PyCAMA report generated by tropl2-proc

tropl2-proc

2025-02-22 (02:00)

1 Short Introduction

1.1 The list of parameters

You may want to keep the list given in table 1 at hand when viewing the results.

2 Definitions

The averages shown here are unweighed averages:

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i \tag{1}$$

with N the number of observations in the dataset.

The spread of the measurements is indicated with the variance V(x), or rather the standard deviation $\sigma(x) = \sqrt{V(x)}$.

$$V(x) = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2$$
(2)

We also report the more robust statistics median, minimum, maximum, various percentiles and inter quartile range.

The median m is the value of parameter x for which half of the observations of x is smaller than m:

$$P(x \le m) = P(x \ge m) = \int_{-\infty}^{m} f(x) \, \mathrm{d}x = \frac{1}{2}$$
(3)

with f(x) the probability density function.

The median is a special case of a percentile. Instead of $\frac{1}{2}$ in equation 3, other threshold values can be used. We report results for 1%, 5%, 10%, 15.9%, 25%, 75%, 84.1%, 90%, 95% and 99%. The inter quartile range is the difference between the 75% and 25% percentiles. Similarly the minimum and maximum values correspond to the 0% and 100% percentiles respectively.

For normally distributed parameters the mean and median are the same, while the $\mu \pm \sigma$ values and the 15.9% and 84.1% percentiles coincide.

To get a measure for the relation of one variable $x_{(k)}$ with another $x_{(l)}$, we calculate the covariance matrix C_{kl} .

$$C_{kl} = C(x_{(k)}, x_{(l)}) = \frac{1}{N-1} \sum_{i=1}^{N} (x_{(k),i} - \overline{x_{(k)}}) (x_{(l),i} - \overline{x_{(l)}})$$
(4)

Rather than a dimensionally dependent covariance, it is often easier to interpret a correlation matrix R_{kl} , a matrix of Pearson's *r* coefficients:

$$R_{kl} = R(x_{(k)}, x_{(l)}) = \frac{C_{kl}}{\sqrt{C_{kk}C_{ll}}} = \frac{C_{kl}}{\sqrt{V(x_k)V(x_l)}}$$
(5)

The diagonal elements of the covariance matrix are the variances of the elements, $V(x_{(k)}) = C_{kk}$ and obviously $R_{kk} = 1$.

	Table 1. Falameter	list and basic	statistics for the al	lafysis			
Variable	mean $\pm \sigma$	Count	Mode	IQR	Median	Minimum	Maximum
qa value [1]	0.831 ± 0.251	23309226	0.905	0.150	0.900	0.0	1.000
ozone total vertical column [mol m^{-2}]	0.135 ± 0.023	23309226	0.116	$2.690 imes 10^{-2}$	0.127	$9.488 imes10^{-2}$	0.323
ozone total vertical column precision $[mol m^{-2}]$	$(3.515 \pm 3.640) \times 10^{-3}$	23309226	$2.025 imes 10^{-3}$	$1.204 imes10^{-3}$	$2.268 imes10^{-3}$	$8.145 imes10^{-4}$	$5.824 imes 10^{-2}$
ozone slant column density $[mol m^{-2}]$	0.497 ± 0.263	23309226	0.255	0.338	0.401	0.207	1.79
ozone slant column precision [mol m ⁻²]	$(3.691 \pm 3.951) \times 10^{-3}$	23309226	$1.995 imes 10^{-3}$	$1.299 imes10^{-3}$	$2.332 imes 10^{-3}$	$8.167 imes10^{-4}$	$7.043 imes 10^{-2}$
number of iterations slant column [1]	3.02 ± 0.25	23309226	3.00	0.0	3.00	2.00	15.0
root mean square slant column fit [1]	$(1.425 \pm 1.526) \times 10^{-3}$	23309226	$7.500 imes10^{-4}$	$5.024 imes10^{-4}$	$9.006 imes10^{-4}$	$3.123 imes10^{-4}$	2.704×10^{-2}
fitted radiance shift [nm]	$(-7.866 \pm 32.723) \times 10^{-4}$	23309226	-1.500×10^{-3}	2.569×10^{-3}	-1.059×10^{-3}	-7.365×10^{-2}	0.109
fitted radiance squeeze [1]	$(1.261 \pm 3.340) \times 10^{-4}$	23309226	$1.000 imes 10^{-4}$	$3.168 imes10^{-4}$	$1.298 imes10^{-4}$	$-2.554 imes10^{-2}$	$8.765 imes 10^{-3}$
ozone total air mass factor [1]	3.76 ± 1.85	23309226	2.15	1.82	3.08	1.96	11.8
ozone effective temperature [K]	231 ± 9	23309226	231	10.2	231	51.1	394
number of iterations vertical column [1]	2.04 ± 0.50	23309226	2.14	0.0	2.00	1.000	15.0

Table 1: Parameterlist and basic statistics for the analysis	
Tuble 1. I diameternist and basic statistics for the analysis	

Table 2: Percentile ranges										
Variable	1 %	5%	10 %	15.9 %	25 %	75 %	84.1 %	90%	95 %	99 %
qa value [1]	0.0	0.140	0.450	0.680	0.850	1.000	1.000	1.000	1.000	1.000
ozone total vertical column [mol m ⁻²]	0.109	0.112	0.114	0.116	0.118	0.145	0.160	0.174	0.186	0.204
ozone total vertical column precision [mol m ⁻²]	1.451×10^{-3}	$1.626 imes 10^{-3}$	$1.730 imes10^{-3}$	$1.817 imes10^{-3}$	$1.929 imes10^{-3}$	$3.134 imes10^{-3}$	$4.245 imes10^{-3}$	$6.375 imes10^{-3}$	$1.136 imes10^{-2}$	$2.070 imes10^{-2}$
ozone slant column density [mol m ⁻²]	0.237	0.246	0.256	0.268	0.292	0.631	0.762	0.895	1.07	1.30
ozone slant column precision [mol m ⁻²]	1.470×10^{-3}	1.654×10^{-3}	$1.762 imes10^{-3}$	$1.853 imes 10^{-3}$	$1.970 imes10^{-3}$	$3.269 imes 10^{-3}$	$4.486 imes 10^{-3}$	$6.810 imes10^{-3}$	$1.220 imes10^{-2}$	$2.234 imes10^{-2}$
number of iterations slant column [1]	2.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	4.00
root mean square slant column fit [1]	5.673×10^{-4}	$6.382 imes10^{-4}$	$6.799 imes10^{-4}$	$7.151 imes10^{-4}$	$7.607 imes10^{-4}$	$1.263 imes10^{-3}$	$1.732 imes 10^{-3}$	$2.630 imes10^{-3}$	$4.712 imes 10^{-3}$	$8.630 imes10^{-3}$
fitted radiance shift [nm]	-9.878×10^{-3}	$-5.284 imes 10^{-3}$	$-3.735 imes 10^{-3}$	$-2.907 imes 10^{-3}$	-2.209×10^{-3}	$3.592 imes 10^{-4}$	$1.454 imes 10^{-3}$	$2.713 imes 10^{-3}$	$4.838 imes10^{-3}$	9.852×10^{-3}
fitted radiance squeeze [1]	-9.752×10^{-4}	$-3.161 imes 10^{-4}$	$-1.834 imes10^{-4}$	-1.056×10^{-4}	$-2.570 imes 10^{-5}$	$2.911 imes10^{-4}$	$3.772 imes 10^{-4}$	$4.600 imes 10^{-4}$	$5.879 imes10^{-4}$	$9.743 imes10^{-4}$
ozone total air mass factor [1]	2.11	2.16	2.22	2.31	2.47	4.29	5.45	6.67	8.17	9.76
ozone effective temperature [K]	204	213	221	224	227	237	240	242	245	254
number of iterations vertical column [1]	1.000	1.000	2.00	2.00	2.00	2.00	2.00	3.00	3.00	4.00

	1	· .1 1 ·	C 1 /	• .1	1 1 1 1
Lobia 4. Voromatarlist and	hoose statistics t	or the enclusio	tor obcortioti	one in the nort	harn hamienhara
	DANK, MAHNUKNI	OF THE ADALYSIS		OHS HE HE HOLE	HELLI HELLINDHELE
fuore of function instanta	ouble blutiblieb i	or the analysis	101 000001 1441	ono m une nore	merni merniopnere
		2			

Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.796 ± 0.282	10978657	0.200	0.900	0.0	1.000	0.800	1.000
ozone total vertical column [mol m ⁻²]	0.146 ± 0.029	10978657	$5.140 imes 10^{-2}$	0.140	$9.488 imes10^{-2}$	0.323	0.118	0.170
ozone total vertical column precision $[mol m^{-2}]$	$(4.162 \pm 4.351) \times 10^{-3}$	10978657	$1.875 imes 10^{-3}$	$2.505 imes 10^{-3}$	$8.862 imes10^{-4}$	$5.675 imes10^{-2}$	$2.015 imes 10^{-3}$	$3.890 imes 10^{-3}$
ozone slant column density $[mol m^{-2}]$	0.565 ± 0.294	10978657	0.424	0.494	0.220	1.79	0.312	0.736
ozone slant column precision [mol m ⁻²]	$(4.391 \pm 4.731) \times 10^{-3}$	10978657	2.030×10^{-3}	$2.582 imes 10^{-3}$	$8.831 imes10^{-4}$	$7.043 imes 10^{-2}$	2.057×10^{-3}	$4.087 imes10^{-3}$
number of iterations slant column [1]	3.04 ± 0.30	10978657	0.0	3.00	2.00	15.0	3.00	3.00
root mean square slant column fit [1]	$(1.696 \pm 1.828) \times 10^{-3}$	10978657	$7.845 imes10^{-4}$	$9.970 imes10^{-4}$	$3.418 imes10^{-4}$	$2.704 imes10^{-2}$	$7.943 imes10^{-4}$	$1.579 imes10^{-3}$
fitted radiance shift [nm]	$(-1.892 \pm 34.429) \times 10^{-4}$	10978657	$2.724 imes 10^{-3}$	-5.671×10^{-4}	-7.365×10^{-2}	$4.325 imes 10^{-2}$	$-1.706 imes 10^{-3}$	$1.018 imes10^{-3}$
fitted radiance squeeze [1]	$(1.473 \pm 3.543) \times 10^{-4}$	10978657	$3.383 imes10^{-4}$	$1.383 imes10^{-4}$	$-2.554 imes10^{-2}$	$6.036 imes 10^{-3}$	-2.467×10^{-5}	$3.137 imes10^{-4}$
ozone total air mass factor [1]	3.98 ± 1.97	10978657	2.14	3.24	1.96	11.8	2.55	4.68
ozone effective temperature [K]	226 ± 9	10978657	9.02	228	143	278	223	232
number of iterations vertical column [1]	2.08 ± 0.54	10978657	0.0	2.00	1.000	13.0	2.00	2.00

Table 4: Parameterlist and basic statistics for the analy	vsis for observations in the southern hemisphere	

Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.862 ± 0.215	12330569	0.1000	0.900	0.0	1.000	0.900	1.000
ozone total vertical column [mol m ⁻²]	0.126 ± 0.011	12330569	$1.592 imes10^{-2}$	0.122	$9.611 imes10^{-2}$	0.323	0.118	0.134
ozone total vertical column precision $[mol m^{-2}]$	$(2.940 \pm 2.737) \times 10^{-3}$	12330569	$7.912 imes 10^{-4}$	2.145×10^{-3}	$8.145 imes10^{-4}$	$5.824 imes10^{-2}$	$1.875 imes10^{-3}$	$2.667 imes10^{-3}$
ozone slant column density [mol m ⁻²]	0.438 ± 0.216	12330569	0.228	0.365	0.207	1.46	0.283	0.511
ozone slant column precision [mol m ⁻²]	$(3.068 \pm 2.958) \times 10^{-3}$	12330569	$8.530 imes 10^{-4}$	$2.201 imes 10^{-3}$	$8.167 imes10^{-4}$	$6.353 imes10^{-2}$	$1.915 imes 10^{-3}$	$2.768 imes10^{-3}$
number of iterations slant column [1]	3.01 ± 0.20	12330569	0.0	3.00	2.00	8.00	3.00	3.00
root mean square slant column fit [1]	$(1.185 \pm 1.142) \times 10^{-3}$	12330569	$3.301 imes 10^{-4}$	$8.502 imes 10^{-4}$	$3.123 imes 10^{-4}$	$2.484 imes10^{-2}$	$7.391 imes10^{-4}$	$1.069 imes 10^{-3}$
fitted radiance shift [nm]	$(-1.318 \pm 3.015) \times 10^{-3}$	12330569	$2.257 imes 10^{-3}$	-1.461×10^{-3}	-4.438×10^{-2}	0.109	-2.542×10^{-3}	-2.841×10^{-4}
fitted radiance squeeze [1]	$(1.073 \pm 3.136) \times 10^{-4}$	12330569	$3.001 imes 10^{-4}$	$1.229 imes 10^{-4}$	-1.478×10^{-2}	$8.765 imes 10^{-3}$	$-2.653 imes10^{-5}$	$2.736 imes10^{-4}$
ozone total air mass factor [1]	3.57 ± 1.72	12330569	1.58	2.94	1.96	11.4	2.41	3.99
ozone effective temperature [K]	236 ± 7	12330569	10.7	235	51.1	394	230	241
number of iterations vertical column [1]	2.01 ± 0.46	12330569	0.0	2.00	1.000	15.0	2.00	2.00
	•							

	Table 5: Parameterlist and	d basic stati	stics for the ana	lysis for observa	tions over water			
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.881 ± 0.215	14332380	0.1000	0.900	0.0	1.000	0.900	1.000
ozone total vertical column [mol m ⁻²]	0.131 ± 0.021	14332380	$2.094 imes 10^{-2}$	0.122	$9.488 imes 10^{-2}$	0.323	0.117	0.138
ozone total vertical column precision [mol m ⁻²]	$(3.030 \pm 3.376) \times 10^{-3}$	14332380	$6.914 imes10^{-4}$	$2.094 imes 10^{-3}$	$8.742 imes 10^{-4}$	$5.675 imes10^{-2}$	$1.855 imes10^{-3}$	$2.546 imes 10^{-3}$
ozone slant column density [mol m ⁻²]	0.425 ± 0.231	14332380	0.182	0.346	0.207	1.70	0.277	0.460
ozone slant column precision [mol m ⁻²]	$(3.162 \pm 3.677) \times 10^{-3}$	14332380	$7.292 imes 10^{-4}$	$2.143 imes 10^{-3}$	$8.768 imes10^{-4}$	$7.043 imes 10^{-2}$	$1.893 imes 10^{-3}$	$2.622 imes 10^{-3}$
number of iterations slant column [1]	3.02 ± 0.25	14332380	0.0	3.00	2.00	15.0	3.00	3.00
root mean square slant column fit [1]	$(1.220 \pm 1.418) \times 10^{-3}$	14332380	$2.817 imes10^{-4}$	$8.276 imes10^{-4}$	$3.310 imes10^{-4}$	$2.704 imes10^{-2}$	$7.307 imes10^{-4}$	$1.012 imes 10^{-3}$
fitted radiance shift [nm]	$(-8.932\pm33.043)\times10^{-4}$	14332380	$2.548 imes 10^{-3}$	-1.106×10^{-3}	-7.365×10^{-2}	$3.877 imes 10^{-2}$	$-2.304 imes10^{-3}$	$2.439 imes10^{-4}$
fitted radiance squeeze [1]	$(1.187 \pm 2.975) \times 10^{-4}$	14332380	$2.900 imes 10^{-4}$	$1.137 imes10^{-4}$	-2.554×10^{-2}	$6.036 imes 10^{-3}$	$-2.808 imes10^{-5}$	2.619×10^{-4}
ozone total air mass factor [1]	3.28 ± 1.53	14332380	1.05	2.79	2.00	11.7	2.38	3.43
ozone effective temperature [K]	231 ± 8	14332380	8.37	231	165	294	227	236
number of iterations vertical column [1]	2.02 ± 0.48	14332380	0.0	2.00	1.000	12.0	2.00	2.00
	1							

Table 6: Parameterlist and basic statistics for the analysis for observations over land

Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.758 ± 0.279	7012760	0.260	0.900	0.0	1.000	0.640	0.900
ozone total vertical column [mol m ⁻²]	0.140 ± 0.024	7012760	$3.061 imes 10^{-2}$	0.134	$9.732 imes 10^{-2}$	0.323	0.120	0.151
ozone total vertical column precision $[mol m^{-2}]$	$(4.137 \pm 3.743) \times 10^{-3}$	7012760	2.069×10^{-3}	$2.724 imes 10^{-3}$	$8.145 imes10^{-4}$	$5.824 imes 10^{-2}$	$2.153 imes10^{-3}$	$4.222 imes 10^{-3}$
ozone slant column density [mol m ⁻²]	0.597 ± 0.264	7012760	0.404	0.573	0.218	1.75	0.362	0.765
ozone slant column precision [mol m ⁻²]	$(4.367 \pm 4.042) \times 10^{-3}$	7012760	$2.264 imes 10^{-3}$	2.839×10^{-3}	$8.167 imes10^{-4}$	6.353×10^{-2}	$2.212 imes 10^{-3}$	4.477×10^{-3}
number of iterations slant column [1]	3.03 ± 0.25	7012760	0.0	3.00	2.00	8.00	3.00	3.00
root mean square slant column fit [1]	$(1.688 \pm 1.563) \times 10^{-3}$	7012760	$8.755 imes 10^{-4}$	1.097×10^{-3}	$3.123 imes 10^{-4}$	$2.484 imes10^{-2}$	$8.544 imes10^{-4}$	1.730×10^{-3}
fitted radiance shift [nm]	$(-8.087 \pm 31.547) \times 10^{-4}$	7012760	$2.437 imes 10^{-3}$	$-1.171 imes 10^{-3}$	$-4.866 imes 10^{-2}$	0.109	$-2.197 imes 10^{-3}$	$2.400 imes 10^{-4}$
fitted radiance squeeze [1]	$(1.196 \pm 3.869) \times 10^{-4}$	7012760	3.561×10^{-4}	$1.514 imes10^{-4}$	$-1.034 imes10^{-2}$	$8.765 imes 10^{-3}$	-3.098×10^{-5}	$3.251 imes10^{-4}$
ozone total air mass factor [1]	4.50 ± 2.09	7012760	2.88	3.98	1.96	11.8	2.75	5.63
ozone effective temperature [K]	234 ± 11	7012760	14.7	233	51.1	394	228	242
number of iterations vertical column [1]	2.08 ± 0.52	7012760	0.0	2.00	1.000	15.0	2.00	2.00

Granule outlines

Figure 1: Outline of the granules.

4 Input data monitoring

Figure 2: Input data per granule

5 Warnings and errors

Figure 3: Fraction of pixels with specific warnings and errors during processing

6 World maps

Figure 4: Map of "O₃ vertical column" for 2025-02-20 to 2025-02-21

Figure 5: Map of " O_3 vertical column precision" for 2025-02-20 to 2025-02-21

Figure 6: Map of "O₃ slant column" for 2025-02-20 to 2025-02-21

Figure 7: Map of "O₃ slant column precision" for 2025-02-20 to 2025-02-21

Figure 8: Map of "Number of iterations for slant column retrieval" for 2025-02-20 to 2025-02-21

Figure 9: Map of "Fitting RMS" for 2025-02-20 to 2025-02-21

Figure 10: Map of "DOAS fit wavelength shift" for 2025-02-20 to 2025-02-21

Figure 11: Map of "DOAS fit wavelength squeeze" for 2025-02-20 to 2025-02-21

Figure 12: Map of "Airmass factor" for 2025-02-20 to 2025-02-21

Figure 13: Map of "Effective temperature" for 2025-02-20 to 2025-02-21

Figure 14: Map of "Number of iterations for vertical column retrieval" for 2025-02-20 to 2025-02-21

Figure 15: Map of the number of observations for 2025-02-20 to 2025-02-21

7 Zonal average

Figure 16: Zonal average of "QA value" for 2025-02-20 to 2025-02-21.

Figure 17: Zonal average of " O_3 vertical column" for 2025-02-20 to 2025-02-21.

Figure 18: Zonal average of "O₃ vertical column precision" for 2025-02-20 to 2025-02-21.

Figure 19: Zonal average of " O_3 slant column" for 2025-02-20 to 2025-02-21.

Figure 20: Zonal average of " O_3 slant column precision" for 2025-02-20 to 2025-02-21.

Figure 21: Zonal average of "Number of iterations for slant column retrieval" for 2025-02-20 to 2025-02-21.

Figure 22: Zonal average of "Fitting RMS" for 2025-02-20 to 2025-02-21.

Figure 23: Zonal average of "DOAS fit wavelength shift" for 2025-02-20 to 2025-02-21.

Figure 24: Zonal average of "DOAS fit wavelength squeeze" for 2025-02-20 to 2025-02-21.

Figure 25: Zonal average of "Airmass factor" for 2025-02-20 to 2025-02-21.

Figure 26: Zonal average of "Effective temperature" for 2025-02-20 to 2025-02-21.

Figure 27: Zonal average of "Number of iterations for vertical column retrieval" for 2025-02-20 to 2025-02-21.

8 Histograms

The definitions of the parameters given in this section can be found in section 2.

Figure 28: Histogram of "QA value" for 2025-02-20 to 2025-02-21

Figure 29: Histogram of "O3 vertical column" for 2025-02-20 to 2025-02-21

Figure 30: Histogram of "O3 vertical column precision" for 2025-02-20 to 2025-02-21

Figure 31: Histogram of "O₃ slant column" for 2025-02-20 to 2025-02-21

Figure 32: Histogram of "O3 slant column precision" for 2025-02-20 to 2025-02-21

Figure 33: Histogram of "Number of iterations for slant column retrieval" for 2025-02-20 to 2025-02-21

Figure 34: Histogram of "Fitting RMS" for 2025-02-20 to 2025-02-21

Figure 35: Histogram of "DOAS fit wavelength shift" for 2025-02-20 to 2025-02-21

Figure 36: Histogram of "DOAS fit wavelength squeeze" for 2025-02-20 to 2025-02-21

Figure 37: Histogram of "Airmass factor" for 2025-02-20 to 2025-02-21

Figure 38: Histogram of "Effective temperature" for 2025-02-20 to 2025-02-21

Figure 39: Histogram of "Number of iterations for vertical column retrieval" for 2025-02-20 to 2025-02-21

9 Along track statistics

The TROPOMI instrument uses different binned detector rows for different viewing directions. In this section statistics are presented for each of the binned rows in the instrument.

Figure 40: Along track statistics of "QA value" for 2025-02-20 to 2025-02-21

Figure 41: Along track statistics of "O3 vertical column" for 2025-02-20 to 2025-02-21

Figure 42: Along track statistics of "O₃ vertical column precision" for 2025-02-20 to 2025-02-21

Figure 43: Along track statistics of " O_3 slant column" for 2025-02-20 to 2025-02-21

Figure 44: Along track statistics of "O₃ slant column precision" for 2025-02-20 to 2025-02-21

Figure 45: Along track statistics of "Number of iterations for slant column retrieval" for 2025-02-20 to 2025-02-21

Figure 46: Along track statistics of "Fitting RMS" for 2025-02-20 to 2025-02-21

Figure 47: Along track statistics of "DOAS fit wavelength shift" for 2025-02-20 to 2025-02-21

Figure 48: Along track statistics of "DOAS fit wavelength squeeze" for 2025-02-20 to 2025-02-21

Figure 49: Along track statistics of "Airmass factor" for 2025-02-20 to 2025-02-21

Figure 50: Along track statistics of "Effective temperature" for 2025-02-20 to 2025-02-21

Figure 51: Along track statistics of "Number of iterations for vertical column retrieval" for 2025-02-20 to 2025-02-21

10 Coincidence density

To investigate the relation between parameters scatter density plots are produced. These include some 'hidden' parameters, latitude and the solar- and viewing geometries, in addition to all configured parameters. All combinations of pairs of parameters are included *once*, in one direction alone.

Contents

1	Short Introduction 1.1 The list of parameters	1 1
2	Definitions	1
3	Granule outlines	8
4	Input data monitoring	9
5	Warnings and errors	10
6	World maps	11
7	Zonal average	23
8	Histograms	35
9	Along track statistics	47
10	Coincidence density	59
11	Copyright information of 'PyCAMA'	59

List of Figures

 Input data per granule	. 9 . 10 . 11 . 12 . 13 . 14
 Fraction of pixels with specific warnings and errors during processing Map of "O₃ vertical column" for 2025-02-20 to 2025-02-21 Map of "O₃ vertical column precision" for 2025-02-20 to 2025-02-21 Map of "O₃ slant column" for 2025-02-20 to 2025-02-21 Map of "O₃ slant column precision" for 2025-02-20 to 2025-02-21 Map of "O₃ slant column precision" for 2025-02-20 to 2025-02-21 Map of "O₃ slant column precision" for 2025-02-20 to 2025-02-21 Map of "O₃ slant column precision" for 2025-02-20 to 2025-02-21 Map of "Number of iterations for slant column retrieval" for 2025-02-20 to 2025-02-21 	. 10 . 11 . 12 . 13 . 14
 Map of "O₃ vertical column" for 2025-02-20 to 2025-02-21 Map of "O₃ vertical column precision" for 2025-02-20 to 2025-02-21 Map of "O₃ slant column" for 2025-02-20 to 2025-02-21 Map of "O₃ slant column precision" for 2025-02-20 to 2025-02-21 Map of "O₃ slant column precision" for 2025-02-20 to 2025-02-21 Map of "Number of iterations for slant column retrieval" for 2025-02-20 to 2025-02-21 	. 11 . 12 . 13 . 14
 Map of "O₃ vertical column precision" for 2025-02-20 to 2025-02-21	. 12 . 13 . 14
 Map of "O₃ slant column" for 2025-02-20 to 2025-02-21	. 13 . 14
 Map of "O₃ slant column precision" for 2025-02-20 to 2025-02-21	. 14
8 Map of "Number of iterations for slant column retrieval" for 2025-02-20 to 2025-02-21	15
L	. 15
9 Map of "Fitting RMS" for 2025-02-20 to 2025-02-21	. 16
10 Map of "DOAS fit wavelength shift" for 2025-02-20 to 2025-02-21	. 17
11 Map of "DOAS fit wavelength squeeze" for 2025-02-20 to 2025-02-21	. 18
12 Map of "Airmass factor" for 2025-02-20 to 2025-02-21	. 19
13 Map of "Effective temperature" for 2025-02-20 to 2025-02-21	. 20
14 Map of "Number of iterations for vertical column retrieval" for 2025-02-20 to 2025-02-21	. 21
15 Map of the number of observations for 2025-02-20 to 2025-02-21	. 22
16 Zonal average of "QA value" for 2025-02-20 to 2025-02-21	. 23
17 Zonal average of "O ₃ vertical column" for 2025-02-20 to 2025-02-21	. 24
18 Zonal average of "O ₃ vertical column precision" for 2025-02-20 to 2025-02-21	. 25
19 Zonal average of "O ₃ slant column" for 2025-02-20 to 2025-02-21	. 26
20 Zonal average of "O ₃ slant column precision" for 2025-02-20 to 2025-02-21	. 27
21 Zonal average of "Number of iterations for slant column retrieval" for 2025-02-20 to 2025-02-21	. 28
22 Zonal average of "Fitting RMS" for 2025-02-20 to 2025-02-21	. 29
23 Zonal average of "DOAS fit wavelength shift" for 2025-02-20 to 2025-02-21	. 30
Zonal average of "DOAS fit wavelength squeeze" for 2025-02-20 to 2025-02-21.	. 31
25 Zonal average of "Airmass factor" for 2025-02-20 to 2025-02-21	. 32
26 Zonal average of "Effective temperature" for 2025-02-20 to 2025-02-21	. 33
27 Zonal average of "Number of iterations for vertical column retrieval" for 2025-02-20 to 2025-02-21	. 34
28 Histogram of "QA value" for 2025-02-20 to 2025-02-21	. 35
29 Histogram of " O_3 vertical column" for 2025-02-20 to 2025-02-21	. 36

30	Histogram of "O ₃ vertical column precision" for 2025-02-20 to 2025-02-21	37
31	Histogram of "O ₃ slant column" for 2025-02-20 to 2025-02-21	38
32	Histogram of "O ₃ slant column precision" for 2025-02-20 to 2025-02-21	39
33	Histogram of "Number of iterations for slant column retrieval" for 2025-02-20 to 2025-02-21	40
34	Histogram of "Fitting RMS" for 2025-02-20 to 2025-02-21	41
35	Histogram of "DOAS fit wavelength shift" for 2025-02-20 to 2025-02-21	42
36	Histogram of "DOAS fit wavelength squeeze" for 2025-02-20 to 2025-02-21	43
37	Histogram of "Airmass factor" for 2025-02-20 to 2025-02-21	44
38	Histogram of "Effective temperature" for 2025-02-20 to 2025-02-21	45
39	Histogram of "Number of iterations for vertical column retrieval" for 2025-02-20 to 2025-02-21	46
40	Along track statistics of "QA value" for 2025-02-20 to 2025-02-21	47
41	Along track statistics of "O ₃ vertical column" for 2025-02-20 to 2025-02-21	48
42	Along track statistics of "O ₃ vertical column precision" for 2025-02-20 to 2025-02-21	49
43	Along track statistics of "O ₃ slant column" for 2025-02-20 to 2025-02-21	50
44	Along track statistics of "O ₃ slant column precision" for 2025-02-20 to 2025-02-21	51
45	Along track statistics of "Number of iterations for slant column retrieval" for 2025-02-20 to 2025-02-21	52
46	Along track statistics of "Fitting RMS" for 2025-02-20 to 2025-02-21	53
47	Along track statistics of "DOAS fit wavelength shift" for 2025-02-20 to 2025-02-21	54
48	Along track statistics of "DOAS fit wavelength squeeze" for 2025-02-20 to 2025-02-21	55
49	Along track statistics of "Airmass factor" for 2025-02-20 to 2025-02-21	56
50	Along track statistics of "Effective temperature" for 2025-02-20 to 2025-02-21	57
51	Along track statistics of "Number of iterations for vertical column retrieval" for 2025-02-20 to 2025-02-21	58

List of Tables

1	Parameterlist and basic statistics for the analysis	2
2	Percentile ranges	3
3	Parameterlist and basic statistics for the analysis for observations in the northern hemisphere	4
4	Parameterlist and basic statistics for the analysis for observations in the southern hemisphere	5
5	Parameterlist and basic statistics for the analysis for observations over water	6
6	Parameterlist and basic statistics for the analysis for observations over land	7

11 Copyright information of 'PyCAMA'

Copyright © 2005 – 2023, Maarten Sneep (KNMI).

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
- 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

This software is provided by the copyright holders and contributors "as is" and any express or implied warranties, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose are disclaimed. In no event shall the copyright holder or contributors be liable for any direct, indirect, incidental, special, exemplary, or consequential damages (including, but not limited to, procurement of substitute goods or services; loss of use, data, or profits; or business interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence or otherwise) arising in any way out of the use of this software, even if advised of the possibility of such damage.

Maarten Sneep (maarten.sneep@knmi.nl).