PyCAMA report generated by tropl2-proc

tropl2-proc

2025-06-13 (03:15)

1 Short Introduction

1.1 The list of parameters

You may want to keep the list given in table 1 at hand when viewing the results.

2 Definitions

The averages shown here are unweighed averages:

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i \tag{1}$$

with N the number of observations in the dataset.

The spread of the measurements is indicated with the variance V(x), or rather the standard deviation $\sigma(x) = \sqrt{V(x)}$.

$$V(x) = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2$$
(2)

We also report the more robust statistics median, minimum, maximum, various percentiles and inter quartile range.

The median m is the value of parameter x for which half of the observations of x is smaller than m:

$$P(x \le m) = P(x \ge m) = \int_{-\infty}^{m} f(x) \, \mathrm{d}x = \frac{1}{2}$$
(3)

with f(x) the probability density function.

The median is a special case of a percentile. Instead of $\frac{1}{2}$ in equation 3, other threshold values can be used. We report results for 1%, 5%, 10%, 15.9%, 25%, 75%, 84.1%, 90%, 95% and 99%. The inter quartile range is the difference between the 75% and 25% percentiles. Similarly the minimum and maximum values correspond to the 0% and 100% percentiles respectively.

For normally distributed parameters the mean and median are the same, while the $\mu \pm \sigma$ values and the 15.9% and 84.1% percentiles coincide.

To get a measure for the relation of one variable $x_{(k)}$ with another $x_{(l)}$, we calculate the covariance matrix C_{kl} .

$$C_{kl} = C(x_{(k)}, x_{(l)}) = \frac{1}{N-1} \sum_{i=1}^{N} (x_{(k),i} - \overline{x_{(k)}}) (x_{(l),i} - \overline{x_{(l)}})$$
(4)

Rather than a dimensionally dependent covariance, it is often easier to interpret a correlation matrix R_{kl} , a matrix of Pearson's *r* coefficients:

$$R_{kl} = R(x_{(k)}, x_{(l)}) = \frac{C_{kl}}{\sqrt{C_{kk}C_{ll}}} = \frac{C_{kl}}{\sqrt{V(x_k)V(x_l)}}$$
(5)

The diagonal elements of the covariance matrix are the variances of the elements, $V(x_{(k)}) = C_{kk}$ and obviously $R_{kk} = 1$.

Table 1: Parameterlist and basic statistics for the anal
--

Table 1: Parameterlist and basic statistics for the analysis							
Variable	mean $\pm \sigma$	Count	Mode	IQR	Median	Minimum	Maximum
qa value [1]	0.970 ± 0.105	23437052	0.995	0.0	1.000	0.350	1.000
cloud pressure crb [hPa]	784 ± 205	23437052	$1.015 imes 10^3$	304	850	130	$1.055 imes 10^3$
cloud pressure crb precision [hPa]	2.57 ± 9.65	23437052	0.750	1.39	0.689	2.930×10^{-3}	$1.486 imes 10^3$
cloud fraction crb [1]	0.423 ± 0.357	23437052	0.996	0.658	0.330	0.0	1.000
cloud fraction crb precision [1]	$(1.753 \pm 7.983) \times 10^{-4}$	23437052	$2.500 imes10^{-4}$	6.769×10^{-5}	8.367×10^{-5}	$4.383 imes 10^{-9}$	0.133
scene albedo [1]	0.419 ± 0.289	23437052	$1.500 imes10^{-2}$	0.485	0.384	$-2.848 imes 10^{-3}$	6.07
scene albedo precision [1]	$(7.792 \pm 7.951) \times 10^{-5}$	23437052	$2.500 imes10^{-4}$	5.619×10^{-5}	$5.397 imes10^{-5}$	1.064×10^{-5}	7.269×10^{-3}
apparent scene pressure [hPa]	818 ± 181	23437052	1.016×10^3	254	878	130	$1.059 imes 10^3$
apparent scene pressure precision [hPa]	1.02 ± 1.92	23437052	0.500	0.533	0.454	7.752×10^{-2}	65.4
chi square [1]	$(0.211 \pm 2.426) \times 10^5$	23437052	0.150	$2.349 imes 10^4$	$1.269 imes 10^4$	44.6	$2.958 imes10^8$
number of iterations [1]	3.26 ± 0.92	23437052	3.23	1.000	3.00	1.000	14.0
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.180 \pm 6.099) \times 10^{-9}$	23437052	$7.500 imes 10^{-10}$	4.773×10^{-9}	$1.007 imes 10^{-9}$	-2.206×10^{-6}	2.122×10^{-6}
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.806 \pm 0.765) \times 10^{-9}$	23437052	$8.500 imes 10^{-10}$	$1.179 imes 10^{-9}$	1.746×10^{-9}	$4.539 imes 10^{-10}$	5.897×10^{-9}
chi square fluorescence [1]	$(0.652 \pm 1.027) \times 10^5$	23437052	750	$7.270 imes 10^4$	$2.770 imes 10^4$	96.2	$2.792 imes 10^6$
degrees of freedom fluorescence [1]	6.00 ± 0.00	23437052	5.95	0.0	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	23437052	49.7	0.0	50.0	45.0	50.0
wavelength calibration offset [nm]	$(3.887 \pm 8.517) \times 10^{-3}$	23437052	3.600×10^{-3}	$5.794 imes 10^{-3}$	$3.884 imes 10^{-3}$	-0.184	0.360

Table 2: Percentile ranges										
Variable	1 %	5%	10 %	15.9 %	25 %	75 %	84.1 %	90%	95 %	99 %
qa value [1]	0.500	0.900	0.900	1.000	1.000	1.000	1.000	1.000	1.000	1.000
cloud pressure crb [hPa]	254	381	463	540	648	952	982	1.002×10^3	1.013×10^3	1.020×10^3
cloud pressure crb precision [hPa]	0.201	0.242	0.267	0.296	0.356	1.74	2.93	4.76	9.24	31.6
cloud fraction crb [1]	$1.507 imes10^{-3}$	$1.116 imes10^{-2}$	$2.447 imes10^{-2}$	$4.452 imes 10^{-2}$	$8.597 imes10^{-2}$	0.744	0.947	1.000	1.000	1.000
cloud fraction crb precision [1]	$2.076 imes10^{-5}$	$2.432 imes 10^{-5}$	$2.807 imes10^{-5}$	$3.449 imes 10^{-5}$	$5.006 imes 10^{-5}$	$1.178 imes10^{-4}$	$1.925 imes 10^{-4}$	$3.019 imes 10^{-4}$	$5.169 imes10^{-4}$	1.382×10^{-3}
scene albedo [1]	$8.035 imes 10^{-3}$	$2.110 imes10^{-2}$	$4.129 imes 10^{-2}$	$7.816 imes10^{-2}$	0.173	0.658	0.767	0.831	0.893	1.01
scene albedo precision [1]	1.351×10^{-5}	1.644×10^{-5}	$2.094 imes 10^{-5}$	2.771×10^{-5}	3.463×10^{-5}	9.082×10^{-5}	1.166×10^{-4}	1.536×10^{-4}	$2.255 imes 10^{-4}$	4.122×10^{-4}
apparent scene pressure [hPa]	335	448	529	607	710	963	989	1.004×10^{3}	1.014×10^{3}	1.020×10^{3}
apparent scene pressure precision [hPa]	0.216	0.244	0.265	0.285	0.319	0.851	1.36	2.14	3.77	9.49
chi square [1]	222	552	1.109×10^{3}	1.994×10^{3}	3.916×10^{3}	2.741×10^{4}	3.739×10^{4}	4.670×10^{4}	5.697×10^{4}	7.467×10^{4}
number of iterations [1]	2.00	2.00	2.00	3.00	3.00	4.00	4.00	4.00	5.00	6.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	-1.501×10^{-8}	-7.211×10^{-9}	-4.297×10^{-9}	-2.626×10^{-9}	-1.144×10^{-9}	3.629×10^{-9}	5.486×10^{-9}	7.323×10^{-9}	$9.939 imes 10^{-9}$	1.583×10^{-8}
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$6.890 imes 10^{-10}$	7.982×10^{-10}	8.763×10^{-10}	9.673×10^{-10}	1.139×10^{-9}	2.318×10^{-9}	2.614×10^{-9}	2.826×10^{-9}	3.167×10^{-9}	3.858×10^{-9}
chi square fluorescence [1]	411	1.082×10^{3}	2.176×10^{3}	3.901×10^{3}	7.609×10^{3}	8.031×10^{4}	1.187×10^{5}	1.674×10^{5}	2.535×10^{5}	5.013×10^{5}
degrees of freedom fluorescence [1]	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$-2.376 imes 10^{-2}$	-8.665×10^{-3}	-3.647×10^{-3}	-1.045×10^{-3}	1.023×10^{-3}	$6.817 imes 10^{-3}$	8.913×10^{-3}	1.151×10^{-2}	$1.644 imes 10^{-2}$	3.087×10^{-2}

Table 3: Parameterlist and basic statistics for the anal	usis for observations in the northern hemisphere
Table 5. I diameternist and basic statistics for the anal	ysis for observations in the northern nerinsphere

Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.956 ± 0.125	15572813	0.0	1.000	0.350	1.000	1.000	1.000
cloud pressure crb [hPa]	784 ± 207	15572813	309	844	130	$1.055 imes 10^3$	649	958
cloud pressure crb precision [hPa]	1.87 ± 6.97	15572813	1.11	0.583	$2.930 imes10^{-3}$	1.404×10^3	0.312	1.43
cloud fraction crb [1]	0.469 ± 0.369	15572813	0.744	0.395	0.0	1.000	0.109	0.853
cloud fraction crb precision [1]	$(2.101 \pm 9.732) \times 10^{-4}$	15572813	7.079×10^{-5}	$9.045 imes 10^{-5}$	$4.383 imes10^{-9}$	0.133	$5.258 imes10^{-5}$	1.234×10^{-4}
scene albedo [1]	0.477 ± 0.287	15572813	0.488	0.468	$-2.114 imes10^{-3}$	4.36	0.241	0.729
scene albedo precision [1]	$(7.492 \pm 7.277) \times 10^{-5}$	15572813	$5.492 imes 10^{-5}$	$5.272 imes 10^{-5}$	$1.064 imes10^{-5}$	$1.677 imes10^{-3}$	3.399×10^{-5}	$8.890 imes10^{-5}$
apparent scene pressure [hPa]	825 ± 175	15572813	251	879	130	1.059×10^3	716	968
apparent scene pressure precision [hPa]	0.680 ± 1.012	15572813	0.320	0.384	$7.752 imes 10^{-2}$	46.6	0.294	0.615
chi square [1]	$(0.274 \pm 2.973) \times 10^5$	15572813	$2.881 imes 10^4$	$1.903 imes 10^4$	87.9	$2.958 imes 10^8$	6.813×10^{3}	$3.562 imes 10^4$
number of iterations [1]	3.41 ± 1.00	15572813	1.000	3.00	1.000	14.0	3.00	4.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.570\pm6.767)\times10^{-9}$	15572813	$6.001 imes 10^{-9}$	1.361×10^{-9}	$-2.206 imes10^{-6}$	$2.122 imes 10^{-6}$	$-1.348 imes 10^{-9}$	$4.653 imes 10^{-9}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(2.008 \pm 0.766) \times 10^{-9}$	15572813	1.137×10^{-9}	2.004×10^{-9}	4.539×10^{-10}	$5.897 imes 10^{-9}$	1.392×10^{-9}	2.529×10^{-9}
chi square fluorescence [1]	$(0.795 \pm 1.084) \times 10^5$	15572813	$8.382 imes 10^4$	$4.478 imes 10^4$	119	$2.792 imes 10^6$	1.510×10^4	$9.892 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	15572813	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	15572813	0.0	50.0	45.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(3.948 \pm 6.882) \times 10^{-3}$	15572813	4.895×10^{-3}	3.894×10^{-3}	-8.127×10^{-2}	8.672×10^{-2}	1.482×10^{-3}	6.377×10^{-3}

Table 4: Parameterlist and basic statistics for the analysis for observations in the southern hemisphere								
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.998 ± 0.023	7864239	0.0	1.000	0.350	1.000	1.000	1.000
cloud pressure crb [hPa]	783 ± 201	7864239	293	859	130	1.032×10^{3}	646	939
cloud pressure crb precision [hPa]	3.95 ± 13.36	7864239	2.21	0.928	$2.020 imes 10^{-2}$	1.486×10^{3}	0.479	2.69
cloud fraction crb [1]	0.332 ± 0.312	7864239	0.511	0.233	0.0	1.000	5.120×10^{-2}	0.562
cloud fraction crb precision [1]	$(1.065 \pm 1.285) imes 10^{-4}$	7864239	$6.796 imes 10^{-5}$	$7.592 imes 10^{-5}$	3.262×10^{-7}	$3.294 imes 10^{-2}$	$4.499 imes 10^{-5}$	$1.129 imes10^{-4}$
scene albedo [1]	0.304 ± 0.257	7864239	0.397	0.252	$-2.848 imes 10^{-3}$	6.07	7.322×10^{-2}	0.470
scene albedo precision [1]	$(8.385 \pm 9.109) \times 10^{-5}$	7864239	$5.894 imes10^{-5}$	$5.651 imes 10^{-5}$	$1.180 imes10^{-5}$	$7.269 imes 10^{-3}$	3.596×10^{-5}	$9.490 imes 10^{-5}$
apparent scene pressure [hPa]	805 ± 191	7864239	265	876	130	1.032×10^{3}	688	953
apparent scene pressure precision [hPa]	1.70 ± 2.87	7864239	1.17	0.676	$9.236 imes 10^{-2}$	65.4	0.442	1.61
chi square [1]	$(0.872 \pm 1.071) \times 10^4$	7864239	$1.077 imes 10^4$	5.986×10^{3}	44.6	7.522×10^6	1.712×10^{3}	$1.248 imes 10^4$
number of iterations [1]	2.97 ± 0.65	7864239	0.0	3.00	1.000	14.0	3.00	3.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(4.072 \pm 43.927) \times 10^{-10}$	7864239	$3.053 imes 10^{-9}$	$6.149 imes 10^{-10}$	$-9.970 imes 10^{-7}$	$1.669 imes 10^{-6}$	$-8.871 imes 10^{-10}$	2.166×10^{-9}
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.408\pm0.587) imes10^{-9}$	7864239	$8.212 imes 10^{-10}$	$1.281 imes10^{-9}$	$5.355 imes 10^{-10}$	$5.323 imes 10^{-9}$	$9.227 imes 10^{-10}$	$1.744 imes 10^{-9}$
chi square fluorescence [1]	$(0.370 \pm 0.835) \times 10^5$	7864239	$2.603 imes 10^4$	9.330×10^{3}	96.2	$1.706 imes 10^6$	2.769×10^{3}	$2.880 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	7864239	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	7864239	0.0	50.0	48.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(3.766 \pm 11.062) \times 10^{-3}$	7864239	8.479×10^{-3}	3.850×10^{-3}	-0.184	0.360	-3.823×10^{-4}	8.097×10^{-3}

	Table 5: Parameterlist and	d basic statis	stics for the ana	lysis for observa	tions over water			
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.976 ± 0.082	15653289	0.0	1.000	0.350	1.000	1.000	1.000
cloud pressure crb [hPa]	800 ± 201	15653289	293	872	130	1.032×10^3	669	961
cloud pressure crb precision [hPa]	2.56 ± 10.25	15653289	1.17	0.634	$3.235 imes 10^{-3}$	1.224×10^{3}	0.354	1.52
cloud fraction crb [1]	0.431 ± 0.352	15653289	0.651	0.364	0.0	1.000	$8.958 imes10^{-2}$	0.741
cloud fraction crb precision [1]	$(1.636 \pm 8.032) \times 10^{-4}$	15653289	$7.327 imes 10^{-5}$	$7.036 imes 10^{-5}$	$2.983 imes10^{-7}$	0.101	$3.594 imes10^{-5}$	$1.092 imes 10^{-4}$
scene albedo [1]	0.384 ± 0.305	15653289	0.564	0.340	$-2.848 imes 10^{-3}$	6.07	$8.592 imes10^{-2}$	0.650
scene albedo precision [1]	$(7.794 \pm 8.149) \times 10^{-5}$	15653289	$6.364 imes 10^{-5}$	$5.673 imes 10^{-5}$	$1.064 imes10^{-5}$	$7.269 imes 10^{-3}$	$2.986 imes10^{-5}$	$9.350 imes 10^{-5}$
apparent scene pressure [hPa]	822 ± 189	15653289	262	889	130	1.059×10^{3}	711	973
apparent scene pressure precision [hPa]	1.31 ± 2.29	15653289	0.891	0.546	$7.752 imes 10^{-2}$	65.4	0.334	1.22
chi square [1]	$(0.170 \pm 1.567) \times 10^5$	15653289	$2.117 imes 10^4$	8.415×10^{3}	44.6	$2.958 imes 10^8$	2.497×10^{3}	2.366×10^4
number of iterations [1]	3.07 ± 0.85	15653289	0.0	3.00	1.000	14.0	3.00	3.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(8.011 \pm 52.156) \times 10^{-10}$	15653289	$4.084 imes 10^{-9}$	$7.212 imes 10^{-10}$	$-2.206 imes 10^{-6}$	$1.557 imes 10^{-6}$	$-1.173 imes 10^{-9}$	$2.911 imes10^{-9}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.664 \pm 0.743) \times 10^{-9}$	15653289	1.160×10^{-9}	$1.512 imes 10^{-9}$	4.539×10^{-10}	5.618×10^{-9}	$1.025 imes 10^{-9}$	$2.186 imes 10^{-9}$
chi square fluorescence [1]	$(0.515\pm0.868)\times10^5$	15653289	$5.984 imes 10^4$	$1.996 imes 10^4$	96.2	$2.792 imes 10^6$	5.256×10^3	$6.509 imes 10^4$
degrees of freedom fluorescence [1]	6.00 ± 0.00	15653289	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	15653289	0.0	50.0	48.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(3.841 \pm 9.608) \times 10^{-3}$	15653289	$6.435 imes 10^{-3}$	3.841×10^{-3}	-0.184	0.360	$6.537 imes10^{-4}$	$7.088 imes 10^{-3}$

Table 6: Parameterlist and basic statistics for the an	alveis for observations over land
Table 0. I arameternist and basic statistics for the ana	

Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.944 ± 0.157	5549212	0.0	1.000	0.350	1.000	1.000	1.000
cloud pressure crb [hPa]	752 ± 204	5549212	300	797	130	1.052×10^3	623	923
cloud pressure crb precision [hPa]	2.67 ± 8.39	5549212	1.89	0.905	2.930×10^{-3}	1.404×10^3	0.359	2.25
cloud fraction crb [1]	0.405 ± 0.372	5549212	0.689	0.246	0.0	1.000	7.721×10^{-2}	0.766
cloud fraction crb precision [1]	$(2.112\pm8.181)\times10^{-4}$	5549212	$7.059 imes 10^{-5}$	$1.000 imes 10^{-4}$	$4.383 imes 10^{-9}$	0.133	$7.228 imes 10^{-5}$	$1.429 imes10^{-4}$
scene albedo [1]	0.496 ± 0.241	5549212	0.390	0.438	1.777×10^{-2}	4.36	0.293	0.683
scene albedo precision [1]	$(7.843 \pm 7.393) \times 10^{-5}$	5549212	$4.705 imes 10^{-5}$	4.982×10^{-5}	$1.263 imes 10^{-5}$	1.154×10^{-3}	$3.814 imes 10^{-5}$	$8.519 imes10^{-5}$
apparent scene pressure [hPa]	809 ± 158	5549212	233	851	130	1.052×10^{3}	708	941
apparent scene pressure precision [hPa]	0.447 ± 0.268	5549212	0.206	0.380	$9.886 imes 10^{-2}$	7.64	0.297	0.504
chi square [1]	$(0.300 \pm 3.379) \times 10^5$	5549212	$2.158 imes 10^4$	$1.945 imes 10^4$	196	$1.515 imes 10^8$	1.100×10^4	3.258×10^4
number of iterations [1]	3.67 ± 0.96	5549212	1.000	4.00	1.000	14.0	3.00	4.00
fluorescence [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(1.769 \pm 7.104) \times 10^{-9}$	5549212	$6.265 imes 10^{-9}$	1.692×10^{-9}	-1.331×10^{-6}	$1.669 imes 10^{-6}$	-1.190×10^{-9}	$5.076 imes 10^{-9}$
fluorescence precision [mol s ^{-1} m ^{-2} nm ^{-1} sr ^{-1}]	$(2.089 \pm 0.715) \times 10^{-9}$	5549212	$9.883 imes 10^{-10}$	$2.087 imes 10^{-9}$	4.931×10^{-10}	5.860×10^{-9}	1.590×10^{-9}	$2.579 imes 10^{-9}$
chi square fluorescence [1]	$(0.884 \pm 1.173) \times 10^5$	5549212	$9.705 imes 10^4$	$4.419 imes 10^4$	139	$2.414 imes 10^6$	$1.579 imes 10^4$	$1.128 imes 10^5$
degrees of freedom fluorescence [1]	6.00 ± 0.00	5549212	0.0	6.00	6.00	6.00	6.00	6.00
number of spectral points in retrieval [1]	50.0 ± 0.1	5549212	0.0	50.0	48.0	50.0	50.0	50.0
wavelength calibration offset [nm]	$(3.916 \pm 5.158) \times 10^{-3}$	5549212	4.571×10^{-3}	3.893×10^{-3}	-5.574×10^{-2}	6.201×10^{-2}	1.646×10^{-3}	6.217×10^{-3}

Granule outlines

Figure 1: Outline of the granules.

4 Input data monitoring

Figure 2: Input data per granule

5 Warnings and errors

Figure 3: Fraction of pixels with specific warnings and errors during processing

6 World maps

Figure 4: Map of "Cloud pressure" for 2025-06-11 to 2025-06-12

Figure 5: Map of "Cloud fraction" for 2025-06-11 to 2025-06-12

Figure 6: Map of "Scene albedo" for 2025-06-11 to 2025-06-12

Figure 7: Map of "Apparent scene pressure" for 2025-06-11 to 2025-06-12

Figure 8: Map of "Fluorescence" for 2025-06-11 to 2025-06-12

Figure 9: Map of the number of observations for 2025-06-11 to 2025-06-12

7 Zonal average

Figure 10: Zonal average of "QA value" for 2025-06-11 to 2025-06-12.

Figure 11: Zonal average of "Cloud pressure" for 2025-06-11 to 2025-06-12.

Figure 12: Zonal average of "Cloud pressure precision" for 2025-06-11 to 2025-06-12.

Figure 13: Zonal average of "Cloud fraction" for 2025-06-11 to 2025-06-12.

Figure 14: Zonal average of "Cloud fraction precision" for 2025-06-11 to 2025-06-12.

Figure 15: Zonal average of "Scene albedo" for 2025-06-11 to 2025-06-12.

Figure 16: Zonal average of "Scene albedo precision" for 2025-06-11 to 2025-06-12.

Figure 17: Zonal average of "Apparent scene pressure" for 2025-06-11 to 2025-06-12.

Figure 18: Zonal average of "Apparent scene pressure precision" for 2025-06-11 to 2025-06-12.

Figure 19: Zonal average of " χ^2 " for 2025-06-11 to 2025-06-12.

Figure 20: Zonal average of "Number of iterations" for 2025-06-11 to 2025-06-12.

Figure 21: Zonal average of "Fluorescence" for 2025-06-11 to 2025-06-12.

Figure 22: Zonal average of "Fluorescence precision" for 2025-06-11 to 2025-06-12.

Figure 23: Zonal average of " χ^2 of fluorescence retrieval" for 2025-06-11 to 2025-06-12.

Figure 24: Zonal average of "Degrees of freedom for signal of fluorescence retrieval" for 2025-06-11 to 2025-06-12.

Figure 25: Zonal average of "Number of points in the spectrum" for 2025-06-11 to 2025-06-12.

Figure 26: Zonal average of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-06-11 to 2025-06-12.

8 Histograms

The definitions of the parameters given in this section can be found in section 2.

Figure 27: Histogram of "QA value" for 2025-06-11 to 2025-06-12

Figure 28: Histogram of "Cloud pressure" for 2025-06-11 to 2025-06-12

Figure 29: Histogram of "Cloud pressure precision" for 2025-06-11 to 2025-06-12

Figure 30: Histogram of "Cloud fraction" for 2025-06-11 to 2025-06-12

Figure 31: Histogram of "Cloud fraction precision" for 2025-06-11 to 2025-06-12

Figure 32: Histogram of "Scene albedo" for 2025-06-11 to 2025-06-12

Figure 33: Histogram of "Scene albedo precision" for 2025-06-11 to 2025-06-12

Figure 34: Histogram of "Apparent scene pressure" for 2025-06-11 to 2025-06-12

Figure 35: Histogram of "Apparent scene pressure precision" for 2025-06-11 to 2025-06-12

Figure 36: Histogram of " χ^2 " for 2025-06-11 to 2025-06-12

Figure 37: Histogram of "Number of iterations" for 2025-06-11 to 2025-06-12

Figure 38: Histogram of "Fluorescence" for 2025-06-11 to 2025-06-12

Figure 39: Histogram of "Fluorescence precision" for 2025-06-11 to 2025-06-12

Figure 40: Histogram of " χ^2 of fluorescence retrieval" for 2025-06-11 to 2025-06-12

Figure 41: Histogram of "Degrees of freedom for signal of fluorescence retrieval" for 2025-06-11 to 2025-06-12

Figure 42: Histogram of "Number of points in the spectrum" for 2025-06-11 to 2025-06-12

Figure 43: Histogram of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-06-11 to 2025-06-12

9 Along track statistics

The TROPOMI instrument uses different binned detector rows for different viewing directions. In this section statistics are presented for each of the binned rows in the instrument.

Figure 44: Along track statistics of "QA value" for 2025-06-11 to 2025-06-12

Figure 45: Along track statistics of "Cloud pressure" for 2025-06-11 to 2025-06-12

Figure 46: Along track statistics of "Cloud pressure precision" for 2025-06-11 to 2025-06-12

Figure 47: Along track statistics of "Cloud fraction" for 2025-06-11 to 2025-06-12

Figure 48: Along track statistics of "Cloud fraction precision" for 2025-06-11 to 2025-06-12

Figure 49: Along track statistics of "Scene albedo" for 2025-06-11 to 2025-06-12

Figure 50: Along track statistics of "Scene albedo precision" for 2025-06-11 to 2025-06-12

Figure 51: Along track statistics of "Apparent scene pressure" for 2025-06-11 to 2025-06-12

Figure 52: Along track statistics of "Apparent scene pressure precision" for 2025-06-11 to 2025-06-12

Figure 53: Along track statistics of " χ^2 " for 2025-06-11 to 2025-06-12

Figure 54: Along track statistics of "Number of iterations" for 2025-06-11 to 2025-06-12

Figure 55: Along track statistics of "Fluorescence" for 2025-06-11 to 2025-06-12

Figure 56: Along track statistics of "Fluorescence precision" for 2025-06-11 to 2025-06-12

Figure 57: Along track statistics of " χ^2 of fluorescence retrieval" for 2025-06-11 to 2025-06-12

Figure 58: Along track statistics of "Degrees of freedom for signal of fluorescence retrieval" for 2025-06-11 to 2025-06-12

Figure 59: Along track statistics of "Number of points in the spectrum" for 2025-06-11 to 2025-06-12

Figure 60: Along track statistics of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-06-11 to 2025-06-12

10 Coincidence density

To investigate the relation between parameters scatter density plots are produced. These include some 'hidden' parameters, latitude and the solar- and viewing geometries, in addition to all configured parameters. All combinations of pairs of parameters are included *once*, in one direction alone.

Contents

1	Short Introduction	1
	1.1 The list of parameters	1
2	Definitions	1
3	Granule outlines	8
4	Input data monitoring	9
5	Warnings and errors	10
6	World maps	11
7	Zonal average	17
8	Histograms	34
9	Along track statistics	51
10	Coincidence density	68
11	Copyright information of 'PyCAMA'	68

List of Figures

1	Outline of the granules.	8
2	Input data per granule	9
3	Fraction of pixels with specific warnings and errors during processing	10
4	Map of "Cloud pressure" for 2025-06-11 to 2025-06-12	11
5	Map of "Cloud fraction" for 2025-06-11 to 2025-06-12	12
6	Map of "Scene albedo" for 2025-06-11 to 2025-06-12	13
7	Map of "Apparent scene pressure" for 2025-06-11 to 2025-06-12	14
8	Map of "Fluorescence" for 2025-06-11 to 2025-06-12	15
9	Map of the number of observations for 2025-06-11 to 2025-06-12	16
10	Zonal average of "QA value" for 2025-06-11 to 2025-06-12.	17
11	Zonal average of "Cloud pressure" for 2025-06-11 to 2025-06-12.	18
12	Zonal average of "Cloud pressure precision" for 2025-06-11 to 2025-06-12.	19
13	Zonal average of "Cloud fraction" for 2025-06-11 to 2025-06-12.	20
14	Zonal average of "Cloud fraction precision" for 2025-06-11 to 2025-06-12.	21
15	Zonal average of "Scene albedo" for 2025-06-11 to 2025-06-12.	22
16	Zonal average of "Scene albedo precision" for 2025-06-11 to 2025-06-12.	23
17	Zonal average of "Apparent scene pressure" for 2025-06-11 to 2025-06-12.	24
18	Zonal average of "Apparent scene pressure precision" for 2025-06-11 to 2025-06-12.	25
19	Zonal average of " χ^2 " for 2025-06-11 to 2025-06-12	26
20	Zonal average of "Number of iterations" for 2025-06-11 to 2025-06-12.	27
21	Zonal average of "Fluorescence" for 2025-06-11 to 2025-06-12.	28
22	Zonal average of "Fluorescence precision" for 2025-06-11 to 2025-06-12.	29
23	Zonal average of " χ^2 of fluorescence retrieval" for 2025-06-11 to 2025-06-12	30
24	Zonal average of "Degrees of freedom for signal of fluorescence retrieval" for 2025-06-11 to 2025-06-12.	31
25	Zonal average of "Number of points in the spectrum" for 2025-06-11 to 2025-06-12.	32
26	Zonal average of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-06-11 to 2025-06-12	33
27	Histogram of "QA value" for 2025-06-11 to 2025-06-12	34
28	Histogram of "Cloud pressure" for 2025-06-11 to 2025-06-12	35
29	Histogram of "Cloud pressure precision" for 2025-06-11 to 2025-06-12	36

30	Histogram of "Cloud fraction" for 2025-06-11 to 2025-06-12	37
31	Histogram of "Cloud fraction precision" for 2025-06-11 to 2025-06-12	38
32	Histogram of "Scene albedo" for 2025-06-11 to 2025-06-12	39
33	Histogram of "Scene albedo precision" for 2025-06-11 to 2025-06-12	40
34	Histogram of "Apparent scene pressure" for 2025-06-11 to 2025-06-12	41
35	Histogram of "Apparent scene pressure precision" for 2025-06-11 to 2025-06-12	42
36	Histogram of " χ^2 " for 2025-06-11 to 2025-06-12	43
37	Histogram of "Number of iterations" for 2025-06-11 to 2025-06-12	44
38	Histogram of "Fluorescence" for 2025-06-11 to 2025-06-12	45
39	Histogram of "Fluorescence precision" for 2025-06-11 to 2025-06-12	46
40	Histogram of " χ^2 of fluorescence retrieval" for 2025-06-11 to 2025-06-12	47
41	Histogram of "Degrees of freedom for signal of fluorescence retrieval" for 2025-06-11 to 2025-06-12	48
42	Histogram of "Number of points in the spectrum" for 2025-06-11 to 2025-06-12	49
43	Histogram of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-06-11 to 2025-06-12	50
44	Along track statistics of "QA value" for 2025-06-11 to 2025-06-12	51
45	Along track statistics of "Cloud pressure" for 2025-06-11 to 2025-06-12	52
46	Along track statistics of "Cloud pressure precision" for 2025-06-11 to 2025-06-12	53
47	Along track statistics of "Cloud fraction" for 2025-06-11 to 2025-06-12	54
48	Along track statistics of "Cloud fraction precision" for 2025-06-11 to 2025-06-12	55
49	Along track statistics of "Scene albedo" for 2025-06-11 to 2025-06-12	56
50	Along track statistics of "Scene albedo precision" for 2025-06-11 to 2025-06-12	57
51	Along track statistics of "Apparent scene pressure" for 2025-06-11 to 2025-06-12	58
52	Along track statistics of "Apparent scene pressure precision" for 2025-06-11 to 2025-06-12	59
53	Along track statistics of " χ^2 " for 2025-06-11 to 2025-06-12	60
54	Along track statistics of "Number of iterations" for 2025-06-11 to 2025-06-12	61
55	Along track statistics of "Fluorescence" for 2025-06-11 to 2025-06-12	62
56	Along track statistics of "Fluorescence precision" for 2025-06-11 to 2025-06-12	63
57	Along track statistics of " χ^2 of fluorescence retrieval" for 2025-06-11 to 2025-06-12	64
58	Along track statistics of "Degrees of freedom for signal of fluorescence retrieval" for 2025-06-11 to 2025-06-12	65
59	Along track statistics of "Number of points in the spectrum" for 2025-06-11 to 2025-06-12	66
60	Along track statistics of "Spectral offset ($\lambda_{true} - \lambda_{nominal}$)" for 2025-06-11 to 2025-06-12	67

List of Tables

1	Parameterlist and basic statistics for the analysis
2	Percentile ranges
3	Parameterlist and basic statistics for the analysis for observations in the northern hemisphere
4	Parameterlist and basic statistics for the analysis for observations in the southern hemisphere
5	Parameterlist and basic statistics for the analysis for observations over water
6	Parameterlist and basic statistics for the analysis for observations over land

11 Copyright information of 'PyCAMA'

Copyright © 2005-2023, Maarten Sneep (KNMI).

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
- 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

This software is provided by the copyright holders and contributors "as is" and any express or implied warranties, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose are disclaimed. In no event shall the copyright holder or contributors be liable for any direct, indirect, incidental, special, exemplary, or consequential damages (including, but not limited to, procurement of substitute goods or services; loss of use, data, or profits; or business interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence or otherwise) arising in any way out of the use of this software, even if advised of the possibility of such damage.

Maarten Sneep (maarten.sneep@knmi.nl).