## PyCAMA report generated by tropl2-proc

#### tropl2-proc

#### 2025-06-20 (03:00)

### **1** Short Introduction

#### 1.1 The list of parameters

You may want to keep the list given in table 1 at hand when viewing the results.

### 2 Definitions

The averages shown here are unweighed averages:

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i \tag{1}$$

with N the number of observations in the dataset.

The spread of the measurements is indicated with the variance V(x), or rather the standard deviation  $\sigma(x) = \sqrt{V(x)}$ .

$$V(x) = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2$$
(2)

We also report the more robust statistics median, minimum, maximum, various percentiles and inter quartile range.

The median m is the value of parameter x for which half of the observations of x is smaller than m:

$$P(x \le m) = P(x \ge m) = \int_{-\infty}^{m} f(x) \, \mathrm{d}x = \frac{1}{2}$$
(3)

with f(x) the probability density function.

The median is a special case of a percentile. Instead of  $\frac{1}{2}$  in equation 3, other threshold values can be used. We report results for 1%, 5%, 10%, 15.9%, 25%, 75%, 84.1%, 90%, 95% and 99%. The inter quartile range is the difference between the 75% and 25% percentiles. Similarly the minimum and maximum values correspond to the 0% and 100% percentiles respectively.

For normally distributed parameters the mean and median are the same, while the  $\mu \pm \sigma$  values and the 15.9% and 84.1% percentiles coincide.

To get a measure for the relation of one variable  $x_{(k)}$  with another  $x_{(l)}$ , we calculate the covariance matrix  $C_{kl}$ .

$$C_{kl} = C(x_{(k)}, x_{(l)}) = \frac{1}{N-1} \sum_{i=1}^{N} (x_{(k),i} - \overline{x_{(k)}}) (x_{(l),i} - \overline{x_{(l)}})$$
(4)

Rather than a dimensionally dependent covariance, it is often easier to interpret a correlation matrix  $R_{kl}$ , a matrix of Pearson's *r* coefficients:

$$R_{kl} = R(x_{(k)}, x_{(l)}) = \frac{C_{kl}}{\sqrt{C_{kk}C_{ll}}} = \frac{C_{kl}}{\sqrt{V(x_k)V(x_l)}}$$
(5)

The diagonal elements of the covariance matrix are the variances of the elements,  $V(x_{(k)}) = C_{kk}$  and obviously  $R_{kk} = 1$ .

| Table 1: Parameterlist and b | basic statistics | for t | he anal | lysis |
|------------------------------|------------------|-------|---------|-------|
|------------------------------|------------------|-------|---------|-------|

|                                                                                                                                                     | Table 1: Parameter                 | rlist and basic | statistics for the a   | nalysis                |                        |                        |                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------|------------------------|------------------------|------------------------|------------------------|------------------------|
| Variable                                                                                                                                            | mean $\pm \sigma$                  | Count           | Mode                   | IQR                    | Median                 | Minimum                | Maximum                |
| qa value [1]                                                                                                                                        | $0.979 \pm 0.086$                  | 18581693        | 0.995                  | 0.0                    | 1.000                  | 0.350                  | 1.000                  |
| cloud pressure crb [hPa]                                                                                                                            | $793\pm203$                        | 18581693        | $1.015 	imes 10^3$     | 293                    | 863                    | 130                    | $1.059 \times 10^{3}$  |
| cloud pressure crb precision [hPa]                                                                                                                  | $2.58 \pm 8.86$                    | 18581693        | 0.750                  | 1.62                   | 0.766                  | $1.465 	imes 10^{-3}$  | $1.575 \times 10^{3}$  |
| cloud fraction crb [1]                                                                                                                              | $0.393 \pm 0.346$                  | 18581693        | 0.996                  | 0.604                  | 0.282                  | 0.0                    | 1.000                  |
| cloud fraction crb precision [1]                                                                                                                    | $(1.721 \pm 8.331) \times 10^{-4}$ | 18581693        | $2.500	imes10^{-4}$    | $8.216	imes10^{-5}$    | $8.425 	imes 10^{-5}$  | $3.823	imes10^{-8}$    | 0.416                  |
| scene albedo [1]                                                                                                                                    | $0.405 \pm 0.283$                  | 18581693        | $1.500	imes10^{-2}$    | 0.464                  | 0.373                  | $-2.802 	imes 10^{-3}$ | 4.67                   |
| scene albedo precision [1]                                                                                                                          | $(7.793 \pm 7.982) \times 10^{-5}$ | 18581693        | $2.500	imes10^{-4}$    | $5.588	imes10^{-5}$    | $5.305 	imes 10^{-5}$  | $1.099\times10^{-5}$   | $5.569 \times 10^{-3}$ |
| apparent scene pressure [hPa]                                                                                                                       | $830\pm177$                        | 18581693        | $1.016 	imes 10^3$     | 237                    | 890                    | 130                    | $1.061 \times 10^{3}$  |
| apparent scene pressure precision [hPa]                                                                                                             | $1.04 \pm 1.76$                    | 18581693        | 0.500                  | 0.591                  | 0.463                  | $7.315\times10^{-2}$   | 64.5                   |
| chi square [1]                                                                                                                                      | $(0.220 \pm 5.234) \times 10^5$    | 18581693        | 0.150                  | $2.355 	imes 10^4$     | $1.274 	imes 10^4$     | 45.8                   | $5.209 	imes 10^8$     |
| number of iterations [1]                                                                                                                            | $3.22\pm0.87$                      | 18581693        | 3.23                   | 1.000                  | 3.00                   | 1.000                  | 14.0                   |
| fluorescence [mol s <sup><math>-1</math></sup> m <sup><math>-2</math></sup> nm <sup><math>-1</math></sup> sr <sup><math>-1</math></sup> ]           | $(1.047 \pm 6.182) \times 10^{-9}$ | 18581693        | $7.500 	imes 10^{-10}$ | $4.577	imes10^{-9}$    | $9.282 	imes 10^{-10}$ | $-1.557\times10^{-6}$  | $1.894	imes10^{-6}$    |
| fluorescence precision [mol s <sup><math>-1</math></sup> m <sup><math>-2</math></sup> nm <sup><math>-1</math></sup> sr <sup><math>-1</math></sup> ] | $(1.782 \pm 0.761) \times 10^{-9}$ | 18581693        | $8.500 	imes 10^{-10}$ | $1.183 	imes 10^{-9}$  | $1.736 	imes 10^{-9}$  | $4.646 	imes 10^{-10}$ | $5.917	imes10^{-9}$    |
| chi square fluorescence [1]                                                                                                                         | $(0.680 \pm 1.063) \times 10^5$    | 18581693        | 750                    | $7.650 	imes 10^4$     | $2.926 	imes 10^4$     | 98.9                   | $4.698 	imes 10^6$     |
| degrees of freedom fluorescence [1]                                                                                                                 | $6.00\pm0.00$                      | 18581693        | 5.95                   | 0.0                    | 6.00                   | 6.00                   | 6.00                   |
| number of spectral points in retrieval [1]                                                                                                          | $50.0 \pm 0.1$                     | 18581693        | 49.7                   | 0.0                    | 50.0                   | 45.0                   | 50.0                   |
| wavelength calibration offset [nm]                                                                                                                  | $(4.021 \pm 8.663) \times 10^{-3}$ | 18581693        | $3.600 \times 10^{-3}$ | $5.954 \times 10^{-3}$ | $4.023 \times 10^{-3}$ | -0.152                 | 0.218                  |

|                                                                                                                                                     |                         |                         | Table 2:                | Percentile rang         | es                      |                        |                        |                        |                        |                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|
| Variable                                                                                                                                            | 1 %                     | 5%                      | 10 %                    | 15.9 %                  | 25 %                    | 75 %                   | 84.1 %                 | 90%                    | 95 %                   | 99 %                   |
| qa value [1]                                                                                                                                        | 0.500                   | 0.900                   | 1.000                   | 1.000                   | 1.000                   | 1.000                  | 1.000                  | 1.000                  | 1.000                  | 1.000                  |
| cloud pressure crb [hPa]                                                                                                                            | 262                     | 381                     | 468                     | 553                     | 665                     | 958                    | 984                    | $1.002 \times 10^3$    | $1.013 \times 10^3$    | $1.021 \times 10^3$    |
| cloud pressure crb precision [hPa]                                                                                                                  | 0.210                   | 0.247                   | 0.277                   | 0.312                   | 0.385                   | 2.00                   | 3.26                   | 5.00                   | 9.17                   | 28.7                   |
| cloud fraction crb [1]                                                                                                                              | $1.589	imes10^{-3}$     | $1.127	imes10^{-2}$     | $2.310\times10^{-2}$    | $4.109 	imes 10^{-2}$   | $7.784	imes10^{-2}$     | 0.682                  | 0.873                  | 1.000                  | 1.000                  | 1.000                  |
| cloud fraction crb precision [1]                                                                                                                    | $2.099 	imes 10^{-5}$   | $2.465	imes10^{-5}$     | $2.879	imes10^{-5}$     | $3.506 	imes 10^{-5}$   | $5.003 	imes 10^{-5}$   | $1.322 	imes 10^{-4}$  | $2.129 	imes 10^{-4}$  | $3.176 	imes 10^{-4}$  | $5.199	imes10^{-4}$    | $1.164 \times 10^{-3}$ |
| scene albedo [1]                                                                                                                                    | $9.589 	imes 10^{-3}$   | $2.097	imes10^{-2}$     | $3.876 	imes 10^{-2}$   | $7.232 \times 10^{-2}$  | 0.162                   | 0.627                  | 0.739                  | 0.809                  | 0.881                  | 1.01                   |
| scene albedo precision [1]                                                                                                                          | $1.352 \times 10^{-5}$  | $1.657 \times 10^{-5}$  | $2.099 \times 10^{-5}$  | $2.749 	imes 10^{-5}$   | $3.454 \times 10^{-5}$  | $9.041 \times 10^{-5}$ | $1.171 \times 10^{-4}$ | $1.567 	imes 10^{-4}$  | $2.285 	imes 10^{-4}$  | $4.202 \times 10^{-4}$ |
| apparent scene pressure [hPa]                                                                                                                       | 334                     | 451                     | 548                     | 633                     | 732                     | 969                    | 991                    | $1.006 \times 10^{3}$  | $1.014 \times 10^{3}$  | $1.022 \times 10^{3}$  |
| apparent scene pressure precision [hPa]                                                                                                             | 0.215                   | 0.246                   | 0.270                   | 0.291                   | 0.324                   | 0.915                  | 1.48                   | 2.30                   | 3.92                   | 8.74                   |
| chi square [1]                                                                                                                                      | 239                     | 530                     | $1.002 \times 10^{3}$   | $1.772 \times 10^{3}$   | $3.567 \times 10^{3}$   | $2.711 \times 10^{4}$  | $3.570 \times 10^{4}$  | $4.313 \times 10^{4}$  | $5.177 \times 10^{4}$  | $6.918 	imes 10^4$     |
| number of iterations [1]                                                                                                                            | 2.00                    | 2.00                    | 2.00                    | 3.00                    | 3.00                    | 4.00                   | 4.00                   | 4.00                   | 5.00                   | 6.00                   |
| fluorescence [mol s <sup><math>-1</math></sup> m <sup><math>-2</math></sup> nm <sup><math>-1</math></sup> sr <sup><math>-1</math></sup> ]           | $-1.515 	imes 10^{-8}$  | $-7.516 \times 10^{-9}$ | $-4.485 \times 10^{-9}$ | $-2.714 \times 10^{-9}$ | $-1.177 \times 10^{-9}$ | $3.400 \times 10^{-9}$ | $5.219 	imes 10^{-9}$  | $7.054 \times 10^{-9}$ | $9.738 	imes 10^{-9}$  | $1.601 \times 10^{-8}$ |
| fluorescence precision [mol s <sup><math>-1</math></sup> m <sup><math>-2</math></sup> nm <sup><math>-1</math></sup> sr <sup><math>-1</math></sup> ] | $6.765 	imes 10^{-10}$  | $7.826 	imes 10^{-10}$  | $8.585 	imes 10^{-10}$  | $9.406 \times 10^{-10}$ | $1.110	imes10^{-9}$     | $2.293 	imes 10^{-9}$  | $2.575 \times 10^{-9}$ | $2.811\times10^{-9}$   | $3.155 \times 10^{-9}$ | $3.775 \times 10^{-9}$ |
| chi square fluorescence [1]                                                                                                                         | 402                     | $1.034 \times 10^{3}$   | $2.054 \times 10^{3}$   | $3.736 \times 10^{3}$   | $7.551 \times 10^{3}$   | $8.405 \times 10^{4}$  | $1.225 \times 10^{5}$  | $1.707 \times 10^{5}$  | $2.693 \times 10^{5}$  | $5.181 \times 10^{5}$  |
| degrees of freedom fluorescence [1]                                                                                                                 | 6.00                    | 6.00                    | 6.00                    | 6.00                    | 6.00                    | 6.00                   | 6.00                   | 6.00                   | 6.00                   | 6.00                   |
| number of spectral points in retrieval [1]                                                                                                          | 50.0                    | 50.0                    | 50.0                    | 50.0                    | 50.0                    | 50.0                   | 50.0                   | 50.0                   | 50.0                   | 50.0                   |
| wavelength calibration offset [nm]                                                                                                                  | $-2.407 \times 10^{-2}$ | $-8.815 \times 10^{-3}$ | $-3.719 \times 10^{-3}$ | $-1.052 \times 10^{-3}$ | $1.079 \times 10^{-3}$  | $7.033 \times 10^{-3}$ | $9.184 \times 10^{-3}$ | $1.185	imes10^{-2}$    | $1.686	imes10^{-2}$    | $3.141 \times 10^{-2}$ |

| Table 3                                                                                                                                             | 3: Parameterlist and basic s        | tatistics for | the analysis for       | observations in        | the northern hen        | nisphere               |                         |                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|---------------|------------------------|------------------------|-------------------------|------------------------|-------------------------|------------------------|
| Variable                                                                                                                                            | mean $\pm \sigma$                   | Count         | IQR                    | Median                 | Minimum                 | Maximum                | 25 % percentile         | 75 % percentile        |
| qa value [1]                                                                                                                                        | $0.969 \pm 0.102$                   | 12403255      | 0.0                    | 1.000                  | 0.350                   | 1.000                  | 1.000                   | 1.000                  |
| cloud pressure crb [hPa]                                                                                                                            | $792\pm205$                         | 12403255      | 304                    | 856                    | 130                     | $1.059 \times 10^{3}$  | 659                     | 963                    |
| cloud pressure crb precision [hPa]                                                                                                                  | $1.99\pm6.32$                       | 12403255      | 1.36                   | 0.686                  | $1.465 \times 10^{-3}$  | $1.575 \times 10^{3}$  | 0.344                   | 1.70                   |
| cloud fraction crb [1]                                                                                                                              | $0.425 \pm 0.356$                   | 12403255      | 0.654                  | 0.321                  | 0.0                     | 1.000                  | $9.696 	imes 10^{-2}$   | 0.751                  |
| cloud fraction crb precision [1]                                                                                                                    | $(2.061 \pm 10.136) \times 10^{-4}$ | 12403255      | $1.025 	imes 10^{-4}$  | $9.367 \times 10^{-5}$ | $3.823 	imes 10^{-8}$   | 0.416                  | $5.370 	imes 10^{-5}$   | $1.562	imes10^{-4}$    |
| scene albedo [1]                                                                                                                                    | $0.458 \pm 0.277$                   | 12403255      | 0.450                  | 0.444                  | $-1.343 \times 10^{-3}$ | 3.62                   | 0.238                   | 0.688                  |
| scene albedo precision [1]                                                                                                                          | $(7.567 \pm 7.559) \times 10^{-5}$  | 12403255      | $5.380 	imes 10^{-5}$  | $5.209 	imes 10^{-5}$  | $1.099	imes10^{-5}$     | $1.312 \times 10^{-3}$ | $3.443 \times 10^{-5}$  | $8.823 	imes 10^{-5}$  |
| apparent scene pressure [hPa]                                                                                                                       | $835 \pm 170$                       | 12403255      | 239                    | 892                    | 130                     | $1.061 \times 10^{3}$  | 734                     | 973                    |
| apparent scene pressure precision [hPa]                                                                                                             | $0.696 \pm 0.921$                   | 12403255      | 0.357                  | 0.393                  | $7.315 	imes 10^{-2}$   | 49.4                   | 0.302                   | 0.659                  |
| chi square [1]                                                                                                                                      | $(0.285 \pm 6.405) \times 10^5$     | 12403255      | $2.782 	imes 10^4$     | $1.893 	imes 10^4$     | 86.2                    | $5.209 \times 10^{8}$  | $6.171 \times 10^{3}$   | $3.400 \times 10^4$    |
| number of iterations [1]                                                                                                                            | $3.36 \pm 0.94$                     | 12403255      | 1.000                  | 3.00                   | 1.000                   | 14.0                   | 3.00                    | 4.00                   |
| fluorescence [mol s <sup><math>-1</math></sup> m <sup><math>-2</math></sup> nm <sup><math>-1</math></sup> sr <sup><math>-1</math></sup> ]           | $(1.400\pm 6.967) 	imes 10^{-9}$    | 12403255      | $5.696 \times 10^{-9}$ | $1.244 \times 10^{-9}$ | $-1.557 \times 10^{-6}$ | $1.894	imes10^{-6}$    | $-1.379 \times 10^{-9}$ | $4.317 	imes 10^{-9}$  |
| fluorescence precision [mol s <sup><math>-1</math></sup> m <sup><math>-2</math></sup> nm <sup><math>-1</math></sup> sr <sup><math>-1</math></sup> ] | $(1.972 \pm 0.762) \times 10^{-9}$  | 12403255      | $1.099 \times 10^{-9}$ | $1.970 	imes 10^{-9}$  | $4.646 	imes 10^{-10}$  | $5.917 	imes 10^{-9}$  | $1.343 \times 10^{-9}$  | $2.443 \times 10^{-9}$ |
| chi square fluorescence [1]                                                                                                                         | $(0.835 \pm 1.157) \times 10^5$     | 12403255      | $8.642 \times 10^{4}$  | $4.655 \times 10^{4}$  | 156                     | $4.698 \times 10^{6}$  | $1.543 \times 10^{4}$   | $1.018 	imes 10^5$     |
| degrees of freedom fluorescence [1]                                                                                                                 | $6.00\pm0.00$                       | 12403255      | 0.0                    | 6.00                   | 6.00                    | 6.00                   | 6.00                    | 6.00                   |
| number of spectral points in retrieval [1]                                                                                                          | $50.0 \pm 0.1$                      | 12403255      | 0.0                    | 50.0                   | 45.0                    | 50.0                   | 50.0                    | 50.0                   |
| wavelength calibration offset [nm]                                                                                                                  | $(4.101 \pm 6.822) \times 10^{-3}$  | 12403255      | $5.014 \times 10^{-3}$ | $4.048 \times 10^{-3}$ | -0.147                  | $8.924 	imes 10^{-2}$  | $1.584 \times 10^{-3}$  | $6.598 \times 10^{-3}$ |

| Table 4                                                                                                                                             | 4: Parameterlist and basic s         | tatistics for | the analysis for       | observations in        | the southern her        | nisphere               |                         |                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------|------------------------|------------------------|-------------------------|------------------------|-------------------------|------------------------|
| Variable                                                                                                                                            | mean $\pm \sigma$                    | Count         | IQR                    | Median                 | Minimum                 | Maximum                | 25 % percentile         | 75 % percentile        |
| qa value [1]                                                                                                                                        | $0.998 \pm 0.024$                    | 6178438       | 0.0                    | 1.000                  | 0.350                   | 1.000                  | 1.000                   | 1.000                  |
| cloud pressure crb [hPa]                                                                                                                            | $795\pm200$                          | 6178438       | 269                    | 872                    | 130                     | $1.032 \times 10^{3}$  | 678                     | 948                    |
| cloud pressure crb precision [hPa]                                                                                                                  | $3.75 \pm 12.39$                     | 6178438       | 2.38                   | 0.962                  | $3.455 \times 10^{-2}$  | $1.247 \times 10^{3}$  | 0.478                   | 2.85                   |
| cloud fraction crb [1]                                                                                                                              | $0.327 \pm 0.317$                    | 6178438       | 0.514                  | 0.212                  | 0.0                     | 1.000                  | $4.715 	imes 10^{-2}$   | 0.561                  |
| cloud fraction crb precision [1]                                                                                                                    | $(1.038 \pm 1.333) \times 10^{-4}$   | 6178438       | $6.568	imes10^{-5}$    | $7.306\times10^{-5}$   | $1.363	imes10^{-6}$     | $3.846 \times 10^{-2}$ | $4.363 	imes 10^{-5}$   | $1.093 	imes 10^{-4}$  |
| scene albedo [1]                                                                                                                                    | $0.299 \pm 0.265$                    | 6178438       | 0.409                  | 0.237                  | $-2.802 \times 10^{-3}$ | 4.67                   | $6.149 	imes 10^{-2}$   | 0.470                  |
| scene albedo precision [1]                                                                                                                          | $(8.245 \pm 8.752) \times 10^{-5}$   | 6178438       | $6.089	imes10^{-5}$    | $5.516	imes10^{-5}$    | $1.185	imes10^{-5}$     | $5.569 \times 10^{-3}$ | $3.475 \times 10^{-5}$  | $9.564	imes10^{-5}$    |
| apparent scene pressure [hPa]                                                                                                                       | $818 \pm 190$                        | 6178438       | 235                    | 888                    | 130                     | $1.032 \times 10^3$    | 725                     | 960                    |
| apparent scene pressure precision [hPa]                                                                                                             | $1.73 \pm 2.64$                      | 6178438       | 1.38                   | 0.705                  | 0.105                   | 64.5                   | 0.437                   | 1.82                   |
| chi square [1]                                                                                                                                      | $(0.891 \pm 0.975) 	imes 10^4$       | 6178438       | $1.159 	imes 10^4$     | $5.755 \times 10^{3}$  | 45.8                    | $8.840 	imes 10^5$     | $1.507 \times 10^{3}$   | $1.309 \times 10^4$    |
| number of iterations [1]                                                                                                                            | $2.95\pm0.64$                        | 6178438       | 0.0                    | 3.00                   | 1.000                   | 14.0                   | 3.00                    | 3.00                   |
| fluorescence [mol s <sup><math>-1</math></sup> m <sup><math>-2</math></sup> nm <sup><math>-1</math></sup> sr <sup><math>-1</math></sup> ]           | $(3.376 \pm 40.929) \times 10^{-10}$ | 6178438       | $2.977 \times 10^{-9}$ | $5.613 	imes 10^{-10}$ | $-4.107 	imes 10^{-7}$  | $4.099 	imes 10^{-7}$  | $-9.141 	imes 10^{-10}$ | $2.063 	imes 10^{-9}$  |
| fluorescence precision [mol s <sup><math>-1</math></sup> m <sup><math>-2</math></sup> nm <sup><math>-1</math></sup> sr <sup><math>-1</math></sup> ] | $(1.401 \pm 0.598) \times 10^{-9}$   | 6178438       | $8.503 	imes 10^{-10}$ | $1.257 	imes 10^{-9}$  | $5.364 	imes 10^{-10}$  | $5.127 	imes 10^{-9}$  | $9.053 	imes 10^{-10}$  | $1.756 	imes 10^{-9}$  |
| chi square fluorescence [1]                                                                                                                         | $(0.368 \pm 0.754) \times 10^5$      | 6178438       | $2.845 	imes 10^4$     | $9.259 \times 10^{3}$  | 98.9                    | $1.502 \times 10^{6}$  | $2.491 \times 10^{3}$   | $3.095 	imes 10^4$     |
| degrees of freedom fluorescence [1]                                                                                                                 | $6.00\pm0.00$                        | 6178438       | 0.0                    | 6.00                   | 6.00                    | 6.00                   | 6.00                    | 6.00                   |
| number of spectral points in retrieval [1]                                                                                                          | $50.0 \pm 0.1$                       | 6178438       | 0.0                    | 50.0                   | 48.0                    | 50.0                   | 50.0                    | 50.0                   |
| wavelength calibration offset [nm]                                                                                                                  | $(3.860 \pm 11.500) \times 10^{-3}$  | 6178438       | $8.879 \times 10^{-3}$ | $3.939 \times 10^{-3}$ | -0.152                  | 0.218                  | $-5.194\times10^{-4}$   | $8.359 \times 10^{-3}$ |

|                                                                                                                                                     | Table 5: Parameterlist and           | d basic statis | stics for the ana      | lysis for observa      | ations over water       |                       |                        |                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------|------------------------|------------------------|-------------------------|-----------------------|------------------------|-----------------------|
| Variable                                                                                                                                            | mean $\pm \sigma$                    | Count          | IQR                    | Median                 | Minimum                 | Maximum               | 25 % percentile        | 75 % percentile       |
| qa value [1]                                                                                                                                        | $0.985 \pm 0.056$                    | 12003887       | 0.0                    | 1.000                  | 0.350                   | 1.000                 | 1.000                  | 1.000                 |
| cloud pressure crb [hPa]                                                                                                                            | $820\pm198$                          | 12003887       | 261                    | 896                    | 130                     | $1.032 \times 10^{3}$ | 712                    | 972                   |
| cloud pressure crb precision [hPa]                                                                                                                  | $2.63 \pm 9.67$                      | 12003887       | 1.48                   | 0.710                  | $1.465 \times 10^{-3}$  | 633                   | 0.388                  | 1.87                  |
| cloud fraction crb [1]                                                                                                                              | $0.388 \pm 0.339$                    | 12003887       | 0.593                  | 0.296                  | 0.0                     | 1.000                 | $7.276\times10^{-2}$   | 0.666                 |
| cloud fraction crb precision [1]                                                                                                                    | $(1.655 \pm 8.875) \times 10^{-4}$   | 12003887       | $8.231 	imes 10^{-5}$  | $6.763	imes10^{-5}$    | $1.310	imes10^{-7}$     | 0.416                 | $3.566 \times 10^{-5}$ | $1.180	imes10^{-4}$   |
| scene albedo [1]                                                                                                                                    | $0.361 \pm 0.295$                    | 12003887       | 0.534                  | 0.310                  | $-2.802 \times 10^{-3}$ | 4.22                  | $7.512\times10^{-2}$   | 0.610                 |
| scene albedo precision [1]                                                                                                                          | $(7.481 \pm 7.731) \times 10^{-5}$   | 12003887       | $6.212 	imes 10^{-5}$  | $5.428	imes10^{-5}$    | $1.099\times 10^{-5}$   | $5.569	imes10^{-3}$   | $2.890\times10^{-5}$   | $9.102 	imes 10^{-5}$ |
| apparent scene pressure [hPa]                                                                                                                       | $844 \pm 183$                        | 12003887       | 222                    | 912                    | 130                     | $1.060 \times 10^3$   | 762                    | 984                   |
| apparent scene pressure precision [hPa]                                                                                                             | $1.34 \pm 2.12$                      | 12003887       | 0.998                  | 0.571                  | 0.105                   | 64.5                  | 0.347                  | 1.35                  |
| chi square [1]                                                                                                                                      | $(0.171 \pm 2.134) \times 10^5$      | 12003887       | $2.123 	imes 10^4$     | $8.387 	imes 10^3$     | 45.8                    | $2.741 	imes 10^8$    | $2.273 \times 10^3$    | $2.350 	imes 10^4$    |
| number of iterations [1]                                                                                                                            | $3.03\pm0.81$                        | 12003887       | 0.0                    | 3.00                   | 1.000                   | 14.0                  | 3.00                   | 3.00                  |
| fluorescence [mol s <sup><math>-1</math></sup> m <sup><math>-2</math></sup> nm <sup><math>-1</math></sup> sr <sup><math>-1</math></sup> ]           | $(6.959 \pm 53.180) \times 10^{-10}$ | 12003887       | $3.891	imes10^{-9}$    | $6.514 	imes 10^{-10}$ | $-1.557 	imes 10^{-6}$  | $1.894	imes10^{-6}$   | $-1.171 	imes 10^{-9}$ | $2.720 	imes 10^{-9}$ |
| fluorescence precision [mol s <sup><math>-1</math></sup> m <sup><math>-2</math></sup> nm <sup><math>-1</math></sup> sr <sup><math>-1</math></sup> ] | $(1.625 \pm 0.709) \times 10^{-9}$   | 12003887       | $1.111 	imes 10^{-9}$  | $1.490 	imes 10^{-9}$  | $4.928	imes10^{-10}$    | $5.900 	imes 10^{-9}$ | $1.013\times10^{-9}$   | $2.124 	imes 10^{-9}$ |
| chi square fluorescence [1]                                                                                                                         | $(0.507\pm 0.821)\times 10^5$        | 12003887       | $6.204 	imes 10^4$     | $1.992 	imes 10^4$     | 98.9                    | $4.698	imes10^6$      | $5.059 	imes 10^3$     | $6.710	imes10^4$      |
| degrees of freedom fluorescence [1]                                                                                                                 | $6.00\pm0.00$                        | 12003887       | 0.0                    | 6.00                   | 6.00                    | 6.00                  | 6.00                   | 6.00                  |
| number of spectral points in retrieval [1]                                                                                                          | $50.0 \pm 0.1$                       | 12003887       | 0.0                    | 50.0                   | 47.0                    | 50.0                  | 50.0                   | 50.0                  |
| wavelength calibration offset [nm]                                                                                                                  | $(3.951 \pm 9.912) \times 10^{-3}$   | 12003887       | $6.684 \times 10^{-3}$ | $3.964 	imes 10^{-3}$  | -0.152                  | 0.218                 | $6.393 	imes 10^{-4}$  | $7.323\times10^{-3}$  |

| Table 6: Parameterlist and basic statistics for the ar | alvsis for observations o | ver land |
|--------------------------------------------------------|---------------------------|----------|

| Variable                                                                                                                                  | mean $\pm \sigma$                  | Count   | IQR                    | Median                 | Minimum                | Maximum               | 25 % percentile        | 75 % percentile        |
|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|---------|------------------------|------------------------|------------------------|-----------------------|------------------------|------------------------|
| qa value [1]                                                                                                                              | $0.956 \pm 0.141$                  | 4637964 | 0.0                    | 1.000                  | 0.350                  | 1.000                 | 1.000                  | 1.000                  |
| cloud pressure crb [hPa]                                                                                                                  | $742\pm202$                        | 4637964 | 311                    | 785                    | 130                    | $1.049 \times 10^3$   | 601                    | 913                    |
| cloud pressure crb precision [hPa]                                                                                                        | $2.58\pm7.09$                      | 4637964 | 1.96                   | 0.989                  | $3.357 	imes 10^{-3}$  | $1.247 \times 10^3$   | 0.383                  | 2.34                   |
| cloud fraction crb [1]                                                                                                                    | $0.398 \pm 0.367$                  | 4637964 | 0.660                  | 0.239                  | 0.0                    | 1.000                 | $7.829\times10^{-2}$   | 0.738                  |
| cloud fraction crb precision [1]                                                                                                          | $(1.930\pm7.405)\times10^{-4}$     | 4637964 | $8.794	imes10^{-5}$    | $1.000 	imes 10^{-4}$  | $3.823	imes10^{-8}$    | 0.406                 | $7.542 	imes 10^{-5}$  | $1.634	imes10^{-4}$    |
| scene albedo [1]                                                                                                                          | $0.494 \pm 0.239$                  | 4637964 | 0.370                  | 0.437                  | $2.473\times10^{-2}$   | 4.67                  | 0.297                  | 0.667                  |
| scene albedo precision [1]                                                                                                                | $(8.521 \pm 8.424) \times 10^{-5}$ | 4637964 | $5.428 	imes 10^{-5}$  | $5.140 	imes 10^{-5}$  | $1.265\times10^{-5}$   | $1.287 	imes 10^{-3}$ | $3.849 \times 10^{-5}$ | $9.277 	imes 10^{-5}$  |
| apparent scene pressure [hPa]                                                                                                             | $798 \pm 161$                      | 4637964 | 233                    | 837                    | 130                    | $1.049 \times 10^3$   | 699                    | 932                    |
| apparent scene pressure precision [hPa]                                                                                                   | $0.479 \pm 0.327$                  | 4637964 | 0.223                  | 0.382                  | $7.372\times10^{-2}$   | 6.54                  | 0.296                  | 0.520                  |
| chi square [1]                                                                                                                            | $(0.319 \pm 8.892) \times 10^5$    | 4637964 | $2.197 	imes 10^4$     | $1.943 	imes 10^4$     | 147                    | $5.209 	imes 10^8$    | $9.668 \times 10^{3}$  | $3.164 \times 10^4$    |
| number of iterations [1]                                                                                                                  | $3.62 \pm 0.88$                    | 4637964 | 1.000                  | 4.00                   | 2.00                   | 14.0                  | 3.00                   | 4.00                   |
| fluorescence [mol s <sup><math>-1</math></sup> m <sup><math>-2</math></sup> nm <sup><math>-1</math></sup> sr <sup><math>-1</math></sup> ] | $(1.467 \pm 7.046) \times 10^{-9}$ | 4637964 | $6.047	imes10^{-9}$    | $1.452	imes10^{-9}$    | $-1.467 	imes 10^{-6}$ | $1.361	imes10^{-6}$   | $-1.395 	imes 10^{-9}$ | $4.652 	imes 10^{-9}$  |
| fluorescence precision [mol $s^{-1} m^{-2} nm^{-1} sr^{-1}$ ]                                                                             | $(2.059 \pm 0.757) \times 10^{-9}$ | 4637964 | $1.043 	imes 10^{-9}$  | $2.083 	imes 10^{-9}$  | $4.646 	imes 10^{-10}$ | $5.917	imes10^{-9}$   | $1.547	imes10^{-9}$    | $2.590	imes10^{-9}$    |
| chi square fluorescence [1]                                                                                                               | $(0.940 \pm 1.239) \times 10^5$    | 4637964 | $1.006 \times 10^5$    | $4.751 	imes 10^4$     | 148                    | $2.147	imes10^6$      | $1.729 	imes 10^4$     | $1.179	imes10^5$       |
| degrees of freedom fluorescence [1]                                                                                                       | $6.00\pm0.00$                      | 4637964 | 0.0                    | 6.00                   | 6.00                   | 6.00                  | 6.00                   | 6.00                   |
| number of spectral points in retrieval [1]                                                                                                | $50.0 \pm 0.1$                     | 4637964 | 0.0                    | 50.0                   | 48.0                   | 50.0                  | 50.0                   | 50.0                   |
| wavelength calibration offset [nm]                                                                                                        | $(4.095\pm5.132)\times10^{-3}$     | 4637964 | $4.623 \times 10^{-3}$ | $4.053 \times 10^{-3}$ | $-8.114 	imes 10^{-2}$ | 0.105                 | $1.790 	imes 10^{-3}$  | $6.412 \times 10^{-3}$ |
|                                                                                                                                           |                                    |         |                        |                        |                        |                       |                        |                        |

# Granule outlines



Figure 1: Outline of the granules.

## 4 Input data monitoring



Figure 2: Input data per granule

# 5 Warnings and errors



Figure 3: Fraction of pixels with specific warnings and errors during processing

# 6 World maps



Figure 4: Map of "Cloud pressure" for 2025-06-18 to 2025-06-19





Figure 5: Map of "Cloud fraction" for 2025-06-18 to 2025-06-19





Figure 6: Map of "Scene albedo" for 2025-06-18 to 2025-06-19





Figure 7: Map of "Apparent scene pressure" for 2025-06-18 to 2025-06-19





Figure 8: Map of "Fluorescence" for 2025-06-18 to 2025-06-19



Figure 9: Map of the number of observations for 2025-06-18 to 2025-06-19

# 7 Zonal average



Figure 10: Zonal average of "QA value" for 2025-06-18 to 2025-06-19.



Figure 11: Zonal average of "Cloud pressure" for 2025-06-18 to 2025-06-19.



Figure 12: Zonal average of "Cloud pressure precision" for 2025-06-18 to 2025-06-19.



Figure 13: Zonal average of "Cloud fraction" for 2025-06-18 to 2025-06-19.



Figure 14: Zonal average of "Cloud fraction precision" for 2025-06-18 to 2025-06-19.



Figure 15: Zonal average of "Scene albedo" for 2025-06-18 to 2025-06-19.



Figure 16: Zonal average of "Scene albedo precision" for 2025-06-18 to 2025-06-19.



Figure 17: Zonal average of "Apparent scene pressure" for 2025-06-18 to 2025-06-19.



Figure 18: Zonal average of "Apparent scene pressure precision" for 2025-06-18 to 2025-06-19.



Figure 19: Zonal average of " $\chi^2$ " for 2025-06-18 to 2025-06-19.



Figure 20: Zonal average of "Number of iterations" for 2025-06-18 to 2025-06-19.



Figure 21: Zonal average of "Fluorescence" for 2025-06-18 to 2025-06-19.



Figure 22: Zonal average of "Fluorescence precision" for 2025-06-18 to 2025-06-19.



Figure 23: Zonal average of " $\chi^2$  of fluorescence retrieval" for 2025-06-18 to 2025-06-19.



Figure 24: Zonal average of "Degrees of freedom for signal of fluorescence retrieval" for 2025-06-18 to 2025-06-19.



Figure 25: Zonal average of "Number of points in the spectrum" for 2025-06-18 to 2025-06-19.



Figure 26: Zonal average of "Spectral offset ( $\lambda_{true} - \lambda_{nominal}$ )" for 2025-06-18 to 2025-06-19.

## 8 Histograms

The definitions of the parameters given in this section can be found in section 2.



Figure 27: Histogram of "QA value" for 2025-06-18 to 2025-06-19



Figure 28: Histogram of "Cloud pressure" for 2025-06-18 to 2025-06-19



Figure 29: Histogram of "Cloud pressure precision" for 2025-06-18 to 2025-06-19



Figure 30: Histogram of "Cloud fraction" for 2025-06-18 to 2025-06-19



Figure 31: Histogram of "Cloud fraction precision" for 2025-06-18 to 2025-06-19



Figure 32: Histogram of "Scene albedo" for 2025-06-18 to 2025-06-19



Figure 33: Histogram of "Scene albedo precision" for 2025-06-18 to 2025-06-19



Figure 34: Histogram of "Apparent scene pressure" for 2025-06-18 to 2025-06-19



Figure 35: Histogram of "Apparent scene pressure precision" for 2025-06-18 to 2025-06-19



Figure 36: Histogram of " $\chi^2$ " for 2025-06-18 to 2025-06-19



Figure 37: Histogram of "Number of iterations" for 2025-06-18 to 2025-06-19



Figure 38: Histogram of "Fluorescence" for 2025-06-18 to 2025-06-19



Figure 39: Histogram of "Fluorescence precision" for 2025-06-18 to 2025-06-19



Figure 40: Histogram of " $\chi^2$  of fluorescence retrieval" for 2025-06-18 to 2025-06-19



Figure 41: Histogram of "Degrees of freedom for signal of fluorescence retrieval" for 2025-06-18 to 2025-06-19



Figure 42: Histogram of "Number of points in the spectrum" for 2025-06-18 to 2025-06-19



Figure 43: Histogram of "Spectral offset ( $\lambda_{true} - \lambda_{nominal}$ )" for 2025-06-18 to 2025-06-19

## 9 Along track statistics

The TROPOMI instrument uses different binned detector rows for different viewing directions. In this section statistics are presented for each of the binned rows in the instrument.



Figure 44: Along track statistics of "QA value" for 2025-06-18 to 2025-06-19



Figure 45: Along track statistics of "Cloud pressure" for 2025-06-18 to 2025-06-19



Figure 46: Along track statistics of "Cloud pressure precision" for 2025-06-18 to 2025-06-19



Figure 47: Along track statistics of "Cloud fraction" for 2025-06-18 to 2025-06-19



Figure 48: Along track statistics of "Cloud fraction precision" for 2025-06-18 to 2025-06-19



Figure 49: Along track statistics of "Scene albedo" for 2025-06-18 to 2025-06-19



Figure 50: Along track statistics of "Scene albedo precision" for 2025-06-18 to 2025-06-19



Figure 51: Along track statistics of "Apparent scene pressure" for 2025-06-18 to 2025-06-19



Figure 52: Along track statistics of "Apparent scene pressure precision" for 2025-06-18 to 2025-06-19



Figure 53: Along track statistics of " $\chi^2$ " for 2025-06-18 to 2025-06-19



Figure 54: Along track statistics of "Number of iterations" for 2025-06-18 to 2025-06-19



Figure 55: Along track statistics of "Fluorescence" for 2025-06-18 to 2025-06-19



Figure 56: Along track statistics of "Fluorescence precision" for 2025-06-18 to 2025-06-19



Figure 57: Along track statistics of " $\chi^2$  of fluorescence retrieval" for 2025-06-18 to 2025-06-19



Figure 58: Along track statistics of "Degrees of freedom for signal of fluorescence retrieval" for 2025-06-18 to 2025-06-19



Figure 59: Along track statistics of "Number of points in the spectrum" for 2025-06-18 to 2025-06-19



Figure 60: Along track statistics of "Spectral offset ( $\lambda_{true} - \lambda_{nominal}$ )" for 2025-06-18 to 2025-06-19

## 10 Coincidence density

To investigate the relation between parameters scatter density plots are produced. These include some 'hidden' parameters, latitude and the solar- and viewing geometries, in addition to all configured parameters. All combinations of pairs of parameters are included *once*, in one direction alone.

### Contents

| 1  | Short Introduction                | 1  |
|----|-----------------------------------|----|
|    | 1.1 The list of parameters        | 1  |
| 2  | Definitions                       | 1  |
| 3  | Granule outlines                  | 8  |
| 4  | Input data monitoring             | 9  |
| 5  | Warnings and errors               | 10 |
| 6  | World maps                        | 11 |
| 7  | Zonal average                     | 17 |
| 8  | Histograms                        | 34 |
| 9  | Along track statistics            | 51 |
| 10 | Coincidence density               | 68 |
| 11 | Copyright information of 'PyCAMA' | 68 |

## **List of Figures**

| 1  | Outline of the granules.                                                                                 | 8  |
|----|----------------------------------------------------------------------------------------------------------|----|
| 2  | Input data per granule                                                                                   | 9  |
| 3  | Fraction of pixels with specific warnings and errors during processing                                   | 10 |
| 4  | Map of "Cloud pressure" for 2025-06-18 to 2025-06-19                                                     | 11 |
| 5  | Map of "Cloud fraction" for 2025-06-18 to 2025-06-19                                                     | 12 |
| 6  | Map of "Scene albedo" for 2025-06-18 to 2025-06-19                                                       | 13 |
| 7  | Map of "Apparent scene pressure" for 2025-06-18 to 2025-06-19                                            | 14 |
| 8  | Map of "Fluorescence" for 2025-06-18 to 2025-06-19                                                       | 15 |
| 9  | Map of the number of observations for 2025-06-18 to 2025-06-19                                           | 16 |
| 10 | Zonal average of "QA value" for 2025-06-18 to 2025-06-19.                                                | 17 |
| 11 | Zonal average of "Cloud pressure" for 2025-06-18 to 2025-06-19.                                          | 18 |
| 12 | Zonal average of "Cloud pressure precision" for 2025-06-18 to 2025-06-19.                                | 19 |
| 13 | Zonal average of "Cloud fraction" for 2025-06-18 to 2025-06-19.                                          | 20 |
| 14 | Zonal average of "Cloud fraction precision" for 2025-06-18 to 2025-06-19.                                | 21 |
| 15 | Zonal average of "Scene albedo" for 2025-06-18 to 2025-06-19.                                            | 22 |
| 16 | Zonal average of "Scene albedo precision" for 2025-06-18 to 2025-06-19.                                  | 23 |
| 17 | Zonal average of "Apparent scene pressure" for 2025-06-18 to 2025-06-19.                                 | 24 |
| 18 | Zonal average of "Apparent scene pressure precision" for 2025-06-18 to 2025-06-19.                       | 25 |
| 19 | Zonal average of " $\chi^2$ " for 2025-06-18 to 2025-06-19                                               | 26 |
| 20 | Zonal average of "Number of iterations" for 2025-06-18 to 2025-06-19.                                    | 27 |
| 21 | Zonal average of "Fluorescence" for 2025-06-18 to 2025-06-19.                                            | 28 |
| 22 | Zonal average of "Fluorescence precision" for 2025-06-18 to 2025-06-19.                                  | 29 |
| 23 | Zonal average of " $\chi^2$ of fluorescence retrieval" for 2025-06-18 to 2025-06-19                      | 30 |
| 24 | Zonal average of "Degrees of freedom for signal of fluorescence retrieval" for 2025-06-18 to 2025-06-19. | 31 |
| 25 | Zonal average of "Number of points in the spectrum" for 2025-06-18 to 2025-06-19.                        | 32 |
| 26 | Zonal average of "Spectral offset ( $\lambda_{true} - \lambda_{nominal}$ )" for 2025-06-18 to 2025-06-19 | 33 |
| 27 | Histogram of "QA value" for 2025-06-18 to 2025-06-19                                                     | 34 |
| 28 | Histogram of "Cloud pressure" for 2025-06-18 to 2025-06-19                                               | 35 |
| 29 | Histogram of "Cloud pressure precision" for 2025-06-18 to 2025-06-19                                     | 36 |

| 30 | Histogram of "Cloud fraction" for 2025-06-18 to 2025-06-19                                                       | 37 |
|----|------------------------------------------------------------------------------------------------------------------|----|
| 31 | Histogram of "Cloud fraction precision" for 2025-06-18 to 2025-06-19                                             | 38 |
| 32 | Histogram of "Scene albedo" for 2025-06-18 to 2025-06-19                                                         | 39 |
| 33 | Histogram of "Scene albedo precision" for 2025-06-18 to 2025-06-19                                               | 40 |
| 34 | Histogram of "Apparent scene pressure" for 2025-06-18 to 2025-06-19                                              | 41 |
| 35 | Histogram of "Apparent scene pressure precision" for 2025-06-18 to 2025-06-19                                    | 42 |
| 36 | Histogram of " $\chi^2$ " for 2025-06-18 to 2025-06-19                                                           | 43 |
| 37 | Histogram of "Number of iterations" for 2025-06-18 to 2025-06-19                                                 | 44 |
| 38 | Histogram of "Fluorescence" for 2025-06-18 to 2025-06-19                                                         | 45 |
| 39 | Histogram of "Fluorescence precision" for 2025-06-18 to 2025-06-19                                               | 46 |
| 40 | Histogram of " $\chi^2$ of fluorescence retrieval" for 2025-06-18 to 2025-06-19                                  | 47 |
| 41 | Histogram of "Degrees of freedom for signal of fluorescence retrieval" for 2025-06-18 to 2025-06-19              | 48 |
| 42 | Histogram of "Number of points in the spectrum" for 2025-06-18 to 2025-06-19                                     | 49 |
| 43 | Histogram of "Spectral offset $(\lambda_{true} - \lambda_{nominal})$ " for 2025-06-18 to 2025-06-19              | 50 |
| 44 | Along track statistics of "QA value" for 2025-06-18 to 2025-06-19                                                | 51 |
| 45 | Along track statistics of "Cloud pressure" for 2025-06-18 to 2025-06-19                                          | 52 |
| 46 | Along track statistics of "Cloud pressure precision" for 2025-06-18 to 2025-06-19                                | 53 |
| 47 | Along track statistics of "Cloud fraction" for 2025-06-18 to 2025-06-19                                          | 54 |
| 48 | Along track statistics of "Cloud fraction precision" for 2025-06-18 to 2025-06-19                                | 55 |
| 49 | Along track statistics of "Scene albedo" for 2025-06-18 to 2025-06-19                                            | 56 |
| 50 | Along track statistics of "Scene albedo precision" for 2025-06-18 to 2025-06-19                                  | 57 |
| 51 | Along track statistics of "Apparent scene pressure" for 2025-06-18 to 2025-06-19                                 | 58 |
| 52 | Along track statistics of "Apparent scene pressure precision" for 2025-06-18 to 2025-06-19                       | 59 |
| 53 | Along track statistics of " $\chi^2$ " for 2025-06-18 to 2025-06-19                                              | 60 |
| 54 | Along track statistics of "Number of iterations" for 2025-06-18 to 2025-06-19                                    | 61 |
| 55 | Along track statistics of "Fluorescence" for 2025-06-18 to 2025-06-19                                            | 62 |
| 56 | Along track statistics of "Fluorescence precision" for 2025-06-18 to 2025-06-19                                  | 63 |
| 57 | Along track statistics of " $\chi^2$ of fluorescence retrieval" for 2025-06-18 to 2025-06-19                     | 64 |
| 58 | Along track statistics of "Degrees of freedom for signal of fluorescence retrieval" for 2025-06-18 to 2025-06-19 | 65 |
| 59 | Along track statistics of "Number of points in the spectrum" for 2025-06-18 to 2025-06-19                        | 66 |
| 60 | Along track statistics of "Spectral offset $(\lambda_{true} - \lambda_{nominal})$ " for 2025-06-18 to 2025-06-19 | 67 |

### **List of Tables**

| 1 | Parameterlist and basic statistics for the analysis                                             |
|---|-------------------------------------------------------------------------------------------------|
| 2 | Percentile ranges                                                                               |
| 3 | Parameterlist and basic statistics for the analysis for observations in the northern hemisphere |
| 4 | Parameterlist and basic statistics for the analysis for observations in the southern hemisphere |
| 5 | Parameterlist and basic statistics for the analysis for observations over water                 |
| 6 | Parameterlist and basic statistics for the analysis for observations over land                  |

## 11 Copyright information of 'PyCAMA'

Copyright © 2005-2023, Maarten Sneep (KNMI).

#### All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
- 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

This software is provided by the copyright holders and contributors "as is" and any express or implied warranties, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose are disclaimed. In no event shall the copyright holder or contributors be liable for any direct, indirect, incidental, special, exemplary, or consequential damages (including, but not limited to, procurement of substitute goods or services; loss of use, data, or profits; or business interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence or otherwise) arising in any way out of the use of this software, even if advised of the possibility of such damage.

Maarten Sneep (maarten.sneep@knmi.nl).