025-05-29	26
20	Zonal average of "Number of iterations" for 2025-05-29 to 2025-05-29.	27
21	Zonal average of "Fluorescence" for 2025-05-29 to 2025-05-29.	28
22	Zonal average of "Fluorescence precision" for 2025-05-29 to 2025-05-29.	29
23	Zonal average of " χ^2 of fluorescence retrieval" for 2025-05-29 to 2025-05-29	30
24	Zonal average of "Degrees of freedom for signal of fluorescence retrieval" for 2025-05-29 to 2025-05-29.	31
25	Zonal average of "Number of points in the spectrum" for 2025-05-29 to 2025-05-29	32
26	Zonal average of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-05-29 to 2025-05-29	33
27	Histogram of "QA value" for 2025-05-29 to 2025-05-29	34
28	Histogram of "Cloud pressure" for 2025-05-29 to 2025-05-29	35
29	Histogram of "Cloud pressure precision" for 2025-05-29 to 2025-05-29	36

30	Histogram of "Cloud fraction" for 2025-05-29 to 2025-05-29	37
31	Histogram of "Cloud fraction precision" for 2025-05-29 to 2025-05-29	38
32	Histogram of "Scene albedo" for 2025-05-29 to 2025-05-29	39
33	Histogram of "Scene albedo precision" for 2025-05-29 to 2025-05-29	40
34	Histogram of "Apparent scene pressure" for 2025-05-29 to 2025-05-29	41
35	Histogram of "Apparent scene pressure precision" for 2025-05-29 to 2025-05-29	42
36	Histogram of " χ^2 " for 2025-05-29 to 2025-05-29	43
37	Histogram of "Number of iterations" for 2025-05-29 to 2025-05-29	44
38	Histogram of "Fluorescence" for 2025-05-29 to 2025-05-29	45
39	Histogram of "Fluorescence precision" for 2025-05-29 to 2025-05-29	46
40	Histogram of " χ^2 of fluorescence retrieval" for 2025-05-29 to 2025-05-29	47
41	Histogram of "Degrees of freedom for signal of fluorescence retrieval" for 2025-05-29 to 2025-05-29	48
42	Histogram of "Number of points in the spectrum" for 2025-05-29 to 2025-05-29	49
43	Histogram of "Spectral offset $(\lambda_{true} - \lambda_{nominal})$ " for 2025-05-29 to 2025-05-29	50
44	Along track statistics of "QA value" for 2025-05-29 to 2025-05-29	51
45	Along track statistics of "Cloud pressure" for 2025-05-29 to 2025-05-29	52
46	Along track statistics of "Cloud pressure precision" for 2025-05-29 to 2025-05-29	53
47	Along track statistics of "Cloud fraction" for 2025-05-29 to 2025-05-29	54
48	Along track statistics of "Cloud fraction precision" for 2025-05-29 to 2025-05-29	55
49	Along track statistics of "Scene albedo" for 2025-05-29 to 2025-05-29	56
50	Along track statistics of "Scene albedo precision" for 2025-05-29 to 2025-05-29	57
51	Along track statistics of "Apparent scene pressure" for 2025-05-29 to 2025-05-29	58
52	Along track statistics of "Apparent scene pressure precision" for 2025-05-29 to 2025-05-29	59
53	Along track statistics of " χ^2 " for 2025-05-29 to 2025-05-29	60
54	Along track statistics of "Number of iterations" for 2025-05-29 to 2025-05-29	61
55	Along track statistics of "Fluorescence" for 2025-05-29 to 2025-05-29	62
56	Along track statistics of "Fluorescence precision" for 2025-05-29 to 2025-05-29	63
57	Along track statistics of " χ^2 of fluorescence retrieval" for 2025-05-29 to 2025-05-29	64
58	Along track statistics of "Degrees of freedom for signal of fluorescence retrieval" for 2025-05-29 to 2025-05-29	65
59	Along track statistics of "Number of points in the spectrum" for 2025-05-29 to 2025-05-29	66
60	Along track statistics of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-05-29 to 2025-05-29	67

List of Tables

1	Parameterlist and basic statistics for the analysis
2	Percentile ranges
3	Parameterlist and basic statistics for the analysis for observations in the northern hemisphere
4	Parameterlist and basic statistics for the analysis for observations in the southern hemisphere
5	Parameterlist and basic statistics for the analysis for observations over water
6	Parameterlist and basic statistics for the analysis for observations over land

11 Copyright information of 'PyCAMA'

Copyright © 2005-2023, Maarten Sneep (KNMI).

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
- 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

This software is provided by the copyright holders and contributors "as is" and any express or implied warranties, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose are disclaimed. In no event shall the copyright holder or contributors be liable for any direct, indirect, incidental, special, exemplary, or consequential damages (including, but not limited to, procurement of substitute goods or services; loss of use, data, or profits; or business interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence or otherwise) arising in any way out of the use of this software, even if advised of the possibility of such damage.

Maarten Sneep (maarten.sneep@knmi.nl).