PyCAMA report generated by tropl2-proc

tropl2-proc

2025-04-14 (02:35)

1 Short Introduction

1.1 The list of parameters

You may want to keep the list given in table 1 at hand when viewing the results.

2 Definitions

The averages shown here are unweighed averages:

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i \tag{1}$$

with N the number of observations in the dataset.

The spread of the measurements is indicated with the variance V(x), or rather the standard deviation $\sigma(x) = \sqrt{V(x)}$.

$$V(x) = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2$$
(2)

We also report the more robust statistics median, minimum, maximum, various percentiles and inter quartile range.

The median m is the value of parameter x for which half of the observations of x is smaller than m:

$$P(x \le m) = P(x \ge m) = \int_{-\infty}^{m} f(x) \, \mathrm{d}x = \frac{1}{2}$$
(3)

with f(x) the probability density function.

The median is a special case of a percentile. Instead of $\frac{1}{2}$ in equation 3, other threshold values can be used. We report results for 1%, 5%, 10%, 15.9%, 25%, 75%, 84.1%, 90%, 95% and 99%. The inter quartile range is the difference between the 75% and 25% percentiles. Similarly the minimum and maximum values correspond to the 0% and 100% percentiles respectively.

For normally distributed parameters the mean and median are the same, while the $\mu \pm \sigma$ values and the 15.9% and 84.1% percentiles coincide.

To get a measure for the relation of one variable $x_{(k)}$ with another $x_{(l)}$, we calculate the covariance matrix C_{kl} .

$$C_{kl} = C(x_{(k)}, x_{(l)}) = \frac{1}{N-1} \sum_{i=1}^{N} (x_{(k),i} - \overline{x_{(k)}}) (x_{(l),i} - \overline{x_{(l)}})$$
(4)

Rather than a dimensionally dependent covariance, it is often easier to interpret a correlation matrix R_{kl} , a matrix of Pearson's *r* coefficients:

$$R_{kl} = R(x_{(k)}, x_{(l)}) = \frac{C_{kl}}{\sqrt{C_{kk}C_{ll}}} = \frac{C_{kl}}{\sqrt{V(x_k)V(x_l)}}$$
(5)

The diagonal elements of the covariance matrix are the variances of the elements, $V(x_{(k)}) = C_{kk}$ and obviously $R_{kk} = 1$.

Table 1: Parameterlist and basic statistics for the analysis									
Variable	mean $\pm \sigma$	Count	Mode	IQR	Median	Minimum	Maximum		
qa value [1]	0.631 ± 0.372	20249325	0.995	0.650	0.800	0.0	1.000		
cloud fraction [1]	0.552 ± 0.347	20249325	0.995	0.733	0.519	0.0	1.000		
cloud top height [m]	$(0.389 \pm 0.282) \times 10^4$	20249325	1.575×10^{3}	3.670×10^{3}	3.209×10^{3}	0.0	2.000×10^{4}		
cloud optical thickness [1]	19.9 ± 35.1	20249325	9.34	11.2	9.71	1.000	250		
cloud fraction crb [1]	0.551 ± 0.347	20249325	0.995	0.732	0.518	0.0	1.000		
cloud height crb [m]	$(0.304 \pm 0.246) \times 10^4$	20249325	75.0	$3.213 imes 10^3$	2.421×10^3	0.0	2.000×10^4		
cloud albedo crb [1]	0.598 ± 0.205	20249325	0.995	0.260	0.576	0.0	1.000		
surface albedo fitted [1]	0.231 ± 0.309	20249325	$1.500 imes 10^{-2}$	0.332	3.967×10^{-2}	0.0	1.000		
surface albedo fitted crb [1]	0.219 ± 0.297	20249325	$1.500 imes10^{-2}$	0.346	$2.917 imes10^{-2}$	0.0	1.000		
fitted root mean square [1]	$(6.852 \pm 9.628) \times 10^{-4}$	20249325	$5.000 imes 10^{-5}$	$8.075 imes10^{-4}$	$4.058 imes10^{-4}$	1.206×10^{-6}	0.469		
fitted root mean square crb [1]	$(6.142 \pm 8.299) \times 10^{-4}$	20249325	$5.000 imes 10^{-5}$	$7.363 imes10^{-4}$	$3.147 imes 10^{-4}$	$1.252 imes10^{-6}$	0.438		
wavelength shift [nm]	$(7.633 \pm 6.839) \times 10^{-3}$	20249325	$9.000 imes 10^{-4}$	9.326×10^{-3}	$7.139 imes 10^{-3}$	$-5.575 imes 10^{-2}$	0.153		
cloud fraction apriori [1]	0.557 ± 0.350	20249325	0.995	0.777	0.526	0.0	1.000		
reflectance blue ocra [1]	0.559 ± 0.226	20249325	0.265	0.386	0.537	0.119	1.98		
reflectance green ocra [1]	0.509 ± 0.253	20249325	0.175	0.456	0.493	$6.090 imes 10^{-2}$	2.05		
reflectance continuum aband [1]	0.463 ± 0.279	20249325	4.500×10^{-2}	0.477	0.464	1.166×10^{-2}	4.83		

			Т	able 2: Percent	ile ranges					
Variable	1 %	5%	10 %	15.9%	25 %	75 %	84.1 %	90%	95 %	99 %
qa value [1]	0.0	0.0	0.0	0.0	0.300	0.950	1.000	1.000	1.000	1.000
cloud fraction [1]	1.917×10^{-2}	6.479×10^{-2}	9.819×10^{-2}	0.142	0.224	0.957	1.000	1.000	1.000	1.000
cloud top height [m]	122	606	1.006×10^3	$1.328 imes 10^3$	1.736×10^3	5.406×10^3	6.701×10^{3}	$7.889 imes 10^3$	$9.421 imes 10^3$	$1.243 imes 10^4$
cloud optical thickness [1]	1.20	3.03	4.14	4.95	6.04	17.2	26.3	39.3	67.8	250
cloud fraction crb [1]	$1.886 imes10^{-2}$	$6.375 imes 10^{-2}$	$9.744 imes 10^{-2}$	0.141	0.224	0.956	1.000	1.000	1.000	1.000
cloud height crb [m]	0.0	150	508	792	1.146×10^{3}	4.359×10^{3}	5.500×10^3	6.532×10^{3}	$7.876 imes 10^3$	1.044×10^4
cloud albedo crb [1]	$3.365 imes10^{-2}$	0.266	0.372	0.426	0.472	0.732	0.820	0.896	0.983	1.000
surface albedo fitted [1]	0.0	$7.606 imes 10^{-3}$	1.165×10^{-2}	1.501×10^{-2}	1.978×10^{-2}	0.352	0.685	0.789	0.889	0.990
surface albedo fitted crb [1]	0.0	$5.230 imes 10^{-3}$	$8.070 imes 10^{-3}$	1.065×10^{-2}	1.430×10^{-2}	0.361	0.659	0.742	0.836	0.928
fitted root mean square [1]	$1.568 imes10^{-5}$	$3.091 imes 10^{-5}$	4.906×10^{-5}	$7.705 imes 10^{-5}$	$1.319 imes10^{-4}$	$9.395 imes10^{-4}$	1.282×10^{-3}	1.656×10^{-3}	$2.263 imes 10^{-3}$	3.657×10^{-3}
fitted root mean square crb [1]	$1.007 imes10^{-5}$	$2.386 imes10^{-5}$	$3.962 imes 10^{-5}$	$6.030 imes10^{-5}$	$1.018 imes10^{-4}$	$8.381 imes10^{-4}$	$1.203 imes 10^{-3}$	$1.594 imes10^{-3}$	$2.210 imes 10^{-3}$	$3.531 imes 10^{-3}$
wavelength shift [nm]	-8.639×10^{-3}	$-1.394 imes 10^{-3}$	$1.286 imes 10^{-4}$	$1.134 imes 10^{-3}$	2.715×10^{-3}	$1.204 imes 10^{-2}$	1.436×10^{-2}	1.639×10^{-2}	1.915×10^{-2}	2.531×10^{-2}
cloud fraction apriori [1]	$2.846 imes10^{-2}$	$6.377 imes10^{-2}$	$9.543 imes 10^{-2}$	0.139	0.223	1.000	1.000	1.000	1.000	1.000
reflectance blue ocra [1]	0.234	0.257	0.279	0.308	0.358	0.744	0.805	0.853	0.916	1.11
reflectance green ocra [1]	0.153	0.172	0.190	0.216	0.268	0.724	0.794	0.844	0.904	1.06
reflectance continuum aband [1]	3.012×10^{-2}	5.300×10^{-2}	8.331×10^{-2}	0.124	0.216	0.693	0.771	0.826	0.892	1.03

Table 3: Parameterlist and basic statistics for the analysis for observations in the northern hemisphere

Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.581 ± 0.370	10379397	0.660	0.700	0.0	1.000	0.240	0.900
cloud fraction [1]	0.521 ± 0.345	10379397	0.721	0.459	0.0	1.000	0.202	0.923
cloud top height [m]	$(0.364 \pm 0.262) \times 10^4$	10379397	3.333×10^{3}	3.081×10^{3}	0.0	2.000×10^4	1.658×10^{3}	4.991×10^{3}
cloud optical thickness [1]	18.1 ± 34.6	10379397	9.32	8.88	1.000	250	5.58	14.9
cloud fraction crb [1]	0.521 ± 0.345	10379397	0.720	0.459	0.0	1.000	0.202	0.923
cloud height crb [m]	$(0.268 \pm 0.218) \times 10^4$	10379397	2.842×10^{3}	2.205×10^3	0.0	$2.000 imes 10^4$	995	3.837×10^{3}
cloud albedo crb [1]	0.621 ± 0.228	10379397	0.319	0.607	0.0	1.000	0.475	0.794
surface albedo fitted [1]	0.319 ± 0.333	10379397	0.624	0.177	0.0	1.000	$2.810 imes10^{-2}$	0.652
surface albedo fitted crb [1]	0.304 ± 0.316	10379397	0.615	0.174	0.0	1.000	$2.168 imes10^{-2}$	0.637
fitted root mean square [1]	$(8.722 \pm 11.820) \times 10^{-4}$	10379397	1.000×10^{-3}	$6.033 imes10^{-4}$	$1.827 imes10^{-6}$	0.469	$1.898 imes10^{-4}$	$1.190 imes10^{-3}$
fitted root mean square crb [1]	$(7.735 \pm 9.909) \times 10^{-4}$	10379397	$9.410 imes 10^{-4}$	$4.528 imes10^{-4}$	$1.255 imes 10^{-6}$	0.438	$1.413 imes10^{-4}$	$1.082 imes10^{-3}$
wavelength shift [nm]	$(8.703 \pm 6.890) \times 10^{-3}$	10379397	$9.453 imes 10^{-3}$	$8.533 imes 10^{-3}$	-5.575×10^{-2}	0.153	$3.811 imes 10^{-3}$	$1.326 imes10^{-2}$
cloud fraction apriori [1]	0.532 ± 0.348	10379397	0.760	0.477	0.0	1.000	0.207	0.967
reflectance blue ocra [1]	0.576 ± 0.233	10379397	0.418	0.577	0.135	1.98	0.355	0.773
reflectance green ocra [1]	0.533 ± 0.260	10379397	0.490	0.547	$8.761 imes 10^{-2}$	1.99	0.271	0.761
reflectance continuum aband [1]	0.499 ± 0.283	10379397	0.493	0.530	1.298×10^{-2}	4.19	0.245	0.737

Table 4: Parameterlist and	basic statistics	for the ana	lysis for o	observations	in the sout	hern hemis	phere

Variable	mean $\pm \sigma$	Count	IOR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.683 ± 0.367	9869928	0.600	0.900	0.0	1.000	0.400	1.000
cloud fraction [1]	0.585 ± 0.345	9869928	0.720	0.596	0.0	1.000	0.255	0.976
cloud top height [m]	$(0.417 \pm 0.299) \times 10^4$	9869928	$4.093 imes 10^3$	3.363×10^3	0.0	$2.000 imes 10^4$	1.809×10^{3}	$5.901 imes 10^3$
cloud optical thickness [1]	21.7 ± 35.4	9869928	13.0	10.7	1.000	250	6.75	19.8
cloud fraction crb [1]	0.583 ± 0.345	9869928	0.720	0.594	0.0	1.000	0.254	0.974
cloud height crb [m]	$(0.341 \pm 0.266) \times 10^4$	9869928	$3.693 imes 10^3$	2.695×10^3	0.0	2.000×10^4	1.287×10^3	4.980×10^{3}
cloud albedo crb [1]	0.574 ± 0.176	9869928	0.203	0.556	0.0	1.000	0.470	0.673
surface albedo fitted [1]	0.139 ± 0.250	9869928	$4.742 imes10^{-2}$	$2.643 imes 10^{-2}$	0.0	1.000	1.599×10^{-2}	$6.340 imes10^{-2}$
surface albedo fitted crb [1]	0.130 ± 0.245	9869928	$3.439 imes10^{-2}$	$1.871 imes10^{-2}$	0.0	1.000	1.093×10^{-2}	$4.532 imes 10^{-2}$
fitted root mean square [1]	$(4.886 \pm 5.978) \times 10^{-4}$	9869928	$5.538 imes10^{-4}$	$2.747 imes10^{-4}$	1.206×10^{-6}	0.142	$1.018 imes10^{-4}$	$6.556 imes10^{-4}$
fitted root mean square crb [1]	$(4.466 \pm 5.707) \times 10^{-4}$	9869928	$5.208 imes10^{-4}$	$2.209 imes10^{-4}$	$1.252 imes 10^{-6}$	$1.530 imes10^{-2}$	7.686×10^{-5}	$5.977 imes10^{-4}$
wavelength shift [nm]	$(6.509 \pm 6.600) \times 10^{-3}$	9869928	$8.610 imes10^{-3}$	$5.782 imes10^{-3}$	$-4.338 imes10^{-2}$	$6.044 imes10^{-2}$	$1.873 imes10^{-3}$	$1.048 imes10^{-2}$
cloud fraction apriori [1]	0.583 ± 0.351	9869928	0.756	0.590	0.0	1.000	0.244	1.000
reflectance blue ocra [1]	0.541 ± 0.216	9869928	0.333	0.510	0.119	1.95	0.360	0.693
reflectance green ocra [1]	0.483 ± 0.242	9869928	0.399	0.455	6.090×10^{-2}	2.05	0.265	0.664
reflectance continuum aband [1]	0.425 ± 0.269	9869928	0.439	0.412	1.166×10^{-2}	4.83	0.190	0.629
	·							

Table 5. I	Parameterlist and	l basic	statistics	for t	he anal	vsis t	for o	bservat	ions	over	water
14010 5.1	arameternst and	i busic	statistics	101 ι	ne ana	19515 1	101 0	USCI val	10113	0,01	water

Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile
qa value [1]	0.663 ± 0.362	14686169	0.550	0.850	0.0	1.000	0.400	0.950
cloud fraction [1]	0.559 ± 0.353	14686169	0.759	0.540	0.0	1.000	0.215	0.974
cloud top height [m]	$(0.360 \pm 0.255) imes 10^4$	14686169	3.372×10^3	2.942×10^3	0.0	$2.000 imes 10^4$	1.636×10^{3}	$5.008 imes 10^3$
cloud optical thickness [1]	20.3 ± 33.8	14686169	11.3	10.4	1.000	250	6.91	18.2
cloud fraction crb [1]	0.558 ± 0.353	14686169	0.758	0.539	0.0	1.000	0.214	0.972
cloud height crb [m]	$(0.284 \pm 0.227) imes 10^4$	14686169	3.028×10^3	2.240×10^{3}	0.0	$2.000 imes 10^4$	1.071×10^{3}	4.099×10^{3}
cloud albedo crb [1]	0.577 ± 0.185	14686169	0.220	0.555	0.0	1.000	0.465	0.685
surface albedo fitted [1]	0.133 ± 0.254	14686169	$3.272 imes 10^{-2}$	2.653×10^{-2}	0.0	1.000	1.625×10^{-2}	$4.897 imes10^{-2}$
surface albedo fitted crb [1]	0.122 ± 0.241	14686169	$2.448 imes10^{-2}$	$1.937 imes10^{-2}$	0.0	1.000	1.159×10^{-2}	$3.607 imes10^{-2}$
fitted root mean square [1]	$(5.566 \pm 9.001) \times 10^{-4}$	14686169	$6.297 imes10^{-4}$	$2.707 imes10^{-4}$	$1.206 imes10^{-6}$	0.469	$9.623 imes 10^{-5}$	$7.259 imes10^{-4}$
fitted root mean square crb [1]	$(5.041 \pm 7.953) \times 10^{-4}$	14686169	$5.475 imes10^{-4}$	$2.194 imes10^{-4}$	$1.255 imes10^{-6}$	0.438	7.995×10^{-5}	$6.274 imes10^{-4}$
wavelength shift [nm]	$(7.064 \pm 6.812) \times 10^{-3}$	14686169	$8.972 imes 10^{-3}$	6.421×10^{-3}	$-4.781 imes 10^{-2}$	0.153	2.329×10^{-3}	$1.130 imes10^{-2}$
cloud fraction apriori [1]	0.560 ± 0.357	14686169	0.792	0.539	0.0	1.000	0.208	1.000
reflectance blue ocra [1]	0.531 ± 0.208	14686169	0.350	0.505	0.151	1.96	0.347	0.698
reflectance green ocra [1]	0.473 ± 0.236	14686169	0.423	0.450	8.979×10^{-2}	1.81	0.249	0.671
reflectance continuum aband [1]	0.408 ± 0.270	14686169	0.488	0.397	1.166×10^{-2}	4.19	0.145	0.633

Table 6: Parameterlist and basic statistics for the analysis for observations over land											
Variable	mean $\pm \sigma$	Count	IQR	Median	Minimum	Maximum	25 % percentile	75 % percentile			
qa value [1]	0.540 ± 0.396	4099429	0.900	0.690	0.0	1.000	0.0	0.900			
cloud fraction [1]	0.526 ± 0.329	4099429	0.630	0.470	0.0	1.000	0.242	0.872			
cloud top height [m]	$(0.504 \pm 0.336) imes 10^4$	4099429	4.297×10^{3}	4.377×10^{3}	0.0	2.000×10^4	2.480×10^{3}	6.777×10^{3}			
cloud optical thickness [1]	16.5 ± 33.8	4099429	8.31	7.12	1.000	250	4.70	13.0			
cloud fraction crb [1]	0.526 ± 0.329	4099429	0.629	0.470	0.0	1.000	0.242	0.871			
cloud height crb [m]	$(0.389 \pm 0.292) \times 10^4$	4099429	3.618×10^{3}	3.152×10^{3}	0.0	2.000×10^4	1.692×10^{3}	5.311×10^{3}			
cloud albedo crb [1]	0.649 ± 0.239	4099429	0.336	0.655	0.0	1.000	0.502	0.838			
surface albedo fitted [1]	0.492 ± 0.286	4099429	0.535	0.360	0.0	1.000	0.242	0.777			
surface albedo fitted crb [1]	0.480 ± 0.270	4099429	0.509	0.370	$2.365 imes 10^{-3}$	1.000	0.239	0.748			
fitted root mean square [1]	$(1.012 \pm 1.033) \times 10^{-3}$	4099429	$8.953 imes10^{-4}$	$7.889 imes 10^{-4}$	2.620×10^{-6}	0.171	$4.203 imes 10^{-4}$	1.316×10^{-3}			
fitted root mean square crb [1]	$(8.939 \pm 8.498) imes 10^{-4}$	4099429	$9.619 imes10^{-4}$	$6.677 imes10^{-4}$	$1.420 imes 10^{-6}$	2.902×10^{-2}	$2.739 imes10^{-4}$	$1.236 imes10^{-3}$			
wavelength shift [nm]	$(8.658\pm 6.558) imes 10^{-3}$	4099429	9.371×10^{-3}	$8.425 imes 10^{-3}$	$-3.623 imes 10^{-2}$	$6.587 imes10^{-2}$	3.700×10^{-3}	$1.307 imes10^{-2}$			
cloud fraction apriori [1]	0.537 ± 0.331	4099429	0.660	0.484	0.0	1.000	0.248	0.908			
reflectance blue ocra [1]	0.629 ± 0.260	4099429	0.443	0.656	0.119	1.95	0.384	0.827			
reflectance green ocra [1]	0.597 ± 0.279	4099429	0.497	0.641	$6.090 imes 10^{-2}$	2.05	0.324	0.821			
reflectance continuum aband [1]	0.607 ± 0.243	4099429	0.406	0.623	1.601×10^{-2}	4.83	0.390	0.796			

Viewing zenith angle	Solar zenith angle	Latitude	Radiometric cloud fractio	Cloud top height	Cloud optical thickness	Cloud fraction (CRB)	Cloud height (CRB)	Cloud albedo (CRB)	OCRA cloud fraction
1.000	-1.258×10^{-2}	-1.133×10^{-3}	-2.902×10^{-2}	6.297×10^{-2}	-4.538×10^{-2}	$-2.941 imes 10^{-2}$	0.105	$7.406 imes 10^{-3}$	-3.313×10^{-2}
-1.258×10^{-2}	1.000	-6.122×10^{-2}	0.129	-5.310×10^{-2}	0.189	0.131	-7.622×10^{-2}	0.295	0.142
-1.133×10^{-3}	-6.122×10^{-2}	1.000	-0.113	-0.116	$-6.653 imes 10^{-2}$	-0.110	-0.180	0.130	-8.821×10^{-2}
-2.902×10^{-2}	0.129	-0.113	1.000	-8.223×10^{-2}	0.292	1.000	$-4.151 imes 10^{-2}$	0.266	0.982
$6.297 imes10^{-2}$	-5.310×10^{-2}	-0.116	$-8.223 imes10^{-2}$	1.000	$6.269 imes 10^{-3}$	$-8.184 imes10^{-2}$	0.942	$2.946 imes10^{-2}$	-9.587×10^{-2}
$-4.538 imes 10^{-2}$	0.189	$-6.653 imes10^{-2}$	0.292	$6.269 imes10^{-3}$	1.000	0.289	$4.220 imes10^{-2}$	0.408	0.297
-2.941×10^{-2}	0.131	-0.110	1.000	$-8.184 imes10^{-2}$	0.289	1.000	$-4.171 imes 10^{-2}$	0.266	0.982
0.105	-7.622×10^{-2}	-0.180	-4.151×10^{-2}	0.942	$4.220 imes10^{-2}$	$-4.171 imes 10^{-2}$	1.000	$-5.592 imes 10^{-2}$	-5.595×10^{-2}
$7.406 imes 10^{-3}$	0.295	0.130	0.266	2.946×10^{-2}	0.408	0.266	-5.592×10^{-2}	1.000	0.291
-3.313×10^{-2}	0.142	$-8.821 imes10^{-2}$	0.982	$-9.587 imes 10^{-2}$	0.297	0.982	$-5.595 imes 10^{-2}$	0.291	1.000

Table 7: Correlation matrix

 ∞

				fuele et cevul	unee maan				
Viewing zenith angle	Solar zenith angle	Latitude	Radiometric cloud fraction	Cloud top height	Cloud optical thickness	Cloud fraction (CRB)	Cloud height (CRB)	Cloud albedo (CRB)	OCRA cloud fraction
386	-5.29	-1.13	-0.198	3.490×10^{3}	-31.3	-0.200	5.067×10^{3}	2.989×10^{-2}	-0.228
-5.29	458	-66.8	0.957	-3.207×10^{3}	142	0.970	-4.006×10^{3}	1.30	1.06
-1.13	-66.8	$2.598 imes 10^3$	-2.00	-1.663×10^{4}	-119	-1.95	-2.252×10^4	1.36	-1.57
-0.198	0.957	-2.00	0.120	-80.4	3.55	0.120	-35.3	$1.893 imes10^{-2}$	0.119
3.490×10^{3}	-3.207×10^{3}	-1.663×10^{4}	-80.4	$7.955 imes 10^6$	620	-80.0	$6.524 imes 10^6$	17.1	-94.7
-31.3	142	-119	3.55	620	1.229×10^{3}	3.52	3.632×10^{3}	2.94	3.65
-0.200	0.970	-1.95	0.120	-80.0	3.52	0.120	-35.5	$1.895 imes10^{-2}$	0.119
5.067×10^{3}	-4.006×10^{3}	-2.252×10^4	-35.3	$6.524 imes 10^6$	3.632×10^{3}	-35.5	$6.029 imes 10^6$	-28.2	-48.1
2.989×10^{-2}	1.30	1.36	$1.893 imes 10^{-2}$	17.1	2.94	1.895×10^{-2}	-28.2	4.220×10^{-2}	2.090×10^{-2}
-0.228	1.06	-1.57	0.119	-94.7	3.65	0.119	-48.1	2.090×10^{-2}	0.123

Table 8: Covariance matrix

9

Figure 1: Map of correlation graph for 2025-03-29 to 2025-03-31.

Figure 2: Map of correlation matrix for 2025-03-29 to 2025-03-31.

Granule outlines

Figure 3: Outline of the granules.

4 Input data monitoring

Figure 4: Input data per granule

5 Warnings and errors

Figure 5: Fraction of pixels with specific warnings and errors during processing

6 World maps

Figure 6: Map of "Radiometric cloud fraction" for 2025-03-29 to 2025-03-31

Figure 7: Map of "Cloud top height" for 2025-03-29 to 2025-03-31

Figure 8: Map of "Cloud optical thickness" for 2025-03-29 to 2025-03-31

Figure 9: Map of "Cloud fraction (CRB)" for 2025-03-29 to 2025-03-31

Figure 10: Map of "Cloud height (CRB)" for 2025-03-29 to 2025-03-31

Figure 11: Map of "Cloud albedo (CRB)" for 2025-03-29 to 2025-03-31

Figure 12: Map of "Fitted surface albedo" for 2025-03-29 to 2025-03-31

Figure 13: Map of "Fitted surface albedo (CRB)" for 2025-03-29 to 2025-03-31

2025-03-30

Figure 14: Map of "RMS" for 2025-03-29 to 2025-03-31

2025-03-30

Figure 15: Map of "RMS (CRB)" for 2025-03-29 to 2025-03-31

Figure 16: Map of "Fitting wavelength shift" for 2025-03-29 to 2025-03-31

Figure 17: Map of "OCRA cloud fraction" for 2025-03-29 to 2025-03-31

Figure 18: Map of "OCRA "blue" reflectance" for 2025-03-29 to 2025-03-31

Figure 19: Map of "OCRA "green" reflectance" for 2025-03-29 to 2025-03-31

Figure 20: Map of "ROCINN "red" reflectance" for 2025-03-29 to 2025-03-31

Figure 21: Map of the number of observations for 2025-03-29 to 2025-03-31

7 Zonal average

Figure 22: Zonal average of "QA value" for 2025-03-29 to 2025-03-31.

Figure 23: Zonal average of "Radiometric cloud fraction" for 2025-03-29 to 2025-03-31.

Figure 24: Zonal average of "Cloud top height" for 2025-03-29 to 2025-03-31.

Figure 25: Zonal average of "Cloud optical thickness" for 2025-03-29 to 2025-03-31.

Figure 26: Zonal average of "Cloud fraction (CRB)" for 2025-03-29 to 2025-03-31.

Figure 27: Zonal average of "Cloud height (CRB)" for 2025-03-29 to 2025-03-31.

Figure 28: Zonal average of "Cloud albedo (CRB)" for 2025-03-29 to 2025-03-31.

Figure 29: Zonal average of "Fitted surface albedo" for 2025-03-29 to 2025-03-31.

Figure 30: Zonal average of "Fitted surface albedo (CRB)" for 2025-03-29 to 2025-03-31.

Figure 31: Zonal average of "RMS" for 2025-03-29 to 2025-03-31.

Figure 32: Zonal average of "RMS (CRB)" for 2025-03-29 to 2025-03-31.

Figure 33: Zonal average of "Fitting wavelength shift" for 2025-03-29 to 2025-03-31.

Figure 34: Zonal average of "OCRA cloud fraction" for 2025-03-29 to 2025-03-31.

Figure 35: Zonal average of "OCRA "blue" reflectance" for 2025-03-29 to 2025-03-31.

Figure 36: Zonal average of "OCRA "green" reflectance" for 2025-03-29 to 2025-03-31.

Figure 37: Zonal average of "ROCINN "red" reflectance" for 2025-03-29 to 2025-03-31.

8 Histograms

The definitions of the parameters given in this section can be found in section 2.

Figure 38: Histogram of "QA value" for 2025-03-29 to 2025-03-31

Figure 39: Histogram of "Radiometric cloud fraction" for 2025-03-29 to 2025-03-31

Figure 40: Histogram of "Cloud top height" for 2025-03-29 to 2025-03-31

Figure 41: Histogram of "Cloud optical thickness" for 2025-03-29 to 2025-03-31

Figure 42: Histogram of "Cloud fraction (CRB)" for 2025-03-29 to 2025-03-31

Figure 43: Histogram of "Cloud height (CRB)" for 2025-03-29 to 2025-03-31

Figure 44: Histogram of "Cloud albedo (CRB)" for 2025-03-29 to 2025-03-31

Figure 45: Histogram of "Fitted surface albedo" for 2025-03-29 to 2025-03-31

Figure 46: Histogram of "Fitted surface albedo (CRB)" for 2025-03-29 to 2025-03-31

Figure 47: Histogram of "RMS" for 2025-03-29 to 2025-03-31

Figure 48: Histogram of "RMS (CRB)" for 2025-03-29 to 2025-03-31

Figure 49: Histogram of "Fitting wavelength shift" for 2025-03-29 to 2025-03-31

Figure 50: Histogram of "OCRA cloud fraction" for 2025-03-29 to 2025-03-31

Figure 51: Histogram of "OCRA "blue" reflectance" for 2025-03-29 to 2025-03-31

Figure 52: Histogram of "OCRA "green" reflectance" for 2025-03-29 to 2025-03-31

Figure 53: Histogram of "ROCINN "red" reflectance" for 2025-03-29 to 2025-03-31

9 Along track statistics

The TROPOMI instrument uses different binned detector rows for different viewing directions. In this section statistics are presented for each of the binned rows in the instrument.

Figure 54: Along track statistics of "QA value" for 2025-03-29 to 2025-03-31

Figure 55: Along track statistics of "Radiometric cloud fraction" for 2025-03-29 to 2025-03-31

Figure 56: Along track statistics of "Cloud top height" for 2025-03-29 to 2025-03-31

Figure 57: Along track statistics of "Cloud optical thickness" for 2025-03-29 to 2025-03-31

Figure 58: Along track statistics of "Cloud fraction (CRB)" for 2025-03-29 to 2025-03-31

Figure 59: Along track statistics of "Cloud height (CRB)" for 2025-03-29 to 2025-03-31

Figure 60: Along track statistics of "Cloud albedo (CRB)" for 2025-03-29 to 2025-03-31

Figure 61: Along track statistics of "Fitted surface albedo" for 2025-03-29 to 2025-03-31

Figure 62: Along track statistics of "Fitted surface albedo (CRB)" for 2025-03-29 to 2025-03-31

Figure 63: Along track statistics of "RMS" for 2025-03-29 to 2025-03-31

Figure 64: Along track statistics of "RMS (CRB)" for 2025-03-29 to 2025-03-31

Figure 65: Along track statistics of "Fitting wavelength shift" for 2025-03-29 to 2025-03-31

Figure 66: Along track statistics of "OCRA cloud fraction" for 2025-03-29 to 2025-03-31

Figure 67: Along track statistics of "OCRA "blue" reflectance" for 2025-03-29 to 2025-03-31

Figure 68: Along track statistics of "OCRA "green" reflectance" for 2025-03-29 to 2025-03-31

Figure 69: Along track statistics of "ROCINN "red" reflectance" for 2025-03-29 to 2025-03-31

10 Coincidence density

To investigate the relation between parameters scatter density plots are produced. These include some 'hidden' parameters, latitude and the solar- and viewing geometries, in addition to all configured parameters. All combinations of pairs of parameters are included *once*, in one direction alone.

Figure 70: Scatter density plot of "Cloud albedo (CRB)" against "OCRA cloud fraction" for 2025-03-29 to 2025-03-31.

Figure 71: Scatter density plot of "Radiometric cloud fraction" against "Cloud albedo (CRB)" for 2025-03-29 to 2025-03-31.

Figure 72: Scatter density plot of "Radiometric cloud fraction" against "OCRA cloud fraction" for 2025-03-29 to 2025-03-31.

Figure 73: Scatter density plot of "Radiometric cloud fraction" against "Cloud fraction (CRB)" for 2025-03-29 to 2025-03-31.

Figure 74: Scatter density plot of "Radiometric cloud fraction" against "Cloud height (CRB)" for 2025-03-29 to 2025-03-31.

Figure 75: Scatter density plot of "Radiometric cloud fraction" against "Cloud optical thickness" for 2025-03-29 to 2025-03-31.

Figure 76: Scatter density plot of "Radiometric cloud fraction" against "Cloud top height" for 2025-03-29 to 2025-03-31.

Figure 77: Scatter density plot of "Cloud fraction (CRB)" against "Cloud albedo (CRB)" for 2025-03-29 to 2025-03-31.

Figure 78: Scatter density plot of "Cloud fraction (CRB)" against "OCRA cloud fraction" for 2025-03-29 to 2025-03-31.

Figure 79: Scatter density plot of "Cloud fraction (CRB)" against "Cloud height (CRB)" for 2025-03-29 to 2025-03-31.

Figure 80: Scatter density plot of "Cloud height (CRB)" against "Cloud albedo (CRB)" for 2025-03-29 to 2025-03-31.

Figure 81: Scatter density plot of "Cloud height (CRB)" against "OCRA cloud fraction" for 2025-03-29 to 2025-03-31.

Figure 82: Scatter density plot of "Cloud optical thickness" against "Cloud albedo (CRB)" for 2025-03-29 to 2025-03-31.

Figure 83: Scatter density plot of "Cloud optical thickness" against "OCRA cloud fraction" for 2025-03-29 to 2025-03-31.

Figure 84: Scatter density plot of "Cloud optical thickness" against "Cloud fraction (CRB)" for 2025-03-29 to 2025-03-31.

Figure 85: Scatter density plot of "Cloud optical thickness" against "Cloud height (CRB)" for 2025-03-29 to 2025-03-31.

Figure 86: Scatter density plot of "Cloud top height" against "Cloud albedo (CRB)" for 2025-03-29 to 2025-03-31.

Figure 87: Scatter density plot of "Cloud top height" against "OCRA cloud fraction" for 2025-03-29 to 2025-03-31.

Figure 88: Scatter density plot of "Cloud top height" against "Cloud fraction (CRB)" for 2025-03-29 to 2025-03-31.

Figure 89: Scatter density plot of "Cloud top height" against "Cloud height (CRB)" for 2025-03-29 to 2025-03-31.

Figure 90: Scatter density plot of "Cloud top height" against "Cloud optical thickness" for 2025-03-29 to 2025-03-31.

Figure 91: Scatter density plot of "Latitude" against "Cloud albedo (CRB)" for 2025-03-29 to 2025-03-31.

Figure 92: Scatter density plot of "Latitude" against "Radiometric cloud fraction" for 2025-03-29 to 2025-03-31.

Figure 93: Scatter density plot of "Latitude" against "OCRA cloud fraction" for 2025-03-29 to 2025-03-31.

Figure 94: Scatter density plot of "Latitude" against "Cloud fraction (CRB)" for 2025-03-29 to 2025-03-31.

Figure 95: Scatter density plot of "Latitude" against "Cloud height (CRB)" for 2025-03-29 to 2025-03-31.

Figure 96: Scatter density plot of "Latitude" against "Cloud optical thickness" for 2025-03-29 to 2025-03-31.

Figure 97: Scatter density plot of "Latitude" against "Cloud top height" for 2025-03-29 to 2025-03-31.

Figure 98: Scatter density plot of "Solar zenith angle" against "Cloud albedo (CRB)" for 2025-03-29 to 2025-03-31.

Figure 99: Scatter density plot of "Solar zenith angle" against "Radiometric cloud fraction" for 2025-03-29 to 2025-03-31.

Figure 100: Scatter density plot of "Solar zenith angle" against "OCRA cloud fraction" for 2025-03-29 to 2025-03-31.

Figure 101: Scatter density plot of "Solar zenith angle" against "Cloud fraction (CRB)" for 2025-03-29 to 2025-03-31.

Figure 102: Scatter density plot of "Solar zenith angle" against "Cloud height (CRB)" for 2025-03-29 to 2025-03-31.

Figure 103: Scatter density plot of "Solar zenith angle" against "Cloud optical thickness" for 2025-03-29 to 2025-03-31.

Figure 104: Scatter density plot of "Solar zenith angle" against "Cloud top height" for 2025-03-29 to 2025-03-31.

Figure 105: Scatter density plot of "Solar zenith angle" against "Latitude" for 2025-03-29 to 2025-03-31.

Figure 106: Scatter density plot of "Viewing zenith angle" against "Cloud albedo (CRB)" for 2025-03-29 to 2025-03-31.

Figure 107: Scatter density plot of "Viewing zenith angle" against "Radiometric cloud fraction" for 2025-03-29 to 2025-03-31.

Figure 108: Scatter density plot of "Viewing zenith angle" against "OCRA cloud fraction" for 2025-03-29 to 2025-03-31.

Figure 109: Scatter density plot of "Viewing zenith angle" against "Cloud fraction (CRB)" for 2025-03-29 to 2025-03-31.

Figure 110: Scatter density plot of "Viewing zenith angle" against "Cloud height (CRB)" for 2025-03-29 to 2025-03-31.

Figure 111: Scatter density plot of "Viewing zenith angle" against "Cloud optical thickness" for 2025-03-29 to 2025-03-31.

Figure 112: Scatter density plot of "Viewing zenith angle" against "Cloud top height" for 2025-03-29 to 2025-03-31.

Figure 113: Scatter density plot of "Viewing zenith angle" against "Latitude" for 2025-03-29 to 2025-03-31.

Figure 114: Scatter density plot of "Viewing zenith angle" against "Solar zenith angle" for 2025-03-29 to 2025-03-31.

Contents

1	Short Introduction 1.1 The list of parameters	1 1
2	Definitions	1
3	Granule outlines	12
4	Input data monitoring	13
5	Warnings and errors	14
6	World maps	15
7	Zonal average	31
8	Histograms	47
9	Along track statistics	63
10	Coincidence density	79
11	Copyright information of 'PyCAMA'	124

List of Figures

1	Map of correlation graph for 2025-03-29 to 2025-03-31	10
2	Map of correlation matrix for 2025-03-29 to 2025-03-31	11
3	Outline of the granules	12
4	Input data per granule	13
5	Fraction of pixels with specific warnings and errors during processing	14
6	Map of "Radiometric cloud fraction" for 2025-03-29 to 2025-03-31	15
7	Map of "Cloud top height" for 2025-03-29 to 2025-03-31	16
8	Map of "Cloud optical thickness" for 2025-03-29 to 2025-03-31	17
9	Map of "Cloud fraction (CRB)" for 2025-03-29 to 2025-03-31	18
10	Map of "Cloud height (CRB)" for 2025-03-29 to 2025-03-31	19
11	Map of "Cloud albedo (CRB)" for 2025-03-29 to 2025-03-31	20
12	Map of "Fitted surface albedo" for 2025-03-29 to 2025-03-31	21
13	Map of "Fitted surface albedo (CRB)" for 2025-03-29 to 2025-03-31	22
14	Map of "RMS" for 2025-03-29 to 2025-03-31	23
15	Map of "RMS (CRB)" for 2025-03-29 to 2025-03-31	24
16	Map of "Fitting wavelength shift" for 2025-03-29 to 2025-03-31	25
17	Map of "OCRA cloud fraction" for 2025-03-29 to 2025-03-31	26
18	Map of "OCRA "blue" reflectance" for 2025-03-29 to 2025-03-31	27
19	Map of "OCRA "green" reflectance" for 2025-03-29 to 2025-03-31	28
20	Map of "ROCINN "red" reflectance" for 2025-03-29 to 2025-03-31	29
21	Map of the number of observations for 2025-03-29 to 2025-03-31	30
22	Zonal average of "QA value" for 2025-03-29 to 2025-03-31.	31
23	Zonal average of "Radiometric cloud fraction" for 2025-03-29 to 2025-03-31	32
24	Zonal average of "Cloud top height" for 2025-03-29 to 2025-03-31.	33
25	Zonal average of "Cloud optical thickness" for 2025-03-29 to 2025-03-31	34
26	Zonal average of "Cloud fraction (CRB)" for 2025-03-29 to 2025-03-31	35
27	Zonal average of "Cloud height (CRB)" for 2025-03-29 to 2025-03-31.	36
28	Zonal average of "Cloud albedo (CRB)" for 2025-03-29 to 2025-03-31.	37
29	Zonal average of "Fitted surface albedo" for 2025-03-29 to 2025-03-31.	38
30	Zonal average of "Fitted surface albedo (CRB)" for 2025-03-29 to 2025-03-31.	39
31	Zonal average of "RMS" for 2025-03-29 to 2025-03-31.	40
32	Zonal average of "RMS (CRB)" for 2025-03-29 to 2025-03-31	41
33	Zonal average of "Fitting wavelength shift" for 2025-03-29 to 2025-03-31	42
34	Zonal average of "OCRA cloud fraction" for 2025-03-29 to 2025-03-31.	43
35	Zonal average of "OCRA "blue" reflectance" for 2025-03-29 to 2025-03-31	44
36	Zonal average of "OCRA "green" reflectance" for 2025-03-29 to 2025-03-31	45

37	Zonal average of "ROCINN "red" reflectance" for 2025-03-29 to 2025-03-31.	46
38	Histogram of "QA value" for 2025-03-29 to 2025-03-31	47
39	Histogram of "Radiometric cloud fraction" for 2025-03-29 to 2025-03-31	48
40	Histogram of "Cloud top height" for 2025-03-29 to 2025-03-31	49
41	Histogram of "Cloud optical thickness" for 2025-03-29 to 2025-03-31	50
42	Histogram of "Cloud fraction (CRB)" for 2025-03-29 to 2025-03-31	51
43	Histogram of "Cloud height (CRB)" for 2025-03-29 to 2025-03-31	52
44	Histogram of "Cloud albedo (CRB)" for 2025-03-29 to 2025-03-31	53
45	Histogram of "Fitted surface albedo" for 2025-03-29 to 2025-03-31	54
46	Histogram of "Fitted surface albedo (CRB)" for 2025-03-29 to 2025-03-31	55
47	Histogram of "RMS" for 2025-03-29 to 2025-03-31	56
	Histogram of "RMS (CRB)" for 2025-03-29 to 2025-03-31	57
40 40	Histogram of "Fitting wavelength shift" for $2025-03-29$ to $2025-03-31$	58
50	Histogram of "OCP A cloud fraction" for 2025-03-27 to 2025-03-31	50
51	Histogram of "OCP A "blue" reflectance" for 2025-03-29 to 2025-03-31	60
51	Histogram of "OCDA "grapping affectance" for 2025-02-29 to $2025-03-21$	61
52 52	Histogram of "DOCINIX "red" reflectance for 2025-03-29 to 2025-03-51 \ldots	61
55	Histogram of KOCINN red reflectance for $2025-03-29$ to $2025-03-31$	02
54	Along track statistics of QA value for $2025-03-29$ to $2025-03-31$	03
33	Along track statistics of "Radiometric cloud fraction" for 2025-03-29 to 2025-03-31	64
56	Along track statistics of "Cloud top height" for 2025-03-29 to 2025-03-31	65
57	Along track statistics of "Cloud optical thickness" for 2025-03-29 to 2025-03-31	66
58	Along track statistics of "Cloud fraction (CRB)" for 2025-03-29 to 2025-03-31	67
59	Along track statistics of "Cloud height (CRB)" for 2025-03-29 to 2025-03-31	68
60	Along track statistics of "Cloud albedo (CRB)" for 2025-03-29 to 2025-03-31	69
61	Along track statistics of "Fitted surface albedo" for 2025-03-29 to 2025-03-31	70
62	Along track statistics of "Fitted surface albedo (CRB)" for 2025-03-29 to 2025-03-31	71
63	Along track statistics of "RMS" for 2025-03-29 to 2025-03-31	72
64	Along track statistics of "RMS (CRB)" for 2025-03-29 to 2025-03-31	73
65	Along track statistics of "Fitting wavelength shift" for 2025-03-29 to 2025-03-31	74
66	Along track statistics of "OCRA cloud fraction" for 2025-03-29 to 2025-03-31	75
67	Along track statistics of "OCRA "blue" reflectance" for 2025-03-29 to 2025-03-31	76
68	Along track statistics of "OCRA "green" reflectance" for 2025-03-29 to 2025-03-31	77
69	Along track statistics of "ROCINN "red" reflectance" for 2025-03-29 to 2025-03-31	78
70	Scatter density plot of "Cloud albedo (CRB)" against "OCRA cloud fraction" for 2025-03-29 to 2025-03-31.	79
71	Scatter density plot of "Radiometric cloud fraction" against "Cloud albedo (CRB)" for 2025-03-29 to 2025-	
	03-31	80
72	Scatter density plot of "Radiometric cloud fraction" against "OCRA cloud fraction" for 2025-03-29 to 2025-	
	03-31.	81
73	Scatter density plot of "Radiometric cloud fraction" against "Cloud fraction (CRB)" for 2025-03-29 to 2025-	
	03-31.	82
74	Scatter density plot of "Radiometric cloud fraction" against "Cloud height (CRB)" for 2025-03-29 to 2025-	
	03-31.	83
75	Scatter density plot of "Radiometric cloud fraction" against "Cloud optical thickness" for 2025-03-29 to	
	2025-03-31	84
76	Scatter density plot of "Radiometric cloud fraction" against "Cloud top height" for 2025-03-29 to 2025-03-31	85
77	Scatter density plot of "Cloud fraction (CRB)" against "Cloud albedo (CRB)" for 2025-03-29 to 2025-03-31	86
78	Scatter density plot of "Cloud fraction (CRB)" against "OCRA cloud fraction" for 2025-03-29 to 2025-03-31	87
79	Scatter density plot of "Cloud fraction (CRB)" against "Cloud height (CRB)" for 2025-03-29 to 2025-03-31	88
80	Scatter density plot of "Cloud height (CPB)" against "Cloud albedo (CPB)" for 2025-05-27 to 2025-05-51.	80
80 81	Scatter density plot of "Cloud height (CRB)" against "OCPA cloud fraction" for 2025-03-29 to 2025-03-31.	00
87	Scatter density plot of "Cloud antical thickness" against "Cloud albede (CPR)" for 2025-03-29 to 2025-03-31.	90
02 02	Scatter density plot of "Cloud optical thickness" against "OCPA aloud fragtion" for 2025-03-29 to 2025-03-31.	02
0 <i>3</i> 0 <i>1</i>	Scatter density plot of Cloud optical thickness? against OCKA cloud fraction (CDD)? for 2025-05-29 to 2025-05-31.	92
04 05	Scatter density plot of Cloud optical thickness against Cloud fraction (CRB) for 2023-05-29 to 2023-05-51.	93
85	Scatter density plot of Cloud optical informess against Cloud neight (CRB) for 2025-05-29 to 2025-05-51.	94
80 07	Scatter density plot of Cloud top neight against "Cloud albedo (CKB)" for 2025-03-29 to 2025-03-31.	93
87	Scatter density plot of "Cloud top height" against "OCRA cloud fraction" for 2025-03-29 to 2025-03-31.	96
88	Scatter density plot of "Cloud top height" against "Cloud fraction (CRB)" for 2025-03-29 to 2025-03-31.	97
89	Scatter density plot of "Cloud top height" against "Cloud height (CRB)" for 2025-03-29 to 2025-03-31.	98
90	Scatter density plot of "Cloud top height" against "Cloud optical thickness" for 2025-03-29 to 2025-03-31.	99
91	Scatter density plot of "Latitude" against "Cloud albedo (CRB)" for 2025-03-29 to 2025-03-31 1	100
92	Scatter density plot of "Latitude" against "Radiometric cloud fraction" for 2025-03-29 to 2025-03-31 1	101
93	Scatter density plot of "Latitude" against "OCRA cloud fraction" for 2025-03-29 to 2025-03-31 1	102

94	Scatter density plot of "Latitude" against "Cloud fraction (CRB)" for 2025-03-29 to 2025-03-31	103
95	Scatter density plot of "Latitude" against "Cloud height (CRB)" for 2025-03-29 to 2025-03-31	104
96	Scatter density plot of "Latitude" against "Cloud optical thickness" for 2025-03-29 to 2025-03-31	105
97	Scatter density plot of "Latitude" against "Cloud top height" for 2025-03-29 to 2025-03-31.	106
98	Scatter density plot of "Solar zenith angle" against "Cloud albedo (CRB)" for 2025-03-29 to 2025-03-31.	107
99	Scatter density plot of "Solar zenith angle" against "Radiometric cloud fraction" for 2025-03-29 to 2025-03-31.	108
100	Scatter density plot of "Solar zenith angle" against "OCRA cloud fraction" for 2025-03-29 to 2025-03-31.	109
101	Scatter density plot of "Solar zenith angle" against "Cloud fraction (CRB)" for 2025-03-29 to 2025-03-31.	110
102	Scatter density plot of "Solar zenith angle" against "Cloud height (CRB)" for 2025-03-29 to 2025-03-31.	111
103	Scatter density plot of "Solar zenith angle" against "Cloud optical thickness" for 2025-03-29 to 2025-03-31.	112
104	Scatter density plot of "Solar zenith angle" against "Cloud top height" for 2025-03-29 to 2025-03-31.	113
105	Scatter density plot of "Solar zenith angle" against "Latitude" for 2025-03-29 to 2025-03-31	114
106	Scatter density plot of "Viewing zenith angle" against "Cloud albedo (CRB)" for 2025-03-29 to 2025-03-31.	115
107	Scatter density plot of "Viewing zenith angle" against "Radiometric cloud fraction" for 2025-03-29 to 2025-	
	03-31	116
108	Scatter density plot of "Viewing zenith angle" against "OCRA cloud fraction" for 2025-03-29 to 2025-03-31.	117
109	Scatter density plot of "Viewing zenith angle" against "Cloud fraction (CRB)" for 2025-03-29 to 2025-03-31.	118
110	Scatter density plot of "Viewing zenith angle" against "Cloud height (CRB)" for 2025-03-29 to 2025-03-31.	119
111	Scatter density plot of "Viewing zenith angle" against "Cloud optical thickness" for 2025-03-29 to 2025-03-31.	120
112	Scatter density plot of "Viewing zenith angle" against "Cloud top height" for 2025-03-29 to 2025-03-31	121
113	Scatter density plot of "Viewing zenith angle" against "Latitude" for 2025-03-29 to 2025-03-31	122
114	Scatter density plot of "Viewing zenith angle" against "Solar zenith angle" for 2025-03-29 to 2025-03-31.	123

List of Tables

1	Parameterlist and basic statistics for the analysis
2	Percentile ranges
3	Parameterlist and basic statistics for the analysis for observations in the northern hemisphere
4	Parameterlist and basic statistics for the analysis for observations in the southern hemisphere
5	Parameterlist and basic statistics for the analysis for observations over water
6	Parameterlist and basic statistics for the analysis for observations over land
7	Correlation matrix
8	Covariance matrix

11 Copyright information of 'PyCAMA'

Copyright © 2005 – 2023, Maarten Sneep (KNMI).

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
- 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

This software is provided by the copyright holders and contributors "as is" and any express or implied warranties, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose are disclaimed. In no event shall the copyright holder or contributors be liable for any direct, indirect, incidental, special, exemplary, or consequential damages (including, but not limited to, procurement of substitute goods or services; loss of use, data, or profits; or business interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence or otherwise) arising in any way out of the use of this software, even if advised of the possibility of such damage.

Maarten Sneep (maarten.sneep@knmi.nl).